-
1
-
-
0001517825
-
-
(a) Imperiali, B.; O'Connor, S. E.; Hendrickson, T.; Kellenberger, C. Pure Appl. Chem. 1999, 71, 777-787.
-
(1999)
Pure Appl. Chem.
, vol.71
, pp. 777-787
-
-
Imperiali, B.1
O'Connor, S.E.2
Hendrickson, T.3
Kellenberger, C.4
-
3
-
-
0035937526
-
-
(c) Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A. Science 2001, 291, 2370-2376.
-
(2001)
Science
, vol.291
, pp. 2370-2376
-
-
Rudd, P.M.1
Elliott, T.2
Cresswell, P.3
Wilson, I.A.4
Dwek, R.A.5
-
5
-
-
12444291017
-
-
(a) Calarese, D. A.; Scanlan, C. N.; Zwick, M. B.; Deechongkit, S.; Mimura, Y.; Kunert, R.; Zhu, P.; Wormald, M. R.; Stanfield, R. L.; Roux, K. H.; Kelly, J. W.; Rudd, P. M.; Dwek, R. A.; Katinger, H.; Burton, D. R.; Wilson, I. A. Science 2003, 300, 2065-2071.
-
(2003)
Science
, vol.300
, pp. 2065-2071
-
-
Calarese, D.A.1
Scanlan, C.N.2
Zwick, M.B.3
Deechongkit, S.4
Mimura, Y.5
Kunert, R.6
Zhu, P.7
Wormald, M.R.8
Stanfield, R.L.9
Roux, K.H.10
Kelly, J.W.11
Rudd, P.M.12
Dwek, R.A.13
Katinger, H.14
Burton, D.R.15
Wilson, I.A.16
-
6
-
-
0034522603
-
-
(b) von Mensdorff-Pouilly, S.; Snijdewint, F. G.; Verstraeten, A. A.; Verheijen, R. H.; Kenemans, P. Int. J. Biol. Markers 2000, 15, 343-356.
-
(2000)
Int. J. Biol. Markers
, vol.15
, pp. 343-356
-
-
Von Mensdorff-Pouilly, S.1
Snijdewint, F.G.2
Verstraeten, A.A.3
Verheijen, R.H.4
Kenemans, P.5
-
7
-
-
1642453589
-
-
(a) Dudkin, V. Y.; Miller, J. S.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 736-738.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 736-738
-
-
Dudkin, V.Y.1
Miller, J.S.2
Danishefsky, S.J.3
-
8
-
-
0038618896
-
-
(b) Peracaula, R.; Tabares, G.; Royle, L.; Harvey, D. J.; Dwek, R. A.; Rudd, P. M.; de Llorens, R. Glycobiology 2003, 13, 457-470.
-
(2003)
Glycobiology
, vol.13
, pp. 457-470
-
-
Peracaula, R.1
Tabares, G.2
Royle, L.3
Harvey, D.J.4
Dwek, R.A.5
Rudd, P.M.6
De Llorens, R.7
-
9
-
-
0028373835
-
-
(a) Ridley, D. M.; Dawkins, F.; Perlin, E. J. Natl. Med. Assoc. 1994, 86, 129-135.
-
(1994)
J. Natl. Med. Assoc.
, vol.86
, pp. 129-135
-
-
Ridley, D.M.1
Dawkins, F.2
Perlin, E.3
-
12
-
-
0028902241
-
-
Rush, R. S.; Derby, P. L.; Smith, D. M.; Merry, C.; Rogers, G.; Rohde, M. F.; Katta, V. Anal. Chem. 1995, 67, 1442-1452.
-
(1995)
Anal. Chem.
, vol.67
, pp. 1442-1452
-
-
Rush, R.S.1
Derby, P.L.2
Smith, D.M.3
Merry, C.4
Rogers, G.5
Rohde, M.F.6
Katta, V.7
-
13
-
-
0022973324
-
-
Lai, P. H.; Everett, R.; Wang, F. F.; Arakawa, T.; Goldwasser, E. J. Biol. Chem. 1986, 261, 3116-3121.
-
(1986)
J. Biol. Chem.
, vol.261
, pp. 3116-3121
-
-
Lai, P.H.1
Everett, R.2
Wang, F.F.3
Arakawa, T.4
Goldwasser, E.5
-
14
-
-
0033954256
-
-
Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Boume, P. E. Nucleic Acids Res. 2000, 28, 235-242.
