-
2
-
-
0033579467
-
The cytoplasmic, transmembrane, and stem regions of glycosyltransferases specify their in vivo functional sublocalization and stability in the Golgi
-
Grabenhorst E., Conradt H.S. The cytoplasmic, transmembrane, and stem regions of glycosyltransferases specify their in vivo functional sublocalization and stability in the Golgi. J Biol Chem. 274:1999;36107-36116
-
(1999)
J Biol Chem
, vol.274
, pp. 36107-36116
-
-
Grabenhorst, E.1
Conradt, H.S.2
-
3
-
-
0029670289
-
Protein sorting by transport vesicles
-
Rothman J.E., Wieland F.T. Protein sorting by transport vesicles. Science. 272:1996;227-234
-
(1996)
Science
, vol.272
, pp. 227-234
-
-
Rothman, J.E.1
Wieland, F.T.2
-
4
-
-
0032433851
-
The curious status of the Golgi apparatus
-
Glick B.S., Malhotra V. The curious status of the Golgi apparatus. Cell. 95:1998;883-889
-
(1998)
Cell
, vol.95
, pp. 883-889
-
-
Glick, B.S.1
Malhotra, V.2
-
5
-
-
0035945347
-
Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: A role for ArfGAP1
-
Lanoix J., Ouwendijk J., Stark A., Szafer E., Cassel D., Dejgaard K., Weiss M., Nilsson T. Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. J Cell Biol. 155:2001;1199-1212
-
(2001)
J Cell Biol
, vol.155
, pp. 1199-1212
-
-
Lanoix, J.1
Ouwendijk, J.2
Stark, A.3
Szafer, E.4
Cassel, D.5
Dejgaard, K.6
Weiss, M.7
Nilsson, T.8
-
6
-
-
0035945348
-
Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport
-
Martinez-Menarguez J.A., Prekeris R., Oorschot V.M., Scheller R., Slot J.W., Geuze H.J., Klumperman J. Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport. J Cell Biol. 155:2001;1213-1224
-
(2001)
J Cell Biol
, vol.155
, pp. 1213-1224
-
-
Martinez-Menarguez, J.A.1
Prekeris, R.2
Oorschot, V.M.3
Scheller, R.4
Slot, J.W.5
Geuze, H.J.6
Klumperman, J.7
-
7
-
-
0035945357
-
Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae
-
Mironov A.A., Beznoussenko G.V., Nicoziani P., Martella O., Trucco A., Kweon H.S., Di Giandomenico D., Polishchuk R.S., Fusella A., Lupetti P., et al. Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J Cell Biol. 155:2001;1225-1238
-
(2001)
J Cell Biol
, vol.155
, pp. 1225-1238
-
-
Mironov, A.A.1
Beznoussenko, G.V.2
Nicoziani, P.3
Martella, O.4
Trucco, A.5
Kweon, H.S.6
Di Giandomenico, D.7
Polishchuk, R.S.8
Fusella, A.9
Lupetti, P.10
-
8
-
-
0034664730
-
The debate about transport in the Golgi - Two sides of the same coin?
-
Pelham H.R., Rothman J.E. The debate about transport in the Golgi - two sides of the same coin? Cell. 102:2000;713-719
-
(2000)
Cell
, vol.102
, pp. 713-719
-
-
Pelham, H.R.1
Rothman, J.E.2
-
9
-
-
0036704669
-
The Golgi apparatus: Balancing new with old
-
Storrie B., Nilsson T. The Golgi apparatus: balancing new with old. Traffic. 3:2002;521-529
-
(2002)
Traffic
, vol.3
, pp. 521-529
-
-
Storrie, B.1
Nilsson, T.2
-
10
-
-
0038050371
-
Cisternal maturation and vesicle transport: Join the band wagon!
