-
1
-
-
0037381848
-
Exercise increases nuclear AMPK α2 in human skeletal muscle
-
McGee SL, Howlett KF, Starkie RL, et al. Exercise increases nuclear AMPK α2 in human skeletal muscle. Diabetes 2003;52:926-8
-
(2003)
Diabetes
, vol.52
, pp. 926-928
-
-
McGee, S.L.1
Howlett, K.F.2
Starkie, R.L.3
-
2
-
-
27644468222
-
Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen
-
McConell GK, Lee-Young RS, Chen ZP, et al. Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. J Physiol 2005;568:665-76
-
(2005)
J Physiol
, vol.568
, pp. 665-676
-
-
McConell, G.K.1
Lee-Young, R.S.2
Chen, Z.P.3
-
3
-
-
33846580517
-
Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis
-
Richard MR, Haihong Z, Ji L, et al. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 2007;5:151-6
-
(2007)
Cell Metab
, vol.5
, pp. 151-156
-
-
Richard, M.R.1
Haihong, Z.2
Ji, L.3
-
4
-
-
33748153705
-
Metabolic syndrome: Adenosine monophosphate-activated protein kinase and malonyl coenzyme A
-
Ruderman NB, Saha AK. Metabolic syndrome: adenosine monophosphate-activated protein kinase and malonyl coenzyme A. Obesity 2006;14(Suppl 1):S25-S33
-
(2006)
Obesity
, vol.14
, Issue.SUPPL. 1
-
-
Ruderman, N.B.1
Saha, A.K.2
-
5
-
-
20144386698
-
Long-term AICAR administration and exercise prevents diabetes in ZDF rats
-
Pold R, Jensen LS, Jessen N, et al. Long-term AICAR administration and exercise prevents diabetes in ZDF rats. Diabetes 2005;54:928-34
-
(2005)
Diabetes
, vol.54
, pp. 928-934
-
-
Pold, R.1
Jensen, L.S.2
Jessen, N.3
-
6
-
-
0031007065
-
The AMP-activated protein kinase - fuel gauge of the mammalian cell?
-
Hardie DG, Carling D. The AMP-activated protein kinase - fuel gauge of the mammalian cell? Eur J Biochem 1997;246:259-73
-
(1997)
Eur J Biochem
, vol.246
, pp. 259-273
-
-
Hardie, D.G.1
Carling, D.2
-
7
-
-
0029978799
-
Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise
-
Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 1996;270:E299-E304
-
(1996)
Am J Physiol
, vol.270
-
-
Winder, W.W.1
Hardie, D.G.2
-
8
-
-
0030901556
-
Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase
-
Hutber CA, Hardie DG, Winder WW, et al. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am J Physiol 1997;272:E262-6
-
(1997)
Am J Physiol
, vol.272
-
-
Hutber, C.A.1
Hardie, D.G.2
Winder, W.W.3
-
9
-
-
0029093341
-
High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase
-
Kudo N, Barr AJ, Barr RL. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 1995;270:17513-20
-
(1995)
J Biol Chem
, vol.270
, pp. 17513-17520
-
-
Kudo, N.1
Barr, A.J.2
Barr, R.L.3
-
10
-
-
0028406897
-
Role of the AMP-activated protein kinase in the cellular stress response
-
Corton JM, Gilliespie JG, Hardie DG. Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol 1994;4:314-24
-
(1994)
Curr Biol
, vol.4
, pp. 314-324
-
-
Corton, J.M.1
Gilliespie, J.G.2
Hardie, D.G.3
-
11
-
-
0026350712
-
Regulation of intracellular acetyl-CoA carboxylase by ATP depletors mimics the action of the 5′-AMP-activated protein kinase
-
Witters LA, Marshal AC. Regulation of intracellular acetyl-CoA carboxylase by ATP depletors mimics the action of the 5′-AMP-activated protein kinase. Biochem Biophys Res Commun 1991; 181:1486-92
-
(1991)
Biochem Biophys Res Commun
, vol.181
, pp. 1486-1492
-
-
Witters, L.A.1
Marshal, A.C.2
-
13
-
-
13344285343
-
Mammalian AMP-activated protein kinase subfamily
-
Stapleton D, Mitchelhill KI, Gao G, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem 1996;271:611-14
-
(1996)
J Biol Chem