-
(2000)
Nucleic Acids Res.
, vol.28
, pp. 235-242
-
-
Berman, H.M.1
Westbrook, J.2
Feng, Z.3
Gilliland, G.4
Bhat, T.N.5
Weissig, H.6
Shindyalov, I.N.7
Boume, P.E.8
-
15
-
-
0031671622
-
-
Cheetham, J. C.; Smith, D. M.; Aoki, K. H.; Stevenson, J. L.; Hoeffel, T. J.; Syed, R. S.; Egrie, J.; Harvey, T. S. Nat. Struct. Biol. 1998, 5, 861-866.
-
(1998)
Nat. Struct. Biol.
, vol.5
, pp. 861-866
-
-
Cheetham, J.C.1
Smith, D.M.2
Aoki, K.H.3
Stevenson, J.L.4
Hoeffel, T.J.5
Syed, R.S.6
Egrie, J.7
Harvey, T.S.8
-
16
-
-
0030757724
-
-
Rahbek-Nielsen, H.; Roepstorff, P.; Reischl, H.; Wozny, M.; Koll, H.; Haselbeck, A. J. Mass Spectrom. 1997, 32, 948-958.
-
(1997)
J. Mass Spectrom.
, vol.32
, pp. 948-958
-
-
Rahbek-Nielsen, H.1
Roepstorff, P.2
Reischl, H.3
Wozny, M.4
Koll, H.5
Haselbeck, A.6
-
18
-
-
0036462601
-
-
(b) Roth, J. Chem. Rev. 2002, 102, 285-303.
-
(2002)
Chem. Rev.
, vol.102
, pp. 285-303
-
-
Roth, J.1
-
19
-
-
0023811767
-
-
Geyer, H.; Holschbach, C.; Hunsmann, G.; Schneider, J. J. Biol. Chem. 1988, 263, 11760-11767.
-
(1988)
J. Biol. Chem.
, vol.263
, pp. 11760-11767
-
-
Geyer, H.1
Holschbach, C.2
Hunsmann, G.3
Schneider, J.4
-
20
-
-
0041184214
-
-
(a) Likhosherstov, L. M.; Novikova, O. S.; Derevitskaja, V. A.; Kochetkov, N. K. Carbohydr. Res. 1986, 146, C1-C5.
-
(1986)
Carbohydr. Res.
, vol.146
-
-
Likhosherstov, L.M.1
Novikova, O.S.2
Derevitskaja, V.A.3
Kochetkov, N.K.4
-
22
-
-
0027944205
-
-
(c) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994, 266, 776-779.
-
(1994)
Science
, vol.266
, pp. 776-779
-
-
Dawson, P.E.1
Muir, T.W.2
Clark-Lewis, I.3
Kent, S.B.H.4
-
23
-
-
0037468055
-
-
Miller, J. S.; Dudkin, V. Y.; Lyon, G. J.; Muir, T. W.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 431-434.
-
(2003)
Angew. Chem., Int. Ed.
, vol.42
, pp. 431-434
-
-
Miller, J.S.1
Dudkin, V.Y.2
Lyon, G.J.3
Muir, T.W.4
Danishefsky, S.J.5
-
24
-
-
2542591183
-
-
(a) Mandal, M.; Dudkin, V. Y.; Geng, X.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2004, 43, 2557-2561.
-
(2004)
Angew. Chem., Int. Ed.
, vol.43
, pp. 2557-2561
-
-
Mandal, M.1
Dudkin, V.Y.2
Geng, X.3
Danishefsky, S.J.4
-
25
-
-
2542592700
-
-
(b) Geng, X.; Dudkin, V. Y.; Mandal, M.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2004, 43. 2562-2575.
-
(2004)
Angew. Chem., Int. Ed.
, vol.43
, pp. 2562-2575
-
-
Geng, X.1
Dudkin, V.Y.2
Mandal, M.3
Danishefsky, S.J.4
-
26
-
-
0345742616
-
-
For the state of the art in biological approaches toward multiply glycosylated proteins, see: Zhang, Z.; Gildersleeve, J.; Yang, Y. Y.; Xu, R.; Loo, J. A.; Uryu, S.; Wong, C. H.; Schultz, P. G. Science 2004, 303, 371-373.