-
Elsner M., Hashimoto H., Nilsson T. Cisternal maturation and vesicle transport: join the band wagon! Mol Membr Biol. 20:2003;221-229
-
(2003)
Mol Membr Biol
, vol.20
, pp. 221-229
-
-
Elsner, M.1
Hashimoto, H.2
Nilsson, T.3
-
11
-
-
0027318045
-
Kin recognition. A model for the retention of Golgi enzymes
-
Nilsson T., Slusarewicz P., Hoe M.H., Warren G. Kin recognition. A model for the retention of Golgi enzymes. FEBS Lett. 330:1993;1-4
-
(1993)
FEBS Lett
, vol.330
, pp. 1-4
-
-
Nilsson, T.1
Slusarewicz, P.2
Hoe, M.H.3
Warren, G.4
-
12
-
-
0027892019
-
Cholesterol and the Golgi apparatus
-
Bretscher M.S., Munro S. Cholesterol and the Golgi apparatus. Science. 261:1993;1280-1281
-
(1993)
Science
, vol.261
, pp. 1280-1281
-
-
Bretscher, M.S.1
Munro, S.2
-
13
-
-
0035881822
-
Steady-state localization of a medial-Golgi glycosyltransferase involves transit through the trans-Golgi network
-
Opat A.S., Houghton F., Gleeson P.A. Steady-state localization of a medial-Golgi glycosyltransferase involves transit through the trans-Golgi network. Biochem J. 358:2001;33-40
-
(2001)
Biochem J
, vol.358
, pp. 33-40
-
-
Opat, A.S.1
Houghton, F.2
Gleeson, P.A.3
-
14
-
-
0034697118
-
Medial Golgi but not late Golgi glycosyltransferases exist as high molecular weight complexes. Role of luminal domain in complex formation and localization
-
Opat A.S., Houghton F., Gleeson P.A. Medial Golgi but not late Golgi glycosyltransferases exist as high molecular weight complexes. Role of luminal domain in complex formation and localization. J Biol Chem. 275:2000;11836-11845
-
(2000)
J Biol Chem
, vol.275
, pp. 11836-11845
-
-
Opat, A.S.1
Houghton, F.2
Gleeson, P.A.3
-
15
-
-
0031976015
-
Localization of proteins to the Golgi apparatus
-
Munro S. Localization of proteins to the Golgi apparatus. Trends Cell Biol. 8:1998;11-15
-
(1998)
Trends Cell Biol
, vol.8
, pp. 11-15
-
-
Munro, S.1
-
17
-
-
0029834675
-
Interleaflet clear space is reduced in the membrane of COP I-and COP II-coated buds/vesicles
-
Orci L., Schekman R., Perrelet A. Interleaflet clear space is reduced in the membrane of COP I-and COP II-coated buds/vesicles. Proc Natl Acad Sci USA. 93:1996;8968-8970
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 8968-8970
-
-
Orci, L.1
Schekman, R.2
Perrelet, A.3
-
18
-
-
0039992226
-
Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus
-
Rottger S., White J., Wandall H.H., Olivo J.C., Stark A., Bennett E.P., Whitehouse C., Berger E.G., Clausen H., Nilsson T. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J Cell Sci. 111:1998;45-60
-
(1998)
J Cell Sci
, vol.111
, pp. 45-60
-
-
Rottger, S.1
White, J.2
Wandall, H.H.3
Olivo, J.C.4
Stark, A.5
Bennett, E.P.6
Whitehouse, C.7
Berger, E.G.8
Clausen, H.9
Nilsson, T.10
-
19
-
-
0036678493
-
Structure of the Golgi and distribution of reporter molecules at 20°C reveals the complexity of the exit compartments
-
Ladinsky M.S., Wu C.C., McIntosh S., McIntosh J.R., Howell K.E. Structure of the Golgi and distribution of reporter molecules at 20°C reveals the complexity of the exit compartments. Mol Biol Cell. 13:2002;2810-2825
-
(2002)
Mol Biol Cell
, vol.13
, pp. 2810-2825
-
-
Ladinsky, M.S.1
Wu, C.C.2
McIntosh, S.3
McIntosh, J.R.4
Howell, K.E.5
-
20
-
-
0347611095
-
Molecular machinery for non-vesicular trafficking of ceramide
