메뉴 건너뛰기




Volumn 27, Issue 3, 2001, Pages 235-262

A hybrid methodology for learning belief networks: BENEDICT

Author keywords

Belief networks; Independence; Learning; Minimum d separating sets; Scoring metrics

Indexed keywords


EID: 0035452682     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0888-613X(01)00041-X     Document Type: Article
Times cited : (49)

References (44)
  • 2
    • 0002501316 scopus 로고    scopus 로고
    • An algorithm for finding minimum d-separating sets in belief networks
    • in: E. Horvitz, F. Jensen (Eds.), Morgan Kaufmann, San Mateo
    • S. Acid, L.M. de Campos, An algorithm for finding minimum d-separating sets in belief networks, in: E. Horvitz, F. Jensen (Eds.), Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Mateo, 1996, pp. 3-10.
    • (1996) Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence , pp. 3-10
    • Acid, S.1    De Campos, L.M.2
  • 3
    • 0002501316 scopus 로고    scopus 로고
    • An algorithm for finding minimum d-separating sets in belief networks
    • Universidad de Granada
    • S. Acid, L.M. de Campos, An algorithm for finding minimum d-separating sets in belief networks, Decsai Technical Report 960214, Universidad de Granada, 1996, pp. 1-22.
    • (1996) Decsai Technical Report 960214 , pp. 1-22
    • Acid, S.1    De Campos, L.M.2
  • 7
    • 0008543956 scopus 로고
    • Optimizing causal orderings for generating dags from data
    • in: D. Dubois, M.P. Wellman, D.B. D'Ambrosio (Eds.), Morgan-Kaufmann, San Mateo
    • R. Bouckaert, Optimizing causal orderings for generating dags from data, in: D. Dubois, M.P. Wellman, D.B. D'Ambrosio (Eds.), Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence, Morgan-Kaufmann, San Mateo, 1992, pp. 9-16.
    • (1992) Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence , pp. 9-16
    • Bouckaert, R.1
  • 11
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • Buntine W. A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering. 8:1996;195-210.
    • (1996) IEEE Transactions on Knowledge and Data Engineering , vol.8 , pp. 195-210
    • Buntine, W.1
  • 12
  • 13
    • 0031185530 scopus 로고    scopus 로고
    • On the use of independence relationships for learning simplified belief networks
    • de Campos L.M., Huete J.F. On the use of independence relationships for learning simplified belief networks. International Journal of Intelligent Systems. 12:1997;495-522.
    • (1997) International Journal of Intelligent Systems , vol.12 , pp. 495-522
    • De Campos, L.M.1    Huete, J.F.2
  • 14
    • 0008605125 scopus 로고    scopus 로고
    • Aproximación de una ordenación de variables en redes causales mediante algoritmos genéticos
    • (in Spanish)
    • de Campos L.M., Huete J.F. Aproximación de una ordenación de variables en redes causales mediante algoritmos genéticos. Inteligencia Artificial. 4:1998;30-39. (in Spanish).
    • (1998) Inteligencia Artificial , vol.4 , pp. 30-39
    • De Campos, L.M.1    Huete, J.F.2
  • 16
    • 0001849958 scopus 로고    scopus 로고
    • Approximating causal orderings for Bayesian networks using genetic algorithms and simulated annealing
    • L.M. de Campos, J.F. Huete, Approximating causal orderings for Bayesian networks using genetic algorithms and simulated annealing, in: Proceedings of the Eighth IPMU Conference, vol. I, 2000, pp. 333-340.
    • (2000) In: Proceedings of the Eighth IPMU Conference , vol.1 , pp. 333-340
    • De Campos, L.M.1    Huete, J.F.2
  • 17
    • 0003042996 scopus 로고    scopus 로고
    • An algorithm for Bayesian belief network construction from data
    • J. Cheng, D.A. Bell, W. Liu, An algorithm for Bayesian belief network construction from data, in: Proceedings of AI and STAT'97, 1997, pp. 83-90.
    • (1997) In: Proceedings of AI and STAT'97 , pp. 83-90
    • Cheng, J.1    Bell, D.A.2    Liu, W.3
  • 18
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow C., Liu C. Approximating discrete probability distributions with dependence trees. IEEE transactions on Information Theory. 14:1968;462-467.
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 19
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning. 9(4):1992;309-348.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-348
    • Cooper, G.F.1    Herskovits, E.2
  • 22
    • 0002977294 scopus 로고
    • A characterisation of the Dirichlet distribution with application to learning Bayesian networks
    • in: P. Besnard, S. Hanks (Eds.), Morgan and Kaufmann, San Francisco
    • D. Geiger, D. Heckerman, A characterisation of the Dirichlet distribution with application to learning Bayesian networks, in: P. Besnard, S. Hanks (Eds.) Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan and Kaufmann, San Francisco, 1995, pp. 196-207.
    • (1995) Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence , pp. 196-207
    • Geiger, D.1    Heckerman, D.2
  • 25
    • 0000868434 scopus 로고    scopus 로고
    • Bayesian networks for knowledge discovery
    • U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy. Cambridge, MA: MIT Press
