메뉴 건너뛰기




Volumn 63, Issue 2, 2007, Pages 258-269

Towards efficient variables ordering for Bayesian networks classifier

Author keywords

Bayesian networks classifiers; Feature ranking; Supervised learning; Variable ordering

Indexed keywords

BAYESIAN NETWORKS CLASSIFIERS; BAYESIAN STRUCTURES; FEATURE RANKING; VARIABLE ORDERING;

EID: 34447281088     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2007.02.003     Document Type: Article
Times cited : (51)

References (55)
  • 1
    • 84937406090 scopus 로고    scopus 로고
    • The search of causal orderings: a short cut for learning belief networks
    • Proceedings of the Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Springer, Berlin
    • Acid S., de Campos L.M., and Huete J.F. The search of causal orderings: a short cut for learning belief networks. Proceedings of the Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Lecture Notes in Computer Science vol. 2142 (2001), Springer, Berlin 216-227
    • (2001) Lecture Notes in Computer Science , vol.2142 , pp. 216-227
    • Acid, S.1    de Campos, L.M.2    Huete, J.F.3
  • 2
    • 21244484641 scopus 로고    scopus 로고
    • Searching for Bayesian Network structures in the space of restricted acyclic partially directed graphs
    • Acid S., and De Campos L.M. Searching for Bayesian Network structures in the space of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research 18 (2003) 445-490
    • (2003) Journal of Artificial Intelligence Research , vol.18 , pp. 445-490
    • Acid, S.1    De Campos, L.M.2
  • 4
    • 34447293035 scopus 로고    scopus 로고
    • S. Acid, L.M. de Campos, Benedict: an algorithm for learning probabilistic belief networks, in: Proceedings of the IPMU-96 Conference, 1996, pp. 979-974.
  • 6
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., and Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence (1997) 245-271
    • (1997) Artificial Intelligence , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 7
    • 34447286209 scopus 로고    scopus 로고
    • R.R. Bouckaert, Optimizing causal orderings for generating DAGs from data, in: Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence, 1992, pp. 9-16.
  • 8
    • 34447278093 scopus 로고    scopus 로고
    • R.R. Bouckaert, Bayesian Networks in Weka. Technical Report 14/2004. Computer Science Department. University of Waikato, 2004.
  • 9
    • 0034174383 scopus 로고    scopus 로고
    • A new Approach for learning belief networks using independence criteria International
    • Campos L.M., and Huete J.F. A new Approach for learning belief networks using independence criteria International. Journal of Approximate Reasoning 24 (2000) 11-37
    • (2000) Journal of Approximate Reasoning , vol.24 , pp. 11-37
    • Campos, L.M.1    Huete, J.F.2
  • 10
    • 26944434176 scopus 로고    scopus 로고
    • Local search methods for learning bayesian networks using a modified neighborhood in the space of DAGs
    • Proceedings of the Eighth Ibero-American Conference on AI, Springer, Berlin
    • Campos L.M., Fernadez-Luna J.M., and Puerta J.M. Local search methods for learning bayesian networks using a modified neighborhood in the space of DAGs. Proceedings of the Eighth Ibero-American Conference on AI. Lecture Notes in Artificial Intelligence vol. 2527 (2002), Springer, Berlin 182-192
    • (2002) Lecture Notes in Artificial Intelligence , vol.2527 , pp. 182-192
    • Campos, L.M.1    Fernadez-Luna, J.M.2    Puerta, J.M.3
  • 12
    • 0042967741 scopus 로고    scopus 로고
    • Optimal Structure Identification with Greedy Search
    • Chickering D.M. Optimal Structure Identification with Greedy Search. Journal of Machine Learning Research 3 (2002) 507-554
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 14
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G., and Herskovitz E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 (1992) 309-347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovitz, E.2
  • 15
    • 34447255660 scopus 로고    scopus 로고
    • R.G. Cowell, Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian Network Models, in: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, 2001, pp. 91-97.
  • 16
    • 34447262820 scopus 로고    scopus 로고
    • D. Dash, M. Druzdzel, A hybrid anytime algorithm for the construction of causal models from sparse data, in: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, 1999, pp. 142-149.
  • 17
    • 34447275689 scopus 로고    scopus 로고
    • L.M. de Campos, J.F. Huete, Approximating Causal Orderings for Bayesian Networks using Genetic Algorithms and Simulated Annealing, Technical Report DECSAI-990212, Research Group Uncertainty Treatment in Artificial Intelligence, UTAI of the University of Granada, 1999.
  • 22
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks
    • Friedman N., and Koller D. Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Machine Learning 50 (2003) 95-125
    • (2003) Machine Learning , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 26
    • 0001099335 scopus 로고    scopus 로고
    • Decomposable graphical Gaussian model determination
    • Giudici P., and Green P. Decomposable graphical Gaussian model determination. Biometrika 86 4 (1999) 785-801