-
(2004)
Science
, vol.303
, pp. 371-373
-
-
Zhang, Z.1
Gildersleeve, J.2
Yang, Y.Y.3
Xu, R.4
Loo, J.A.5
Uryu, S.6
Wong, C.H.7
Schultz, P.G.8
-
27
-
-
0033596308
-
-
Significant advances in this type of problem arose through the use of Ellman's Fmoc-based sulfonamide linker (Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 1999, 121, 11684-11689), which has been employed in the synthesis of glycopeptide thioesters. The method we practice here, however, insists on maximal convergence, as opposed to a "cassette" approach to glycan incorporation. We note that certain glycosidic linkages (e.g., fucosidic linkages in erythropoietin) are particularly unstable toward the acidic conditions (TFA) required for protecting group cleavage. Other "cassette"-based Fmoc solid-phase peptide synthesis (SPPS) techniques potentially leading to glycopeptide thioesters also include acidic conditions at some point. These methods involve alteration of the Fmoc deblocking conditions [(a) Li, X. Q.; Kawakami, T.; Aimoto, S. Tetrahedron Lett. 1998, 39, 8669-8672. (b) Clippingdale, A. B.; Barrow, C. J.; Wade, J. D. J. Pept. Sci. 2000, 6, 225-234. (c) Hojo, H.; Haginoya, E.; Matsumoto, Y.; Nakahara, Y.; Nabeshima, K.; Toole, B. P.; Watanabe, Y. Tetrahedron Lett. 2003, 44, 2961-2964], or direct conversion into thioesters of C-terminal acids (von Eggelkraut-Gottanka, R.; Klose, A.; Beck-Sickinger, A. G.; Beyermann, M. Tetrahedron Lett. 2003, 44, 3551-3554), esters (Swinnen, D.; Hilvert, D. Org. Lett. 2000, 2, 2439-2442), or trithioortho esters (Brask, J.; Albericio, F.; Jensen, K. J. Org. Lett. 2003, 5, 2951-2953). Boc-based SPPS employs strongly acidic cleavage conditions (liquid HF) that are incompatible with many glycosidic linkages.
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 11684-11689
-
-
Shin, Y.1
Winans, K.A.2
Backes, B.J.3
Kent, S.B.H.4
Ellman, J.A.5
Bertozzi, C.R.6
-
28
-
-
0032548051
-
-
Significant advances in this type of problem arose through the use of Ellman's Fmoc-based sulfonamide linker (Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 1999, 121, 11684-11689), which has been employed in the synthesis of glycopeptide thioesters. The method we practice here, however, insists on maximal convergence, as opposed to a "cassette" approach to glycan incorporation. We note that certain glycosidic linkages (e.g., fucosidic linkages in erythropoietin) are particularly unstable toward the acidic conditions (TFA) required for protecting group cleavage. Other "cassette"-based Fmoc solid-phase peptide synthesis (SPPS) techniques potentially leading to glycopeptide thioesters also include acidic conditions at some point. These methods involve alteration of the Fmoc deblocking conditions [(a) Li, X. Q.; Kawakami, T.; Aimoto, S. Tetrahedron Lett. 1998, 39, 8669-8672. (b) Clippingdale, A. B.; Barrow, C. J.; Wade, J. D. J. Pept. Sci. 2000, 6, 225-234. (c) Hojo, H.; Haginoya, E.; Matsumoto, Y.; Nakahara, Y.; Nabeshima, K.; Toole, B. P.; Watanabe, Y. Tetrahedron Lett. 2003, 44, 2961-2964], or direct conversion into thioesters of C-terminal acids (von Eggelkraut-Gottanka, R.; Klose, A.; Beck-Sickinger, A. G.; Beyermann, M. Tetrahedron Lett. 2003, 44, 3551-3554), esters (Swinnen, D.; Hilvert, D. Org. Lett. 2000, 2, 2439-2442), or trithioortho esters (Brask, J.; Albericio, F.; Jensen, K. J. Org. Lett. 2003, 5, 2951-2953). Boc-based SPPS employs strongly acidic cleavage conditions (liquid HF) that are incompatible with many glycosidic linkages.
-
(1998)
Tetrahedron Lett.