, vol.271
, pp. 611-614
-
-
Stapleton, D.1
Mitchelhill, K.I.2
Gao, G.3
-
14
-
-
0034141355
-
The regulation of AMP-activated protein kinase by phosphorylation
-
Stein SC, Woods A, Jones NA, et al. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 2000;345:437-45
-
(2000)
Biochem J
, vol.345
, pp. 437-445
-
-
Stein, S.C.1
Woods, A.2
Jones, N.A.3
-
15
-
-
0032567252
-
Functional domains of the 1 catalytic subunit of the AMP-activated protein kinase
-
Barbara EC, Kimberly S, James C, et al. Functional domains of the 1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem 1998;273:35347-54
-
(1998)
J Biol Chem
, vol.273
, pp. 35347-35354
-
-
Barbara, E.C.1
Kimberly, S.2
James, C.3
-
16
-
-
0035029874
-
Effect of 5- aminoimidazole-4-carboxamide-1-β-D-ribifuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats
-
Bergeron R, Previs SF, Cline GW, et al. Effect of 5- aminoimidazole-4-carboxamide-1-β-D-ribifuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes 2001;50:1076-82
-
(2001)
Diabetes
, vol.50
, pp. 1076-1082
-
-
Bergeron, R.1
Previs, S.F.2
Cline, G.W.3
-
17
-
-
34250751754
-
AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside
-
Guigas B, Taleux N, Foreta M, et al. AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside. Biochem J 2007;404:499-507
-
(2007)
Biochem J
, vol.404
, pp. 499-507
-
-
Guigas, B.1
Taleux, N.2
Foreta, M.3
-
18
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001;108:1167-74
-
(2001)
J Clin Invest
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
-
19
-
-
4043085036
-
Adenovirus-mediated chronic 'hyper-resistinemia' leads to in viva insulin resistance in normal rats
-
Satoh H, Nguyen MT, Miles PD, et al. Adenovirus-mediated chronic 'hyper-resistinemia' leads to in viva insulin resistance in normal rats. J Clin Invest 2004;114:224-31
-
(2004)
J Clin Invest
, vol.114
, pp. 224-231
-
-
Satoh, H.1
Nguyen, M.T.2
Miles, P.D.3
-
20
-
-
0036851817
-
Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase
-
Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002;8:1288-95
-
(2002)
Nat Med
, vol.8
, pp. 1288-1295
-
-
Yamauchi, T.1
Kamon, J.2
Minokoshi, Y.3
-
21
-
-
17844368938
-
Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver
-
Foretz M, Ancellin N, Andreelli F, et al. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 2005;54:1331-9
-
(2005)
Diabetes
, vol.54
, pp. 1331-1339
-
-
Foretz, M.1
Ancellin, N.2
Andreelli, F.3
-
22
-
-
33745196745
-
Activation of AMP-activated protein kinase in the liver: A new strategy for the management of metabolic hepatic disorders
-
Violett B, Foretz M, Guigas B, et al. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 2006;574:41-53
-
(2006)
J Physiol
, vol.574
, pp. 41-53
-
-
Violett, B.1
Foretz, M.2
Guigas, B.3
-
23
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostatis in liver and therapeutic effects of metformin
-
Shaw RJ, Lamia KA, Vasqueez D, et al. The kinase LKB1 mediates glucose homeostatis in liver and therapeutic effects of metformin. Science 2005;310:1642-6
-
(2005)
Science
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
Lamia, K.A.2
Vasqueez, D.3
-
24
-
-
0033759381
-
AMP-activated protein kinase: Possible target for treatment of Type 2 diabetes
-
Winder WW. AMP-activated protein kinase: possible target for treatment of Type 2 diabetes. Diabetes Tech Ther 2000;2:441-8
-
(2000)
Diabetes Tech Ther
, vol.2
, pp. 441-448
-
-
Winder, W.W.1
-
25
-
-
0023222361
-
Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes
-
