-
1
-
-
21844440024
-
Generalization bounds and complexities based on sparsity and clustering for convex combinations of functions from random classes
-
S. Andonova, Generalization bounds and complexities based on sparsity and clustering for convex combinations of functions from random classes, J. Mach. Learn. Res. 6 (2005), 307-340.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 307-340
-
-
Andonova, S.1
-
3
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
4
-
-
0001347323
-
Complexity regularization with applications to artificial neural networks
-
(G. Roussa, ed.), Kluwer Academic, Dortrecht
-
A. R. Barron, Complexity regularization with applications to artificial neural networks, in Non-parametric Functional Estimation (G. Roussa, ed.), Kluwer Academic, Dortrecht, 1990, pp. 561-576.
-
(1990)
Non-parametric Functional Estimation
, pp. 561-576
-
-
Barron, A.R.1
-
5
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
P. L. Bartlett, The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network, IEEE Trans. Inform. Theory 44 (1998), 525-536.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, pp. 525-536
-
-
Bartlett, P.L.1
-
7
-
-
84879394399
-
Support vector machine soft margin classifiers: Error analysis
-
D. R. Chen, Q. Wu, Y. Ying, and D.-X. Zhou, Support vector machine soft margin classifiers: Error analysis, J. Mach. Learn. Res. 5 (2004), 1143-1175.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1143-1175
-
-
Chen, D.R.1
Wu, Q.2
Ying, Y.3
Zhou, D.-X.4
-
8
-
-
0036071370
-
On the mathematical foundations of learning
-
F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. 39 (2001), 1-49.
-
(2001)
Bull. Amer. Math. Soc.
, vol.39
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
9
-
-
0036436325
-
Best choices for regularization parameters in learning theory: On the bias-variance problem
-
F. Cucker and S. Smale, Best choices for regularization parameters in learning theory: On the bias-variance problem, Found. Comput. Math. 2 (2002), 413-428.
-
(2002)
Found. Comput. Math.
, vol.2
, pp. 413-428
-
-
Cucker, F.1
Smale, S.2
-
11
-
-
24944432318
-
Model selection for regularized least-squares algorithm in learning theory
-
E. De Vito, A. Caponnetto, and L. Rosasco, Model selection for regularized least-squares algorithm in learning theory, Found. Comput. Math. 5 (2005), 59-85.
-
(2005)
Found. Comput. Math.
, vol.5
, pp. 59-85
-
-
De Vito, E.1
Caponnetto, A.2
Rosasco, L.3
-
12
-
-
0034419669
-
Regularization networks and support vector machines
-
T. Evgeniou, M. Pontil, and T. Poggio, Regularization networks and support vector machines, Adv. Comput. Math. 13 (2000), 1-50.
-
(2000)
Adv. Comput. Math.
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
13
-
-
0001166808
-
Rademacher processes and bounding the risk of function learning
-
(E. Gine, D. M. Mason, and J. A. Wellner, eds.), Birkhäuser, Boston
-
V. Koltchinskii and D. Panchenko, Rademacher processes and bounding the risk of function learning, in High Dimensional Probability II (E. Gine, D. M. Mason, and J. A. Wellner, eds.), Birkhäuser, Boston, 2000, pp. 443-459.
-
(2000)
High Dimensional Probability II
, pp. 443-459
-
-
Koltchinskii, V.1
Panchenko, D.2
-
14
-
-
0032166052
-
The importance of convexity in learning with least square loss
-
W. S. Lee, P. Bartlett, and R. Williamson, The importance of convexity in learning with least square loss, IEEE Trans. Inform. Theory 44 (1998), 1974-1980.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, pp. 1974-1980
-
-
Lee, W.S.1
Bartlett, P.2
Williamson, R.3
-
15
-
-
9444269961
-
On the Bayes-risk consistency of regularized boosting methods
-
G. Lugosi and N. Vayatis, On the Bayes-risk consistency of regularized boosting methods, Ann. Statist. 32 (2004), 30-55.
-
(2004)
Ann. Statist.
, vol.32
, pp. 30-55
-
-
Lugosi, G.1
Vayatis, N.2
-
16
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony, Structural risk minimization over data-dependent hierarchies, IEEE Trans. Inform. Theory 44 (1998), 1926-1940.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, R.C.3
Anthony, M.4
-
17
-
-
0037749769
-
Estimating the approximation error in learning theory
-
S. Smale and D.-X. Zhou, Estimating the approximation error in learning theory, Anal. Appl. 1 (2003), 17-41.
-
(2003)
Anal. Appl.
, vol.1
, pp. 17-41
-
-
Smale, S.1
Zhou, D.-X.2
-
18
-
-
3042850649
-
Shannon sampling and function reconstruction from point values
-
S. Smale and D.-X. Zhou, Shannon sampling and function reconstruction from point values, Bull. Amer. Math. Soc. 41 (2004), 279-305.
-
(2004)
Bull. Amer. Math. Soc.
, vol.41
, pp. 279-305
-
-
Smale, S.1
Zhou, D.-X.2
-
26
-
-
17444402055
-
SVM soft margin classifiers: Linear programming versus quadratic programming
-
Q. Wu and D.-X. Zhou, SVM soft margin classifiers: Linear programming versus quadratic programming, Neural Comput. 17 (2005), 1160-1187.
-
(2005)
Neural Comput.
, vol.17
, pp. 1160-1187
-
-
Wu, Q.1
Zhou, D.-X.2
-
28
-
-
0042879446
-
Leave-one-out bounds for kernel methods
-
T. Zhang, Leave-one-out bounds for kernel methods, Neural Comput. 15 (2003), 1397-1437.
-
(2003)
Neural Comput.
, vol.15
, pp. 1397-1437
-
-
Zhang, T.1
-
29
-
-
0036748375
-
The covering number in learning theory
-
D.-X. Zhou, The covering number in learning theory, J. Complexity 18 (2002), 739-767.
-
(2002)
J. Complexity
, vol.18
, pp. 739-767
-
-
Zhou, D.-X.1
-
30
-
-
0038105204
-
Capacity of reproducing kernel spaces in learning theory
-
D.-X. Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans. Inform. Theory 49 (2003), 1743-1752.
-
(2003)
IEEE Trans. Inform. Theory
, vol.49
, pp. 1743-1752
-
-
Zhou, D.-X.1
-
32
-
-
84876634838
-
Approximation with polynomial kernels and SVM classifiers
-
in press
-
D.-X. Zhou and K. Jetter, Approximation with polynomial kernels and SVM classifiers, Adv. Comput. Math., in press.
-
Adv. Comput. Math.
-
-
Zhou, D.-X.1
Jetter, K.2
|