    • Heckerman D. Bayesian networks for knowledge discovery. Fayyad U.M., Piatetsky-Shapiro G., Smyth P., Uthurusamy R. Advances in Knowledge Discovery and Data Mining. 1996;273-305 MIT Press, Cambridge, MA.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 273-305
    • Heckerman, D.1
  • 26
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D., Geiger D., Chickering D.M. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning. 20:1995;197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 27
    • 0008605871 scopus 로고
    • Kutató: An entropy-driven system for the construction of probabilistic expert systems from databases
    • in: P. Bonissone (Ed.), Cambridge
    • E. Herskovits, G.F. Cooper, Kutató: An entropy-driven system for the construction of probabilistic expert systems from databases, in: P. Bonissone (Ed.), Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, Cambridge, 1990, pp. 54-62.
    • (1990) Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence , pp. 54-62
    • Herskovits, E.1    Cooper, G.F.2
  • 33
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's window
    • Madigan D., Rafterym A. Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal of the American Statistics Association. 89:1994;1535-1546.
    • (1994) Journal of the American Statistics Association , vol.89 , pp. 1535-1546
    • Madigan, D.1    Rafterym, A.2
  • 34
    • 0013286753 scopus 로고
    • Graphoids: A graph-based logic for reasoning about relevance relations
    • Cognitive Systems Laboratory, UCLA
    • J. Pearl, A. Paz, Graphoids: A graph-based logic for reasoning about relevance relations, Technical Report 850038 (R-53-L), Cognitive Systems Laboratory, UCLA, 1985.
    • (1985) Technical Report 850038 (R-53-L)
    • Pearl, J.1    Paz, A.2
  • 37
    • 0042456355 scopus 로고
    • The recovery of causal poly-trees from statistical data
    • in: L.N. Kanal, T.S. Levitt, J.F. Lemmer (Eds
    • G. Rebane, J. Pearl, The recovery of causal poly-trees from statistical data, in: L.N. Kanal, T.S. Levitt, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence, vol. 3, 1987, pp. 222-228.
    • (1987) Uncertainty in Artificial Intelligence , vol.3 , pp. 222-228
    • Rebane, G.1    Pearl, J.2
  • 38
    • 0042456371 scopus 로고
    • An algorithm for the construction of Bayesian network structures from data
    • in: D. Heckerman, A. Mamdani (Eds.), Morgan Kaufmann, San Francisco
    • M. Singh, M. Valtorta, An algorithm for the construction of Bayesian network structures from data, in: D. Heckerman, A. Mamdani (Eds.), Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, 1993, pp. 259-265.
    • (1993) Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence , pp. 259-265
    • Singh, M.1    Valtorta, M.2
  • 39
    • 0001173999 scopus 로고
    • Construction of Bayesian network structures from data: A brief survey and an efficient algorithm
    • Singh M., Valtorta M. Construction of Bayesian network structures from data: a brief survey and an efficient algorithm. International Journal of Approximate Reasoning. 12:1995;111-131.
    • (1995) International Journal of Approximate Reasoning , vol.12 , pp. 111-131
    • Singh, M.1    Valtorta, M.2
  • 41
    • 0008576772 scopus 로고
    • Automated construction of sparse Bayesian networks from unstructured probabilistic models and domain information
    • in: M. Henrion, R.D. Shachter, L.N. Kanal, J.F. Lemmer (Eds.), North-Holland, Amsterdam
    • S. Srinivas, S. Russell, A. Agogino, Automated construction of sparse Bayesian networks from unstructured probabilistic models and domain information, in: M. Henrion, R.D. Shachter, L.N. Kanal, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence, vol. 5, North-Holland, Amsterdam, 1990, pp. 295-308.
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 295-308
    • Srinivas, S.1    Russell, S.2    Agogino, A.3
  • 42
    • 0003021797 scopus 로고
    • A construction of Bayesian networks from databases based on the MDL principle
    • in: D. Heckerman, A. Mamdani (Eds.) Morgan Kaufmann, San Francisco
    • J. Suzuki, A construction of Bayesian networks from databases based on the MDL principle, in: D. Heckerman, A. Mamdani (Eds.) Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, 1993, pp. 266-273.
    • (1993) Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence , pp. 266-273
    • Suzuki, J.1
  • 43
    • 0001779012 scopus 로고
    • Causal networks: Semantics and expressiveness
    • in: R.D. Shachter, T.S. Lewitt, L.N. Kanal, J.F. Lemmer (Eds.), North-Holland, Amsterdam
    • T. Verma, J. Pearl, Causal networks: Semantics and expressiveness. in: R.D. Shachter, T.S. Lewitt, L.N. Kanal, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence, vol. 4, North-Holland, Amsterdam, 1990, pp. 69-76.
    • (1990) Uncertainty in Artificial Intelligence , vol.4 , pp. 69-76
    • Verma, T.1    Pearl, J.2
  • 44
    • 0000243504 scopus 로고
    • Graphical and recursive models for contingence tables
    • Wermuth N., Lauritzen S. Graphical and recursive models for contingence tables. Biometrika. 72:1983;537-552.
    • (1983) Biometrika , vol.72 , pp. 537-552
    • Wermuth, N.1    Lauritzen, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.