Caro JF, Sinha MK, Raju SM, et al. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest 1987;79:1330-7
-
(1987)
J Clin Invest
, vol.79
, pp. 1330-1337
-
-
Caro, J.F.1
Sinha, M.K.2
Raju, S.M.3
-
26
-
-
0028903232
-
Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects
-
Goodyear LJ, Giorgino F, Sherman LA, et al. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 1995;95:2195-204
-
(1995)
J Clin Invest
, vol.95
, pp. 2195-2204
-
-
Goodyear, L.J.1
Giorgino, F.2
Sherman, L.A.3
-
28
-
-
0031057526
-
Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation
-
Bjornholm M, Kawano Y, Lehtihet M, et al. Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes 1997;46:524-7
-
(1997)
Diabetes
, vol.46
, pp. 524-527
-
-
Bjornholm, M.1
Kawano, Y.2
Lehtihet, M.3
-
29
-
-
0033968126
-
Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle
-
Cusi K, Maezono K, Osman A, et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000;105:311-20
-
(2000)
J Clin Invest
, vol.105
, pp. 311-320
-
-
Cusi, K.1
Maezono, K.2
Osman, A.3
-
30
-
-
0029800475
-
Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle
-
Wojtaszewski JF, Hansen BF, Urso B, et al. Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle. J Appl Physiol 1996;81:1501-9
-
(1996)
J Appl Physiol
, vol.81
, pp. 1501-1509
-
-
Wojtaszewski, J.F.1
Hansen, B.F.2
Urso, B.3
-
31
-
-
0028914037
-
Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle
-
Lee AD, Hansen PA, Holloszy JO. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett 1995;361:51-4
-
(1995)
FEBS Lett
, vol.361
, pp. 51-54
-
-
Lee, A.D.1
Hansen, P.A.2
Holloszy, J.O.3
-
32
-
-
0029064123
-
Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin
-
Lund S, Holman GD, Schmitz O, et al. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci USA 1995;92:5817-21
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 5817-5821
-
-
Lund, S.1
Holman, G.D.2
Schmitz, O.3
-
33
-
-
0028947991
-
The effects of wortmannin on rat skeletal muscle
-
Yeh JI, Gulve EA, Rameh L, et al. The effects of wortmannin on rat skeletal muscle. J Biol Chem 1995;270:2107-11
-
(1995)
J Biol Chem
, vol.270
, pp. 2107-2111
-
-
Yeh, J.I.1
Gulve, E.A.2
Rameh, L.3
-
34
-
-
0034870748
-
Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle
-
Winder WW. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol 2001;91:1017-28
-
(2001)
J Appl Physiol
, vol.91
, pp. 1017-1028
-
-
Winder, W.W.1
-
35
-
-
0031849916
-
Metabolic stress and altered glucose transport: Activation of AMP-activated protein kinase as a unifying coupling mechanism
-
Hayashi I, Hirshman MF, Kurth EJ, et al. Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 1998;47:1369-73
-
(1998)
Diabetes
, vol.47
, pp. 1369-1373
-
-
Hayashi, I.1
Hirshman, M.F.2
Kurth, E.J.3
-
36
-
-
0032966874
-
Effect of AMPK activation on muscle glucose metabolism in conscious rats
-
Bergeron R, Russell RR III, Young LH, et al. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 1999;276:E938-44
-
(1999)
Am J Physiol
, vol.276
-
-
Bergeron, R.1
Russell III, R.R.2
Young, L.H.3
-
37
-
-
0345832116
-
1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle
-
1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 2004; 279:1070-9
-
(2004)
J Biol Chem
, vol.279
, pp. 1070-1079
-
-
Jorgensen, S.B.1
Violett, B.2
Andreelli, F.3
-
38
-
-
0035947235
-
A role for AMP-activated protein kinase in contraction and hypoxia-regulated glucose transport in skeletal muscle
-