-
Hanada K., Kumagai K., Yasuda S., Miura Y., Kawano M., Fukasawa M., Nishijima M. Molecular machinery for non-vesicular trafficking of ceramide. Nature. 426:2003;803-809
-
(2003)
Nature
, vol.426
, pp. 803-809
-
-
Hanada, K.1
Kumagai, K.2
Yasuda, S.3
Miura, Y.4
Kawano, M.5
Fukasawa, M.6
Nishijima, M.7
-
21
-
-
0030937062
-
Glycosylation: Heterogeneity and the 3D structure of proteins
-
Rudd P.M., Dwek R.A. Glycosylation: heterogeneity and the 3D structure of proteins. Crit Rev Biochem Mol Biol. 32:1997;1-100
-
(1997)
Crit Rev Biochem Mol Biol
, vol.32
, pp. 1-100
-
-
Rudd, P.M.1
Dwek, R.A.2
-
22
-
-
0035800822
-
Location and mechanism of α-2,6-sialyltransferase dimer formation. Role of cysteine residues in enzyme dimerization, localization, activity, and processing
-
Qian R., Chen C., Colley K.J. Location and mechanism of α-2, 6-sialyltransferase dimer formation. Role of cysteine residues in enzyme dimerization, localization, activity, and processing. J Biol Chem. 276:2001;28641-28649
-
(2001)
J Biol Chem
, vol.276
, pp. 28641-28649
-
-
Qian, R.1
Chen, C.2
Colley, K.J.3
-
23
-
-
0037470039
-
Importance of Cys, Gln, and Tyr from the transmembrane domain of human α3/4 fucosyltransferase III for its localization and sorting in the Golgi of baby hamster kidney cells
-
Sousa V.L., Brito C., Costa T., Lanoix J., Nilsson T., Costa J. Importance of Cys, Gln, and Tyr from the transmembrane domain of human α3/4 fucosyltransferase III for its localization and sorting in the Golgi of baby hamster kidney cells. J Biol Chem. 278:2003;7624-7629
-
(2003)
J Biol Chem
, vol.278
, pp. 7624-7629
-
-
Sousa, V.L.1
Brito, C.2
Costa, T.3
Lanoix, J.4
Nilsson, T.5
Costa, J.6
-
24
-
-
0026607683
-
Golgi retention of a trans-Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain
-
Aoki D., Lee N., Yamaguchi N., Dubois C., Fukuda M.N. Golgi retention of a trans-Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain. Proc Natl Acad Sci USA. 89:1992;4319-4323
-
(1992)
Proc Natl Acad Sci USA
, vol.89
, pp. 4319-4323
-
-
Aoki, D.1
Lee, N.2
Yamaguchi, N.3
Dubois, C.4
Fukuda, M.N.5
-
25
-
-
0028047115
-
Kin recognition between medial Golgi enzymes in HeLa cells
-
Nilsson T., Hoe M.H., Slusarewicz P., Rabouille C., Watson R., Hunte F., Watzele G., Berger E.G., Warren G. Kin recognition between medial Golgi enzymes in HeLa cells. EMBO J. 13:1994;562-574
-
(1994)
EMBO J
, vol.13
, pp. 562-574
-
-
Nilsson, T.1
Hoe, M.H.2
Slusarewicz, P.3
Rabouille, C.4
Watson, R.5
Hunte, F.6
Watzele, G.7
Berger, E.G.8
Warren, G.9
-
26
-
-
0036462601
-
Protein N-glycosylation along the secretory pathway: Relationship to organelle topography and function, protein quality control, and cell interactions
-
Roth J. Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev. 102:2002;285-303
-
(2002)
Chem Rev
, vol.102
, pp. 285-303
-
-
Roth, J.1
-
27
-
-
0029890064
-
The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells
-
Nilsson T., Rabouille C., Hui N., Watson R., Warren G. The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells. J Cell Sci. 109:1996;1975-1989
-
(1996)
J Cell Sci
, vol.109
, pp. 1975-1989
-
-
Nilsson, T.1
Rabouille, C.2
Hui, N.3
Watson, R.4
Warren, G.5
-
28
-
-
0035827374
-
What can yeast tell us about N-linked glycosylation in the Golgi apparatus?
