-
1
-
-
0032754473
-
-
Apweiler, R.; Hermjakob, H.; Sharon, N. Biochim. Biophys. Acta 1999, 1473, 4-8.
-
(1999)
Biochim. Biophys. Acta
, vol.1473
, pp. 4-8
-
-
Apweiler, R.1
Hermjakob, H.2
Sharon, N.3
-
2
-
-
0036052503
-
-
(a) Dwek, R. A.; Butters, T. D.; Platt, F. M.; Zitzmann, N. Nat. Rev. Drug Discovery 2002, 1, 65-75.
-
(2002)
Nat. Rev. Drug Discovery
, vol.1
, pp. 65-75
-
-
Dwek, R.A.1
Butters, T.D.2
Platt, F.M.3
Zitzmann, N.4
-
6
-
-
0035937463
-
-
(a) Sears, P. Science 2001, 291, 2344-2350.
-
(2001)
Science
, vol.291
, pp. 2344-2350
-
-
Sears, P.1
-
7
-
-
10044288227
-
-
(b) Xu, R.; Hanson, S. R.; Zhang, Z.; Yang, Y.-Y.; Schultz, P. G.; Wong, C.-H. J. Am. Chem. Soc. 2004, 126, 15654-15655.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 15654-15655
-
-
Xu, R.1
Hanson, S.R.2
Zhang, Z.3
Yang, Y.-Y.4
Schultz, P.G.5
Wong, C.-H.6
-
8
-
-
33748483846
-
-
(c) Hamilton, S. R., et al. Science 2006, 313, 1441-1443.
-
(2006)
Science
, vol.313
, pp. 1441-1443
-
-
Hamilton, S.R.1
-
9
-
-
32344449790
-
-
(d) Li, H., et al. Nat. Biotechnol. 2006, 24, 210-215.
-
(2006)
Nat. Biotechnol
, vol.24
, pp. 210-215
-
-
Li, H.1
-
10
-
-
0036462604
-
-
(a) Davis, B. G. Chem. Rev. 2002, 102, 579-602.
-
(2002)
Chem. Rev
, vol.102
, pp. 579-602
-
-
Davis, B.G.1
-
13
-
-
33751422228
-
-
(d) Brik, A.; Ficht, S.; Wong, C.-H. Curr. Opin. Chem. Biol. 2006, 10, 638-644.
-
(2006)
Curr. Opin. Chem. Biol
, vol.10
, pp. 638-644
-
-
Brik, A.1
Ficht, S.2
Wong, C.-H.3
-
14
-
-
0033596308
-
-
(a) Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 1999, 21, 11684-11689.
-
(1999)
J. Am. Chem. Soc
, vol.21
, pp. 11684-11689
-
-
Shin, Y.1
Winans, K.A.2
Backes, B.J.3
Kent, S.B.H.4
Ellman, J.A.5
Bertozzi, C.R.6
-
15
-
-
0033980705
-
-
(b) Koeller, K. M.; Smith, M. E. B.; Wong, C.-H. J. Am. Chem. Soc. 2000, 122, 742-743.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 742-743
-
-
Koeller, K.M.1
Smith, M.E.B.2
Wong, C.-H.3
-
16
-
-
3543108674
-
-
(c) Mcmillan, D.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2004, 43, 1355-1359.
-
(2004)
Angew. Chem., Int. Ed
, vol.43
, pp. 1355-1359
-
-
Mcmillan, D.1
Bertozzi, C.R.2
-
17
-
-
25144455516
-
-
(d) Hackenberger, C. P. R.; Friel, C. T.; Radford, S. E.; Imperiali, B. J. Am. Chem. Soc. 2005, 127, 12882-12889.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 12882-12889
-
-
Hackenberger, C.P.R.1
Friel, C.T.2
Radford, S.E.3
Imperiali, B.4
-
18
-
-
33746608497
-
-
(e) Li, B.; Song, H.; Hauser, S.; Wang, L.-X. Org. Lett 2006, 8, 3081-3084.
-
(2006)
Org. Lett
, vol.8
, pp. 3081-3084
-
-
Li, B.1
Song, H.2
Hauser, S.3
Wang, L.-X.4
-
19
-
-
0027944205
-
-
(a) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994, 266, 776-779.
-
(1994)
Science
, vol.266
, pp. 776-779
-
-
Dawson, P.E.1
Muir, T.W.2
Clark-Lewis, I.3
Kent, S.B.H.4
-
21
-
-
0035793820
-
-
(c) Marcaurelle, L. A.; Mizoue, L. S.; Wilken, J.; Oldhm, L.; Kent, S. B. H.; Hndel, T. M.; Bertozzi, C. R. Chem.-Eur. J. 2001, 7, 1129-1132.