    • (1999) Biometrika , vol.86 , Issue.4 , pp. 785-801
    • Giudici, P.1    Green, P.2
  • 27
    • 34447293034 scopus 로고    scopus 로고
    • P. Giudici, P. Green, C. Tarantola, Efficient Model Determination for Discrete Graphical Models.Discussion Paper 99-93, Department of Statistics, Athens University of Economics and Business, 2000.
  • 28
    • 0022865373 scopus 로고
    • Future paths for Integer Programming and Links to Artificial Intelligence
    • Glover F. Future paths for Integer Programming and Links to Artificial Intelligence. Computers and Operations Research 5 (1986) 533-549
    • (1986) Computers and Operations Research , vol.5 , pp. 533-549
    • Glover, F.1
  • 29
    • 14344256569 scopus 로고    scopus 로고
    • D. Grossman, P. Domingos, Learning Bayesian networks classifiers by maximizing conditional likelihood. in: Proceedings of the 21st ICML, 2004.
  • 30
    • 0036931190 scopus 로고    scopus 로고
    • H. Guo, B.B. Perry, J.A. Stilson, W.H. Hsu, A genetic algorithm for tuning variable orderings in Bayesian Network structure learning, in: Proceedings of the Eighteenth National Conference on Artificial Intelligence, 2002, pp. 951-952.
  • 32
    • 34447281066 scopus 로고    scopus 로고
    • E.R. Hruschka Jr., N.F.F. Ebecken, Variable ordering for Bayesian Networks learning from data, in: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, Vienna, 2003.
  • 33
    • 2442705696 scopus 로고    scopus 로고
    • Genetic Wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning
    • Hsu W.H. Genetic Wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning. Information Science 163 (2004) 103-122
    • (2004) Information Science , vol.163 , pp. 103-122
    • Hsu, W.H.1
  • 35
    • 34447256553 scopus 로고    scopus 로고
    • D. Koller, M. Sahami, Toward optimal feature selection, in: Proceedings of the 13th International Conference on Machine Learning, 1996, pp. 284-292.
  • 36
    • 0028482006 scopus 로고
    • Learning Bayesian Belief Networks, an approach based on the MDL principle
    • Lam W., and Bacchus F. Learning Bayesian Belief Networks, an approach based on the MDL principle. Computational Intelligence 10 (1994) 269-293
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 40
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's window
    • Madigan D., and Raftery E. Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal American Statistical Association 89 (1994) 1535-1546
    • (1994) Journal American Statistical Association , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, E.2
  • 41
  • 43
    • 34447282569 scopus 로고    scopus 로고
    • C.J. Merz, P.M. Murphy, UCI Repository of Machine Learning Databases, Irvine, CA, University of California, Department of Information and Computer Science. .
  • 45
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost F., and Fawcett T. Robust classification for imprecise environments. Machine Learning 42 (2001) 203-231
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 46
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Machine Learning 1 (1986) 81-106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 47
    • 34447277639 scopus 로고    scopus 로고
    • J.R. Quinlan, Unknown attribute values in induction, in: Proceedings of Sixth International Workshop on Machine Learning, Ithaca, NY, 1989, pp. 164-168.
  • 48
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • Reunanen J. Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research 3 (2003) 1371-1382
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 49
    • 0001173999 scopus 로고
    • Construction of Bayesian Network structures from data: a brief survey and an efficient algorithm international
    • Singh S., and Valtorta M. Construction of Bayesian Network structures from data: a brief survey and an efficient algorithm international. Journal of Approximate Reasoning 12 2 (1995) 111-131
    • (1995) Journal of Approximate Reasoning , vol.12 , Issue.2 , pp. 111-131
    • Singh, S.1    Valtorta, M.2
  • 50
    • 84986980101 scopus 로고
    • Sequential updating of conditional probability on direct graphical structures
    • Spiegelhalter D.J., and Lauritzen S.L. Sequential updating of conditional probability on direct graphical structures. Networks 20 (1990) 576-606
    • (1990) Networks , vol.20 , pp. 576-606
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2
  • 52
    • 0002979137 scopus 로고
    • An algorithm for fast recovery of sparse causal graphs
    • Spirtes P., and Glymour C. An algorithm for fast recovery of sparse causal graphs. Social Science Computer Review 9 (1991) 62-72
    • (1991) Social Science Computer Review , vol.9 , pp. 62-72
    • Spirtes, P.1    Glymour, C.2
  • 53
    • 34447289145 scopus 로고    scopus 로고
    • T. Verma, J. Pearl, An algorithm for deciding if a set of observed independencies has a causal explanation, in: Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence, 1992, pp. 323-330.
  • 54
    • 34447271493 scopus 로고    scopus 로고
    • T. Verma, J. Pearl, Equivalance and synthesis of causal models, in: Proceedings of the Sixth Conference in Artificial Intelligence, 1991, pp. 220-227.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.