-
Munro S. What can yeast tell us about N-linked glycosylation in the Golgi apparatus? FEBS Lett. 498:2001;223-227
-
(2001)
FEBS Lett
, vol.498
, pp. 223-227
-
-
Munro, S.1
-
29
-
-
0032518685
-
Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with α-1,6-mannosyltransferase activity
-
Jungmann J., Munro S. Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with α-1, 6-mannosyltransferase activity. EMBO J. 17:1998;423-434
-
(1998)
EMBO J
, vol.17
, pp. 423-434
-
-
Jungmann, J.1
Munro, S.2
-
30
-
-
0037160121
-
The components of the Saccharomyces cerevisiae mannosyltransferase complex M-Pol I have distinct functions in mannan synthesis
-
Stolz J., Munro S. The components of the Saccharomyces cerevisiae mannosyltransferase complex M-Pol I have distinct functions in mannan synthesis. J Biol Chem. 277:2002;44801-44808
-
(2002)
J Biol Chem
, vol.277
, pp. 44801-44808
-
-
Stolz, J.1
Munro, S.2
-
31
-
-
0033525512
-
The Saccharomyces cerevisiae protein Mnn10p/Bed1p is a subunit of a Golgi mannosyltransferase complex
-
Jungmann J., Rayner J.C., Munro S. The Saccharomyces cerevisiae protein Mnn10p/Bed1p is a subunit of a Golgi mannosyltransferase complex. J Biol Chem. 274:1999;6579-6585
-
(1999)
J Biol Chem
, vol.274
, pp. 6579-6585
-
-
Jungmann, J.1
Rayner, J.C.2
Munro, S.3
-
32
-
-
0035852635
-
Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus
-
Giraudo C.G., Daniotti J.L., Maccioni H.J. Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus. Proc Natl Acad Sci USA. 98:2001;1625-1630
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 1625-1630
-
-
Giraudo, C.G.1
Daniotti, J.L.2
MacCioni, H.J.3
-
33
-
-
0141890299
-
Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells
-
Three enzymes that function early in the glyolipid biosynthetic pathway, SialT1, GalT1, and SialT2, form a complex in the proximal Golgi. SialT1 is required for GalT1 and SialT2 to associate, suggesting that SialT1 is key to complex formation.
-
Giraudo C.G., Maccioni H.J. Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J Biol Chem. 278:2003;40262-40271 Three enzymes that function early in the glyolipid biosynthetic pathway, SialT1, GalT1, and SialT2, form a complex in the proximal Golgi. SialT1 is required for GalT1 and SialT2 to associate, suggesting that SialT1 is key to complex formation.
-
(2003)
J Biol Chem
, vol.278
, pp. 40262-40271
-
-
Giraudo, C.G.1
MacCioni, H.J.2
-
34
-
-
0037167579
-
Regulation of ganglioside biosynthesis by enzyme complex formation of glycosyltransferases
-
Bieberich E., MacKinnon S., Silva J., Li D.D., Tencomnao T., Irwin L., Kapitonov D., Yu R.K. Regulation of ganglioside biosynthesis by enzyme complex formation of glycosyltransferases. Biochemistry. 41:2002;11479-11487
-
(2002)
Biochemistry
, vol.41
, pp. 11479-11487
-
-
Bieberich, E.1
MacKinnon, S.2
Silva, J.3
Li, D.D.4
Tencomnao, T.5
Irwin, L.6
Kapitonov, D.7
Yu, R.K.8
-
35
-
-
0031711820
-
Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus
-
Hirschberg C.B., Robbins P.W., Abeijon C. Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem. 67:1998;49-69
-
(1998)
Annu Rev Biochem
, vol.67
, pp. 49-69
-
-
Hirschberg, C.B.1
Robbins, P.W.2
Abeijon, C.3
-
36
-
-
0032475872
-
UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum
-
Sprong H., Kruithof B., Leijendekker R., Slot J.W., van Meer G., van der Sluijs P. UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J Biol Chem. 273:1998;25880-25888
-
(1998)
J Biol Chem
, vol.273
, pp. 25880-25888
-
-
Sprong, H.1
Kruithof, B.2
Leijendekker, R.3
Slot, J.W.4
Van Meer, G.5
Van Der Sluijs, P.6
-
37
-
-
0042970585
-
Association of the Golgi UDP-galactose transporter with UDP-galactose:ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum
-
The UDP-galactose transporter UGT forms a complex with an ER-resident galactosyltransferase, leading to its retention in the ER and allowing the production of GalCer. To our knowledge, this is the only reported association between a sugar nucleotide transporter and a glycosyltransferase.