-
(2001)
Chem.-Eur. J
, vol.7
, pp. 1129-1132
-
-
Marcaurelle, L.A.1
Mizoue, L.S.2
Wilken, J.3
Oldhm, L.4
Kent, S.B.H.5
Hndel, T.M.6
Bertozzi, C.R.7
-
22
-
-
0032499752
-
-
(a) Muir, T. W.; Sondhi, D.; Cole, P. A. Proc. Nat. Acad. Sci. U.S.A. 1998, 95, 6705-6710.
-
(1998)
Proc. Nat. Acad. Sci. U.S.A
, vol.95
, pp. 6705-6710
-
-
Muir, T.W.1
Sondhi, D.2
Cole, P.A.3
-
24
-
-
11844283271
-
-
(c) Tolbert, T. J.; Franke, D.; Wong, C.-H. Bioorg. Med. Chem. 2005, 13, 909-915.
-
(2005)
Bioorg. Med. Chem
, vol.13
, pp. 909-915
-
-
Tolbert, T.J.1
Franke, D.2
Wong, C.-H.3
-
27
-
-
21244494055
-
-
(c) Bang, D.; Makhatadze, V. T.; Kossiakoff, A. A.; Kent, S. B. Angew. Chem., Int. Ed. 2005, 44, 3852-3856.
-
(2005)
Angew. Chem., Int. Ed
, vol.44
, pp. 3852-3856
-
-
Bang, D.1
Makhatadze, V.T.2
Kossiakoff, A.A.3
Kent, S.B.4
-
29
-
-
0030037155
-
-
(a) Cane, L. E.; Bark, S. J.; Kent, S. B. H. J. Am. Chem. Soc. 1996, 118, 5891-5896.
-
(1996)
J. Am. Chem. Soc
, vol.118
, pp. 5891-5896
-
-
Cane, L.E.1
Bark, S.J.2
Kent, S.B.H.3
-
30
-
-
0035811061
-
-
(b) Low, D. W.; Hill, M. G.; Carrasco, M. R.; Kent, S. B. H.; Botti, P. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 6554-6559.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A
, vol.98
, pp. 6554-6559
-
-
Low, D.W.1
Hill, M.G.2
Carrasco, M.R.3
Kent, S.B.H.4
Botti, P.5
-
31
-
-
0036570182
-
-
(c) Offer, J.; Boddy, C.; Dawson, P. E. J. Am. Chem. Soc. 2002, 124, 4642-4646.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 4642-4646
-
-
Offer, J.1
Boddy, C.2
Dawson, P.E.3
-
32
-
-
11444255322
-
-
(d) Macmillan, D.; Anderson, D. W. Org, Lett. 2004, 6, 4659-4662.
-
(2004)
Org, Lett
, vol.6
, pp. 4659-4662
-
-
Macmillan, D.1
Anderson, D.W.2
-
33
-
-
33745263964
-
-
(e) Wu, B.; Chen, J.; Warren, J. D.; Chen, G.; Hua, Z.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2006, 45, 4116-4125.
-
(2006)
Angew. Chem., Int. Ed
, vol.45
, pp. 4116-4125
-
-
Wu, B.1
Chen, J.2
Warren, J.D.3
Chen, G.4
Hua, Z.5
Danishefsky, S.J.6
-
34
-
-
33749507176
-
-
(f) Chen, J.; Chen, G.; Wu, B.; Wan, Q.; Tan, Z.; Hua, Z.; Danishefsky, S. J. Tetrahedron Lett. 2006, 47, 8013-8016.
-
(2006)
Tetrahedron Lett
, vol.47
, pp. 8013-8016
-
-
Chen, J.1
Chen, G.2
Wu, B.3
Wan, Q.4
Tan, Z.5
Hua, Z.6
Danishefsky, S.J.7
-
35
-
-
33646597740
-
-
(a) Brik, A.; Yang, Y.-Y.; Ficht, S.; Wong, C.-H. J. Am. Chem. Soc. 2006, 128, 5626-5627.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 5626-5627
-
-
Brik, A.1
Yang, Y.-Y.2
Ficht, S.3
Wong, C.-H.4
-
36
-
-
33845194782
-
-
(b) Brik, A.; Ficht, S.; Yang, Y.-Y.; Bennett, C. S.; Wong, C.-H. J. Am. Chem. Soc. 2006, 128, 15026-15033.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 15026-15033
-
-
Brik, A.1
Ficht, S.2
Yang, Y.-Y.3
Bennett, C.S.4
Wong, C.-H.5
-
37
-
-
34250805540
-
-
Molecular simulations of transition states have been performed and will be presented in a following publication. The simulations support the hypothesis that the restricted conformation of the sugar helps to preorganize the GalNAc-linked thioester intermediate and N-terminal amine for nucleophilic attack
-
Molecular simulations of transition states have been performed and will be presented in a following publication. The simulations support the hypothesis that the restricted conformation of the sugar helps to preorganize the GalNAc-linked thioester intermediate and N-terminal amine for nucleophilic attack.