Mu J, Brozinik JT Jr, Valladares O, et al. A role for AMP-activated protein kinase in contraction and hypoxia-regulated glucose transport in skeletal muscle. J Mol Cell 2001;7:1085-94
-
(2001)
J Mol Cell
, vol.7
, pp. 1085-1094
-
-
Mu, J.1
Brozinik Jr, J.T.2
Valladares, O.3
-
39
-
-
0037379283
-
Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles
-
Jessen N, Pold R, Buhl ES, et al. Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J Appl Physiol 2003;94:1373-9
-
(2003)
J Appl Physiol
, vol.94
, pp. 1373-1379
-
-
Jessen, N.1
Pold, R.2
Buhl, E.S.3
-
40
-
-
0036078863
-
Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin
-
Fisher JS, Gao J, Han DH, et al. Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 2002;282:E18-E23
-
(2002)
Am J Physiol Endocrinol Metab
, vol.282
-
-
Fisher, J.S.1
Gao, J.2
Han, D.H.3
-
41
-
-
0036788292
-
AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats
-
Iglesias MA, Ye JM, Frangioudakis C, et al. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes 2002;51:2886-94
-
(2002)
Diabetes
, vol.51
, pp. 2886-2894
-
-
Iglesias, M.A.1
Ye, J.M.2
Frangioudakis, C.3
-
42
-
-
0031009673
-
Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle
-
Vavvas D, Apazidis A, Saha AK, et al. Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. J Biol Chem 1997;272:13255-61
-
(1997)
J Biol Chem
, vol.272
, pp. 13255-13261
-
-
Vavvas, D.1
Apazidis, A.2
Saha, A.K.3
-
43
-
-
0033667964
-
AMPK signaling in contracting human skeletal muscle: Acetyl-CoA carboxylase and NO synthase phosphorylation
-
Chen ZP, McConell GK, Michell BJ, et al. AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab 2000;279:E1202-6
-
(2000)
Am J Physiol Endocrinol Metab
, vol.279
-
-
Chen, Z.P.1
McConell, G.K.2
Michell, B.J.3
-
44
-
-
0033855904
-
Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle
-
Dean D, Daugaard JR, Young ME, et al. Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle. Diabetes 2000;49:1295-300
-
(2000)
Diabetes
, vol.49
, pp. 1295-1300
-
-
Dean, D.1
Daugaard, J.R.2
Young, M.E.3
-
45
-
-
0032946302
-
Malonyl-CoA, fuel sensing, and insulin resistance
-
Ruderman NB, Saha AK, Vavvas D, et al. Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol 1999;276:E1-E18
-
(1999)
Am J Physiol
, vol.276
-
-
Ruderman, N.B.1
Saha, A.K.2
Vavvas, D.3
-
46
-
-
0035970805
-
Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2
-
Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, et al. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001;291:2613-16
-
(2001)
Science
, vol.291
, pp. 2613-2616
-
-
Abu-Elheiga, L.1
Matzuk, M.M.2
Abo-Hashema, K.A.3
-
47
-
-
0037251455
-
The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity
-
Violett B, Andreelli F, Jorgensen SB, et al. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 2003;111:91-8
-
(2003)
J Clin Invest
, vol.111
, pp. 91-98
-
-
Violett, B.1
Andreelli, F.2
Jorgensen, S.B.3
-
48
-
-
33645884425
-
Liver adenosine monophosphate-activated kinase-α2 catalytic subunit is a key target for the leptin but not by insulin
-
Andreelli F, Foretz M, Knauf C, et al. Liver adenosine monophosphate-activated kinase-α2 catalytic subunit is a key target for the leptin but not by insulin. Endocrinology 2006;147:2432-41
-
(2006)
Endocrinology
, vol.147
, pp. 2432-2441
-
-
Andreelli, F.1
Foretz, M.2
Knauf, C.3
-
49
-
-
13844256289
-
AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction
-
Raney MA, Yee AJ, Todd MK, et al. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction. Am J Physiol Endocrinol Metab 2005;288:E592-8
-
(2005)
Am J Physiol Endocrinol Metab
