메뉴 건너뛰기




Volumn 2527, Issue , 2002, Pages 182-192

Local search methods for learning Bayesian networks using a modified neighborhood in the space of DAGs

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; HEURISTIC ALGORITHMS; LEARNING ALGORITHMS; LOCAL SEARCH (OPTIMIZATION); DISTRIBUTED PARAMETER NETWORKS; INFERENCE ENGINES; INTELLIGENT NETWORKS; MATHEMATICAL OPERATORS; SPEECH RECOGNITION;

EID: 26944434176     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (22)
  • 2
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks with hidden variables. Machine Learning, 29(2):213-244, 1997.
    • (1997) Machine Learning , vol.29 , Issue.2 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 6
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • W. Buntine. A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering, 8:195-210, 1996.
    • (1996) IEEE Transactions on Knowledge and Data Engineering , vol.8 , pp. 195-210
    • Buntine, W.1
  • 8
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G.F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4):309-348, 1992.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-348
    • Cooper, G.F.1    Herskovits, E.2
  • 11
    • 12244288095 scopus 로고    scopus 로고
    • Stochastic local search algorithms for learning beliefnet works: Searching in the space oforderings
    • L.M. de Campos and J.M. Puerta. Stochastic local search algorithms for learning beliefnet works: Searching in the space oforderings. Lecture Notes in Artificial Intelligence, 2143:228-239, 2001.
    • (2001) Lecture Notes in Artificial Intelligence , vol.2143 , pp. 228-239
    • De Campos, L.M.1    Puerta, J.M.2
  • 13
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination ofkno wledge and statistical data
    • D. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian networks: The combination ofkno wledge and statistical data. Machine Learning, 20:197-244, 1995.
    • (1995) Machine Learning , vol.20 , pp. 197-244
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 17
    • 0028482006 scopus 로고
    • Learning Bayesian beliefnet works. An approach based on the MDL principle
    • W. Lam and F. Bacchus. Learning Bayesian beliefnet works. An approach based on the MDL principle. Computational Intelligence, 10(4):269-293, 1994.
    • (1994) Computational Intelligence , vol.10 , Issue.4 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 20
    • 0012587086 scopus 로고    scopus 로고
    • Greedy randomized adaptive search procedures
    • F. Glover and G. Kochenberger, Eds., Kluwer. To appear
    • M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures. In F. Glover and G. Kochenberger, Eds., State of the Art Handbook in Metaheuristics, Kluwer. To appear.
    • State of the Art Handbook in Metaheuristics
    • Resende, M.G.C.1    Ribeiro, C.C.2
  • 22
    • 0001173999 scopus 로고
    • Construction of Bayesian network structures from data: A briefsurv ey and an efficient algorithm
    • M. Singh and M. Valtorta. Construction ofBa yesian network structures from data: A briefsurv ey and an efficient algorithm. International Journal of Approximate Reasoning, 12:111-131, 1995.
    • (1995) International Journal of Approximate Reasoning , vol.12 , pp. 111-131
    • Singh, M.1    Valtorta, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.