-
-
-
-
38
-
-
0029055842
-
-
Bulet, P.; Hegy, G.; Lambert, J.; Dorsselaer, A. V.; Hoffmann, J. A.; Hetru, C. Biochemistry 1995, 34, 7394-7400.
-
(1995)
Biochemistry
, vol.34
, pp. 7394-7400
-
-
Bulet, P.1
Hegy, G.2
Lambert, J.3
Dorsselaer, A.V.4
Hoffmann, J.A.5
Hetru, C.6
-
39
-
-
34250852445
-
-
(a) Winans, K. A.; King, D. S.; Rao, V. R.; Bertozzi, C. R. Biochemistry 1999, 38, 11799-11710.
-
(1999)
Biochemistry
, vol.38
, pp. 11799-11710
-
-
Winans, K.A.1
King, D.S.2
Rao, V.R.3
Bertozzi, C.R.4
-
40
-
-
0033485701
-
-
(b) Cudic, M.; Bulet, P.; Hoffmann, R.; Craik, D. J.; Otvos, L., Jr. Eur. J. Biochem. 1999, 266, 549-558.
-
(1999)
Eur. J. Biochem
, vol.266
, pp. 549-558
-
-
Cudic, M.1
Bulet, P.2
Hoffmann, R.3
Craik, D.J.4
Otvos Jr., L.5
-
43
-
-
0034044939
-
-
Koeller, K. M.; Smith, M. E. B.; Wong, C.-H. Bioorg. Med. Chem. 2000, 8, 1017-1026.
-
(2000)
Bioorg. Med. Chem
, vol.8
, pp. 1017-1026
-
-
Koeller, K.M.1
Smith, M.E.B.2
Wong, C.-H.3
-
45
-
-
0035008725
-
-
Kupihar, Z.; Schmel, Z.; Kele, Z.; Penke, B.; Kovacs, L. Bioorg. Med. Chem. 2001, 9, 1241-1247.
-
(2001)
Bioorg. Med. Chem
, vol.9
, pp. 1241-1247
-
-
Kupihar, Z.1
Schmel, Z.2
Kele, Z.3
Penke, B.4
Kovacs, L.5
-
49
-
-
0030691875
-
-
(a) Alewood, P.; Alewood, D.; Miranda, L.; Love, S.; Meutermans, W.; Wilson, D. Methods Enzymol. 1997, 289, 14-29.
-
(1997)
Methods Enzymol
, vol.289
, pp. 14-29
-
-
Alewood, P.1
Alewood, D.2
Miranda, L.3
Love, S.4
Meutermans, W.5
Wilson, D.6
-
51
-
-
34250817646
-
-
1/2(h) for the Gly-Val junction for which the ligation efficiency is more susceptible to varying the reaction conditions: 18 h for N-linked glycopeptides (6 M Gn·HCl, 0.1 M PBS, 2% PhSH, glycopeptide (1.2 equiv), peptide thioester (1 equiv)); 14 h for α-O-linked glycopeptides (6 M Gn·HCl, 0.1 M PBS, glycopeptide (1 equiv), peptide thioester (1.2 equiv)).
-
1/2(h) for the Gly-Val junction for which the ligation efficiency is more susceptible to varying the reaction conditions: 18 h for N-linked glycopeptides (6 M Gn·HCl, 0.1 M PBS, 2% PhSH, glycopeptide (1.2 equiv), peptide thioester (1 equiv)); 14 h for α-O-linked glycopeptides (6 M Gn·HCl, 0.1 M PBS, glycopeptide (1 equiv), peptide thioester (1.2 equiv)).
-
-
-
-
52
-
-
34250799266
-
-
The initial pH of the buffer used for SAL is 8.5. After addition of the peptides, the pH drops due to the residual TFA present in HPLC purified peptides. As a consequence, in some cases, triethanolamine was added to adjust the reaction pH to the ideal range 7.2-7.4.