, vol.288
-
-
Raney, M.A.1
Yee, A.J.2
Todd, M.K.3
-
50
-
-
0034640498
-
Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase
-
Bonen A, Luiken JJ, Arunsugam Y, et al. Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem 2000;275:14501-8
-
(2000)
J Biol Chem
, vol.275
, pp. 14501-14508
-
-
Bonen, A.1
Luiken, J.J.2
Arunsugam, Y.3
-
51
-
-
0037677773
-
Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling
-
Luiken JJ, Coort SL, Willems J, et al. Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 2003;52:1627-34
-
(2003)
Diabetes
, vol.52
, pp. 1627-1634
-
-
Luiken, J.J.1
Coort, S.L.2
Willems, J.3
-
52
-
-
0037031840
-
Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissue in response to exercise
-
Park H, Kaushik VK, Constant S, et al. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissue in response to exercise. J Biol Chem 2002;277:32571-7
-
(2002)
J Biol Chem
, vol.277
, pp. 32571-32577
-
-
Park, H.1
Kaushik, V.K.2
Constant, S.3
-
53
-
-
0028073143
-
Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase
-
Sullivan JE, Brocklehurst KJ, Marley AE, et al. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett 1994;353:33-6
-
(1994)
FEBS Lett
, vol.353
, pp. 33-36
-
-
Sullivan, J.E.1
Brocklehurst, K.J.2
Marley, A.E.3
-
54
-
-
21644455008
-
Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes
-
Daval M, Diot-Dupuy F, Bazin R, et al. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem 2005;280:25250-7
-
(2005)
J Biol Chem
, vol.280
, pp. 25250-25257
-
-
Daval, M.1
Diot-Dupuy, F.2
Bazin, R.3
-
55
-
-
0042337449
-
Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets
-
Lutfi AE, Wonkeun OH, Parichher K, et al. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci USA 2003;100:10207-12
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 10207-10212
-
-
Lutfi, A.E.1
Wonkeun, O.H.2
Parichher, K.3
-
56
-
-
3042593895
-
Possible involvement of AMP-activated protein kinase in obesity resistance induced by respiratory uncoupling in white fat
-
Matejkova O, Mustard KJ, Sponarova J, et al. Possible involvement of AMP-activated protein kinase in obesity resistance induced by respiratory uncoupling in white fat. FEBS Lett 2004;569:245-8
-
(2004)
FEBS Lett
, vol.569
, pp. 245-248
-
-
Matejkova, O.1
Mustard, K.J.2
Sponarova, J.3
-
57
-
-
0036430469
-
Dissociation of AMPK activity and ACCβ phosphorylation in human muscle during prolonged exercise
-
Wojtaszewski JF, Mourtzakis M, Hillig T. Dissociation of AMPK activity and ACCβ phosphorylation in human muscle during prolonged exercise. Biochem Biophys Res Commun 2002;298:309-16
-
(2002)
Biochem Biophys Res Commun
, vol.298
, pp. 309-316
-
-
Wojtaszewski, J.F.1
Mourtzakis, M.2
Hillig, T.3
-
58
-
-
0041319433
-
Effect of exercise intensity on skeletal muscle AMPK signaling in humans
-
Chen ZP, Stephens TJ, Murthy S, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 2003;52:2205-12
-
(2003)
Diabetes
, vol.52
, pp. 2205-2212
-
-
Chen, Z.P.1
Stephens, T.J.2
Murthy, S.3
-
59
-
-
27544473360
-
Involvement of AMP-activated protein kinase in fat depot-specific metabolite changes during starvation
-
Sponarova J, Mustard KJ, Horakova O, et al. Involvement of AMP-activated protein kinase in fat depot-specific metabolite changes during starvation. FEBS Lett 2005;579:6105-10
-
(2005)
FEBS Lett
, vol.579
, pp. 6105-6110
-
-
Sponarova, J.1
Mustard, K.J.2
Horakova, O.3
-
60
-
-
85047689953
-
5-Aminoimidazole-4-carboxamideribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells?