, vol.39
, pp. 8669-8672
-
-
Li, X.Q.1
Kawakami, T.2
Aimoto, S.3
-
29
-
-
0034023981
-
-
Significant advances in this type of problem arose through the use of Ellman's Fmoc-based sulfonamide linker (Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 1999, 121, 11684-11689), which has been employed in the synthesis of glycopeptide thioesters. The method we practice here, however, insists on maximal convergence, as opposed to a "cassette" approach to glycan incorporation. We note that certain glycosidic linkages (e.g., fucosidic linkages in erythropoietin) are particularly unstable toward the acidic conditions (TFA) required for protecting group cleavage. Other "cassette"-based Fmoc solid-phase peptide synthesis (SPPS) techniques potentially leading to glycopeptide thioesters also include acidic conditions at some point. These methods involve alteration of the Fmoc deblocking conditions [(a) Li, X. Q.; Kawakami, T.; Aimoto, S. Tetrahedron Lett. 1998, 39, 8669-8672. (b) Clippingdale, A. B.; Barrow, C. J.; Wade, J. D. J. Pept. Sci. 2000, 6, 225-234. (c) Hojo, H.; Haginoya, E.; Matsumoto, Y.; Nakahara, Y.; Nabeshima, K.; Toole, B. P.; Watanabe, Y. Tetrahedron Lett. 2003, 44, 2961-2964], or direct conversion into thioesters of C-terminal acids (von Eggelkraut-Gottanka, R.; Klose, A.; Beck-Sickinger, A. G.; Beyermann, M. Tetrahedron Lett. 2003, 44, 3551-3554), esters (Swinnen, D.; Hilvert, D. Org. Lett. 2000, 2, 2439-2442), or trithioortho esters (Brask, J.; Albericio, F.; Jensen, K. J. Org. Lett. 2003, 5, 2951-2953). Boc-based SPPS employs strongly acidic cleavage conditions (liquid HF) that are incompatible with many glycosidic linkages.
-
(2000)
J. Pept. Sci.
, vol.6
, pp. 225-234
-
-
Clippingdale, A.B.1
Barrow, C.J.2
Wade, J.D.3
-
30
-
-
0037474648
-
-
Significant advances in this type of problem arose through the use of Ellman's Fmoc-based sulfonamide linker (Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 1999, 121, 11684-11689), which has been employed in the synthesis of glycopeptide thioesters. The method we practice here, however, insists on maximal convergence, as opposed to a "cassette" approach to glycan incorporation. We note that certain glycosidic linkages (e.g., fucosidic linkages in erythropoietin) are particularly unstable toward the acidic conditions (TFA) required for protecting group cleavage. Other "cassette"-based Fmoc solid-phase peptide synthesis (SPPS) techniques potentially leading to glycopeptide thioesters also include acidic conditions at some point. These methods involve alteration of the Fmoc deblocking conditions [(a) Li, X. Q.; Kawakami, T.; Aimoto, S. Tetrahedron Lett. 1998, 39, 8669-8672. (b) Clippingdale, A. B.; Barrow, C. J.; Wade, J. D. J. Pept. Sci. 2000, 6, 225-234. (c) Hojo, H.; Haginoya, E.; Matsumoto, Y.; Nakahara, Y.; Nabeshima, K.; Toole, B. P.; Watanabe, Y. Tetrahedron Lett. 2003, 44, 2961-2964], or direct conversion into thioesters of C-terminal acids (von Eggelkraut-Gottanka, R.; Klose, A.; Beck-Sickinger, A. G.; Beyermann, M. Tetrahedron Lett. 2003, 44, 3551-3554), esters (Swinnen, D.; Hilvert, D. Org. Lett. 2000, 2, 2439-2442), or trithioortho esters (Brask, J.; Albericio, F.; Jensen, K. J. Org. Lett. 2003, 5, 2951-2953). Boc-based SPPS employs strongly acidic cleavage conditions (liquid HF) that are incompatible with many glycosidic linkages.
-
(2003)
Tetrahedron Lett.