-
The initial pH of the buffer used for SAL is 8.5. After addition of the peptides, the pH drops due to the residual TFA present in HPLC purified peptides. As a consequence, in some cases, triethanolamine was added to adjust the reaction pH to the ideal range 7.2-7.4.
-
-
-
-
53
-
-
34250859048
-
-
The glycopeptide was consumed by two reaction paths: reacting with the peptide thioester Cys(Acm)37-Gly52 and by generating a degraded fragment. The mass of this degraded fragment (observed mass, 3901 Da) corresponds to a loss of the first two N-terminal residues of glycopeptide Val53-Phe82. The same fragment mass was also observed in the cases of glycopeptide His53-Phe82 and glycopeptide Gly53-Phe82 by LC/MS. The first observation of this degraded fragment was in the crude glycopeptide cleaved from the resin. In the beginning of the ligation, the amount of this degraded fragment is less than 5, However, its amount increased during the course of the reaction. A similar degradation phenomenon was not observed for the short glycopeptides Table 1
-
82 by LC/MS. The first observation of this degraded fragment was in the crude glycopeptide cleaved from the resin. In the beginning of the ligation, the amount of this degraded fragment is less than 5%. However, its amount increased during the course of the reaction. A similar degradation phenomenon was not observed for the short glycopeptides (Table 1).
-
-
-
-
54
-
-
2542548800
-
-
(a) Warren, J. D.; Miller, J. S.; Keding, S. J.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 6576-6578.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 6576-6578
-
-
Warren, J.D.1
Miller, J.S.2
Keding, S.J.3
Danishefsky, S.J.4
-
55
-
-
17044390429
-
-
(b) Mezzato, S.; Schaffrath, M.; Unverzagt, C.; Angew. Chem., Int. Ed. 2005, 44, 1650-1654.
-
(2005)
Angew. Chem., Int. Ed
, vol.44
, pp. 1650-1654
-
-
Mezzato, S.1
Schaffrath, M.2
Unverzagt, C.3
-
56
-
-
0041783935
-
-
It caught our attention that Asp or Glu on the C-terminus of the peptide thioester has the potential to form an intramolecular anhydride during NCL, which could lead to the generation of a branched ligation product. To avoid this problem, the original Asp36 of diptericin was mutated to Asn 36. Alternatively, an orthogonal protecting group could be used to avoid this side reaction Villain, M, Gaertner, H, Botti, P, Chem. 2003, 3267-3272
-
36. Alternatively, an orthogonal protecting group could be used to avoid this side reaction (Villain, M.; Gaertner, H.; Botti, P. Eur. J. Org. Chem. 2003, 3267-3272).
-
-
-
-
59
-
-
0035817049
-
-
Takahashi, S.; Kuzuhara, H.; Nakajima, M. Tetrahedron 2001, 57, 6915-6926.
-
(2001)
Tetrahedron
, vol.57
, pp. 6915-6926
-
-
Takahashi, S.1
Kuzuhara, H.2
Nakajima, M.3
-
60
-
-
34250804949
-
-
tBu)-(Hmb)Gly-OH in SPPS failed due to the difficulty of complete removal of the Hmb group in the final global deprotection step.
-
tBu)-(Hmb)Gly-OH in SPPS failed due to the difficulty of complete removal of the Hmb group in the final global deprotection step.
-
-
-
-
61
-
-
33846326508
-
-
Ingale, S.; Buskas, T.; Boons, G.-J. Org. Lett. 2006, 8, 5785-5788.
-
(2006)
Org. Lett
, vol.8
, pp. 5785-5788
-
-
Ingale, S.1
Buskas, T.2
Boons, G.-J.3
-
62
-
-
33847791752
-
-
While we were preparing this manuscript, Kent's group reported selective desulfurization of cysteine in peptides containing Cys(Acm) residues (Pentelute, B. L, Kent, S. B. H. Org. Lett. 2007, 9, 687-690, In their report, Raney nickel was used as the catalyst. In our studies, we found that the thiol handle of the sugar moiety reacts much more rapidly towards desulfurization than the cysteine residue (data not shown, when Pd/Al 2O3 was used as the catalyst. This indicates that even better desulfurization selectivity might be achieved if different catalysts, like Raney nickel, or other conditions were used to selectively desulfurize the thiol handle in the presence of Cys(Acm) residues
-
3 was used as the catalyst. This indicates that even better desulfurization selectivity might be achieved if different catalysts, like Raney nickel, or other conditions were used to selectively desulfurize the thiol handle in the presence of Cys(Acm) residues.
-
-
-
|