-
Corton JM, Gillespie JG, Hawley SA, et al. 5-Aminoimidazole-4-carboxamideribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 1995;229:558-65
-
(1995)
Eur J Biochem
, vol.229
, pp. 558-565
-
-
Corton, J.M.1
Gillespie, J.G.2
Hawley, S.A.3
-
61
-
-
0242384915
-
Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis in 3T3-L1 adipocytes
-
Yin W, Mu J, Birnbaum MJ, et al. Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis in 3T3-L1 adipocytes. J Biol Chem 2003;278:43074-80
-
(2003)
J Biol Chem
, vol.278
, pp. 43074-43080
-
-
Yin, W.1
Mu, J.2
Birnbaum, M.J.3
-
62
-
-
8844226709
-
Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase
-
Zimmermann R, Strauss JG, Haemmerle G, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004;306:1383-6
-
(2004)
Science
, vol.306
, pp. 1383-1386
-
-
Zimmermann, R.1
Strauss, J.G.2
Haemmerle, G.3
-
63
-
-
33646462136
-
Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase
-
Haemmerle G, Lass A, Zimmermann R, et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 2006;312:734-7
-
(2006)
Science
, vol.312
, pp. 734-737
-
-
Haemmerle, G.1
Lass, A.2
Zimmermann, R.3
-
64
-
-
0036894326
-
Lipolysis in the absence of hormone-sensitive lipase: Evidence for a common mechanism regulating distinct lipases
-
Okazaki H, Osuga J,Tamura Y, et al. Lipolysis in the absence of hormone-sensitive lipase: evidence for a common mechanism regulating distinct lipases. Diabetes 2002;51:3368-75
-
(2002)
Diabetes
, vol.51
, pp. 3368-3375
-
-
Okazaki, H.1
Osuga, J.2
Tamura, Y.3
-
65
-
-
33745183847
-
Functions of AMP-activated protein kinase in adipose tissue
-
Daval M, Foufelle F, Ferre P. Functions of AMP-activated protein kinase in adipose tissue. J Physiol 2006;574:55-62
-
(2006)
J Physiol
, vol.574
, pp. 55-62
-
-
Daval, M.1
Foufelle, F.2
Ferre, P.3
-
66
-
-
0035859215
-
Identification of a gene responsible for familial Wolff-Parkinson-White syndrome
-
Gollob MH, Green MS, Tang AS, et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 2001;344:1823-31
-
(2001)
N Engl J Med
, vol.344
, pp. 1823-1831
-
-
Gollob, M.H.1
Green, M.S.2
Tang, A.S.3
-
67
-
-
0035910109
-
Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy
-
Gollob MH, Seger JJ, Gollob TN, et al. Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation 2001;104:3030-3
-
(2001)
Circulation
, vol.104
, pp. 3030-3033
-
-
Gollob, M.H.1
Seger, J.J.2
Gollob, T.N.3
-
68
-
-
33748443452
-
AMP-activated protein kinase 3-subunit differentially regulates glycogen accumulation
-
Murphy RT, Mogensen J, McGarry K, et al. AMP-activated protein kinase 3-subunit differentially regulates glycogen accumulation. Am J Physiol Endocrinol Metab 2006;291:E557-65
-
(2006)
Am J Physiol Endocrinol Metab
, vol.291
-
-
Murphy, R.T.1
Mogensen, J.2
McGarry, K.3
-
69
-
-
0036167225
-
Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy
-
Arad M, Benson DW, Perez-Atayde AR, et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 2002;109:357-62
-
(2002)
J Clin Invest
, vol.109
, pp. 357-362
-
-
Arad, M.1
Benson, D.W.2
Perez-Atayde, A.R.3
-
70
-
-
33646397564
-
-
Davies JK, Wells DJ, Liu K, et al. Characterization of the role of 2 R531G mutation in AMP-activated protein kinase in cardiac hypertrophy and Wolff-Parkinson-White syndrome. Am J Physiol Heart Circ Physiol 2006;290:H1942-51
-