, vol.44
, pp. 2961-2964
-
-
Hojo, H.1
Haginoya, E.2
Matsumoto, Y.3
Nakahara, Y.4
Nabeshima, K.5
Toole, B.P.6
Watanabe, Y.7
-
31
-
-
0037459876
-
-
Significant advances in this type of problem arose through the use of Ellman's Fmoc-based sulfonamide linker (Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 1999, 121, 11684-11689), which has been employed in the synthesis of glycopeptide thioesters. The method we practice here, however, insists on maximal convergence, as opposed to a "cassette" approach to glycan incorporation. We note that certain glycosidic linkages (e.g., fucosidic linkages in erythropoietin) are particularly unstable toward the acidic conditions (TFA) required for protecting group cleavage. Other "cassette"-based Fmoc solid-phase peptide synthesis (SPPS) techniques potentially leading to glycopeptide thioesters also include acidic conditions at some point. These methods involve alteration of the Fmoc deblocking conditions [(a) Li, X. Q.; Kawakami, T.; Aimoto, S. Tetrahedron Lett. 1998, 39, 8669-8672. (b) Clippingdale, A. B.; Barrow, C. J.; Wade, J. D. J. Pept. Sci. 2000, 6, 225-234. (c) Hojo, H.; Haginoya, E.; Matsumoto, Y.; Nakahara, Y.; Nabeshima, K.; Toole, B. P.; Watanabe, Y. Tetrahedron Lett. 2003, 44, 2961-2964], or direct conversion into thioesters of C-terminal acids (von Eggelkraut-Gottanka, R.; Klose, A.; Beck-Sickinger, A. G.; Beyermann, M. Tetrahedron Lett. 2003, 44, 3551-3554), esters (Swinnen, D.; Hilvert, D. Org. Lett. 2000, 2, 2439-2442), or trithioortho esters (Brask, J.; Albericio, F.; Jensen, K. J. Org. Lett. 2003, 5, 2951-2953). Boc-based SPPS employs strongly acidic cleavage conditions (liquid HF) that are incompatible with many glycosidic linkages.
-
(2003)
Tetrahedron Lett.
, vol.44
, pp. 3551-3554
-
-
Von Eggelkraut-Gottanka, R.1
Klose, A.2
Beck-Sickinger, A.G.3
Beyermann, M.4
-
32
-
-
0034632429
-
-
Significant advances in this type of problem arose through the use of Ellman's Fmoc-based sulfonamide linker (Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 1999, 121, 11684-11689), which has been employed in the synthesis of glycopeptide thioesters. The method we practice here, however, insists on maximal convergence, as opposed to a "cassette" approach to glycan incorporation. We note that certain glycosidic linkages (e.g., fucosidic linkages in erythropoietin) are particularly unstable toward the acidic conditions (TFA) required for protecting group cleavage. Other "cassette"-based Fmoc solid-phase peptide synthesis (SPPS) techniques potentially leading to glycopeptide thioesters also include acidic conditions at some point. These methods involve alteration of the Fmoc deblocking conditions [(a) Li, X. Q.; Kawakami, T.; Aimoto, S. Tetrahedron Lett. 1998, 39, 8669-8672. (b) Clippingdale, A. B.; Barrow, C. J.; Wade, J. D. J. Pept. Sci. 2000, 6, 225-234. (c) Hojo, H.; Haginoya, E.; Matsumoto, Y.; Nakahara, Y.; Nabeshima, K.; Toole, B. P.; Watanabe, Y. Tetrahedron Lett. 2003, 44, 2961-2964], or direct conversion into thioesters of C-terminal acids (von Eggelkraut-Gottanka, R.; Klose, A.; Beck-Sickinger, A. G.; Beyermann, M. Tetrahedron Lett. 2003, 44, 3551-3554), esters (Swinnen, D.; Hilvert, D. Org. Lett. 2000, 2, 2439-2442), or trithioortho esters (Brask, J.; Albericio, F.; Jensen, K. J. Org. Lett. 2003, 5, 2951-2953). Boc-based SPPS employs strongly acidic cleavage conditions (liquid HF) that are incompatible with many glycosidic linkages.
-
(2000)
Org. Lett.