Davies JK, Wells DJ, Liu K, et al. Characterization of the role of 2 R531G mutation in AMP-activated protein kinase in cardiac hypertrophy and Wolff-Parkinson-White syndrome. Am J Physiol Heart Circ Physiol 2006;290:H1942-51
-
-
-
-
71
-
-
0037782349
-
Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy
-
Arad M, Moskowitz IP, Patel VV, et al. Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation 2003;107:2850-6
-
(2003)
Circulation
, vol.107
, pp. 2850-2856
-
-
Arad, M.1
Moskowitz, I.P.2
Patel, V.V.3
-
72
-
-
19944429566
-
Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome
-
Sidhu JS, Rajawat YS, Rami TG, et al. Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome. Circulation 2005;111:21-9
-
(2005)
Circulation
, vol.111
, pp. 21-29
-
-
Sidhu, J.S.1
Rajawat, Y.S.2
Rami, T.G.3
-
73
-
-
0034685949
-
A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle
-
Milan D, Jeon JT, Looft C, et al. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 2000;288:1248-51
-
(2000)
Science
, vol.288
, pp. 1248-1251
-
-
Milan, D.1
Jeon, J.T.2
Looft, C.3
-
74
-
-
34147152841
-
Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade
-
Sanders MJ, Grondin PO, Hegarty BD, et al. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 2007;403:139-48
-
(2007)
Biochem J
, vol.403
, pp. 139-148
-
-
Sanders, M.J.1
Grondin, P.O.2
Hegarty, B.D.3
-
75
-
-
19944369735
-
Adiponectin-mediated modulation of hypertrophic signals in the hears
-
Shibata R, Ouchi N, Ito M, et al. Adiponectin-mediated modulation of hypertrophic signals in the hears. Nat Med 2004;10:1384-9
-
(2004)
Nat Med
, vol.10
, pp. 1384-1389
-
-
Shibata, R.1
Ouchi, N.2
Ito, M.3
-
76
-
-
1842484296
-
AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus
-
Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004;428:569-74
-
(2004)
Nature
, vol.428
, pp. 569-574
-
-
Minokoshi, Y.1
Alquier, T.2
Furukawa, N.3
-
77
-
-
0034881391
-
The adipocyte-secreted protein Acrp30 enhances hepatic insulin action
-
Berg AH, Combs TP, Du X, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001;7:947-53
-
(2001)
Nat Med
, vol.7
, pp. 947-953
-
-
Berg, A.H.1
Combs2
TP, D.X.3
-
78
-
-
0035852760
-
Proteolytic deavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice
-
Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic deavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 2001;98:2005-10
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 2005-2010
-
-
Fruebis, J.1
Tsao, T.S.2
Javorschi, S.3
-
79
-
-
34547642346
-
Improved ELISA for selective measurement of adiponectin multimers and identification of adiponectin in human cerebrospinal fluid
-
Ebinuma H, Miida T, Yamauchi T, et al. Improved ELISA for selective measurement of adiponectin multimers and identification of adiponectin in human cerebrospinal fluid. Clin Chem 2007;53:1541-4
-
(2007)
Clin Chem
, vol.53
, pp. 1541-1544
-
-
Ebinuma, H.1
Miida, T.2
Yamauchi, T.3
-
80
-
-
33846819836
-
Adiponectin complexes in human cerebrospinal fluid: Distinct complex distribution from serum
-
Kusminiski CM, McTernan PG, Schraw T, et al. Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum. Diabetologia 2007;50:634-42
-
(2007)
Diabetologia
, vol.50
, pp. 634-642
-
-
Kusminiski, C.M.1
McTernan, P.G.2
Schraw, T.3
-
81
-
-
34347255023
-
Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake
-
Kubota N, Yano W, Kubota T, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab 2007;6:55-68
-
(2007)
Cell Metab
, vol.6
, pp. 55-68
-
-
Kubota, N.1
Yano, W.2
Kubota, T.3
-
82
-
-
39049154655
-
-
AMPK: Impact on mammalian metabolism and disease - FASEB Summer Research Conference, Snowmass Village, CO, USA. IDDB Meeting Report (12-17 August 2006)
-
AMPK: Impact on mammalian metabolism and disease - FASEB Summer Research Conference, Snowmass Village, CO, USA. IDDB Meeting Report (12-17 August 2006)
-
-
-
-
83
-
-
34250182374
-
Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor α gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the α2 form of AMP-activated protein kinase
-
Suzuki A, Okamoto S, Lee S, et al. Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor α gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the α2 form of AMP-activated protein kinase. Mol Cell Biol 2007;27:4317-27
-
(2007)
Mol Cell Biol
, vol.27
, pp. 4317-4327
-
-
Suzuki, A.1
Okamoto, S.2
Lee, S.3
-
84
-
-
36348978499
-
Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family
-
Epub ahead of print
-
Sanders MJ, Ali ZS, Hegarty BD, et al. Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem 2007:[Epub ahead of print]
-
(2007)
J Biol Chem
-
-
Sanders, M.J.1
Ali, Z.S.2
Hegarty, B.D.3
-
85
-
-
34848840368
-
Structural basis for AMP binding to mammalian AMP-activated protein kinase
-
Xiao B, Health R, Sam P, et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 2007;449:496-500
-
(2007)
Nature
, vol.449
, pp. 496-500
-
-
Xiao, B.1
Health, R.2
Sam, P.3
-
86
-
-
34848843526
-
Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1
-
Amodeo GA, Rudolph MJ, Tong L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 2007;449:492-5
-
(2007)
Nature
, vol.449
, pp. 492-495
-
-
Amodeo, G.A.1
Rudolph, M.J.2
Tong, L.3
-
87
-
-
34047161436
-
Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase
-
Townley R, Shaprio L. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase. Science 2007;315:1726-9
-
(2007)
Science
, vol.315
, pp. 1726-1729
-
-
Townley, R.1
Shaprio, L.2
-
88
-
-
0030293885
-
Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio
-
Wilson WA, Hawley SA, Hardie DG. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol 1996;6:1426-34
-
(1996)
Curr Biol
, vol.6
, pp. 1426-1434
-
-
Wilson, W.A.1
Hawley, S.A.2
Hardie, D.G.3
-
89
-
-
39049111366
-
-
Norbert R, Birgit G, Pears L, et al. Effects of AMP, AICAR, and metformin on activation status of human recombinant AMP kinase isoenzymes. EASD 2004:(Poster no. 584)
-
Norbert R, Birgit G, Pears L, et al. Effects of AMP, AICAR, and metformin on activation status of human recombinant AMP kinase isoenzymes. EASD 2004:(Poster no. 584)
-
-
-
-
90
-
-
39049110451
-
-
Sophie R, Annick A, Didier M, et al. EMD387008, a new antidiabetic compound, inhibits hepatic gluconeogenesis through gluconeogenic gene regulation and AMPK activation. ADA 2007:(Abstract no. 0590-P)
-
Sophie R, Annick A, Didier M, et al. EMD387008, a new antidiabetic compound, inhibits hepatic gluconeogenesis through gluconeogenic gene regulation and AMPK activation. ADA 2007:(Abstract no. 0590-P)
-
-
-
-
91
-
-
39049119625
-
-
DRL-16536: Non-insulin dependent diabetes, Phase I clinical trial, IDDB, 757725 dated 26/12/2006
-
DRL-16536: Non-insulin dependent diabetes, Phase I clinical trial, IDDB, 757725 dated 26/12/2006
-
-
-
|