, vol.2
, pp. 2439-2442
-
-
Swinnen, D.1
Hilvert, D.2
-
33
-
-
0141520480
-
-
Significant advances in this type of problem arose through the use of Ellman's Fmoc-based sulfonamide linker (Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 1999, 121, 11684-11689), which has been employed in the synthesis of glycopeptide thioesters. The method we practice here, however, insists on maximal convergence, as opposed to a "cassette" approach to glycan incorporation. We note that certain glycosidic linkages (e.g., fucosidic linkages in erythropoietin) are particularly unstable toward the acidic conditions (TFA) required for protecting group cleavage. Other "cassette"-based Fmoc solid-phase peptide synthesis (SPPS) techniques potentially leading to glycopeptide thioesters also include acidic conditions at some point. These methods involve alteration of the Fmoc deblocking conditions [(a) Li, X. Q.; Kawakami, T.; Aimoto, S. Tetrahedron Lett. 1998, 39, 8669-8672. (b) Clippingdale, A. B.; Barrow, C. J.; Wade, J. D. J. Pept. Sci. 2000, 6, 225-234. (c) Hojo, H.; Haginoya, E.; Matsumoto, Y.; Nakahara, Y.; Nabeshima, K.; Toole, B. P.; Watanabe, Y. Tetrahedron Lett. 2003, 44, 2961-2964], or direct conversion into thioesters of C-terminal acids (von Eggelkraut-Gottanka, R.; Klose, A.; Beck-Sickinger, A. G.; Beyermann, M. Tetrahedron Lett. 2003, 44, 3551-3554), esters (Swinnen, D.; Hilvert, D. Org. Lett. 2000, 2, 2439-2442), or trithioortho esters (Brask, J.; Albericio, F.; Jensen, K. J. Org. Lett. 2003, 5, 2951-2953). Boc-based SPPS employs strongly acidic cleavage conditions (liquid HF) that are incompatible with many glycosidic linkages.
-
(2003)
Org. Lett.
, vol.5
, pp. 2951-2953
-
-
Brask, J.1
Albericio, F.2
Jensen, K.J.3
-
34
-
-
0034729576
-
-
A phenolic ester may function as an acylating agent when employed in conjunction with an intramolecularly disposed amine equivalent that is generated in situ via Staudinger chemistry. For examples, see: (a) Nilsson, B. L.; Kiessling, L. L.: Raines, R. T. Org. Lett. 2000, 2, 1939-1941.
-
(2000)
Org. Lett.
, vol.2
, pp. 1939-1941
-
-
Nilsson, B.L.1
Kiessling, L.L.2
Raines, R.T.3
-
37
-
-
0027396380
-
-
and references therein
-
See: Verhaeghe, J.; Lacassie, E.; Bertrand, M.; Trudelle, Y. Tetrahedron Lett. 1993, 34, 461-464 and references therein.
-
(1993)
Tetrahedron Lett.
, vol.34
, pp. 461-464
-
-
Verhaeghe, J.1
Lacassie, E.2
Bertrand, M.3
Trudelle, Y.4
-
38
-
-
0001379039
-
-
Caserio, M. C.; Fisher, C. L.; Kim, J. K. J. Org. Chem. 1985, 50, 4390-4393.
-
(1985)
J. Org. Chem.
, vol.50
, pp. 4390-4393
-
-
Caserio, M.C.1
Fisher, C.L.2
Kim, J.K.3
-
39
-
-
2542589623
-
-
note
-
The protected peptide acid was synthesized by Fmoc SPPS.
-
-
-
-
40
-
-
2542528761
-
-
note
-
Glycopeptide 18 was prepared as described previously (ref 13).
-
-
-
-
41
-
-
2542626203
-
-
note
-
O-Linked glycopeptide precursors to 20 and 21 were synthesized using a cassette approach, in which the Fmoc serine monomers used in SPPS contained pendant saccharides.
-
-
-
-
42
-
-
0001587747
-
-
Gross, E., Meienhofer, J., Eds.; Academic Press: New York
-
Kemp, D. S. In The Peptides: Analysis, Synthesis, Biology; Gross, E., Meienhofer, J., Eds.; Academic Press: New York, 1979; Vol. 1, Part A, pp 315-381.
-
(1979)
The Peptides: Analysis, Synthesis, Biology
, vol.1
, Issue.PART A
, pp. 315-381
-
-
Kemp, D.S.1
-
44
-
-
0034675569
-
-
Wang, Z. G.; Zhang, X. F.; Live, D.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2000, 39, 3652-3656.
-
(2000)
Angew. Chem., Int. Ed.
, vol.39
, pp. 3652-3656
-
-
Wang, Z.G.1
Zhang, X.F.2
Live, D.3
Danishefsky, S.J.4
|