-
Sprong H., Degroote S., Nilsson T., Kawakita M., Ishida N., van der Sluijs P., van Meer G. Association of the Golgi UDP-galactose transporter with UDP-galactose:ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum. Mol Biol Cell. 14:2003;3482-3493 The UDP-galactose transporter UGT forms a complex with an ER-resident galactosyltransferase, leading to its retention in the ER and allowing the production of GalCer. To our knowledge, this is the only reported association between a sugar nucleotide transporter and a glycosyltransferase.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 3482-3493
-
-
Sprong, H.1
Degroote, S.2
Nilsson, T.3
Kawakita, M.4
Ishida, N.5
Van Der Sluijs, P.6
Van Meer, G.7
-
38
-
-
0035997376
-
Order out of chaos: Assembly of ligand binding sites in heparan sulfate
-
Esko J.D., Selleck S.B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem. 71:2002;435-471
-
(2002)
Annu Rev Biochem
, vol.71
, pp. 435-471
-
-
Esko, J.D.1
Selleck, S.B.2
-
39
-
-
0032500662
-
The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate
-
Lind T., Tufaro F., McCormick C., Lindahl U., Lidholt K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem. 273:1998;26265-26268
-
(1998)
J Biol Chem
, vol.273
, pp. 26265-26268
-
-
Lind, T.1
Tufaro, F.2
McCormick, C.3
Lindahl, U.4
Lidholt, K.5
-
40
-
-
0034681139
-
The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate
-
McCormick C., Duncan G., Goutsos K.T., Tufaro F. The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci USA. 97:2000;668-673
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 668-673
-
-
McCormick, C.1
Duncan, G.2
Goutsos, K.T.3
Tufaro, F.4
-
41
-
-
0035818480
-
Enzyme interactions in heparan sulfate biosynthesis: Uronosyl 5-epimerase and 2-O-sulfotransferase interact in vivo
-
Pinhal M.A., Smith B., Olson S., Aikawa J., Kimata K., Esko J.D. Enzyme interactions in heparan sulfate biosynthesis: uronosyl 5-epimerase and 2-O-sulfotransferase interact in vivo. Proc Natl Acad Sci USA. 98:2001;12984-12989
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 12984-12989
-
-
Pinhal, M.A.1
Smith, B.2
Olson, S.3
Aikawa, J.4
Kimata, K.5
Esko, J.D.6
-
42
-
-
0037234565
-
All in the family: The UDP-GalNAc:polypeptide N- acetylgalactosaminyltransferases
-
Ten Hagen K.G., Fritz T.A., Tabak L.A. All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology. 13:2003;1R-16R
-
(2003)
Glycobiology
, vol.13
-
-
Ten Hagen, K.G.1
Fritz, T.A.2
Tabak, L.A.3
-
43
-
-
0037646471
-
Extended core 1 and core 2 branched O-glycans differentially modulate sialyl Lewis X-type L-selectin ligand activity
-
Mitoma J., Petryniak B., Hiraoka N., Yeh J.C., Lowe J.B., Fukuda M. Extended core 1 and core 2 branched O-glycans differentially modulate sialyl Lewis X-type L-selectin ligand activity. J Biol Chem. 278:2003;9953-9961
-
(2003)
J Biol Chem
, vol.278
, pp. 9953-9961
-
-
Mitoma, J.1
Petryniak, B.2
Hiraoka, N.3
Yeh, J.C.4
Lowe, J.B.5
Fukuda, M.6
-
44
-
-
0032567431
-
Synthesis of poly-N-acetyllactosamine in core 2 branched O-glycans. The requirement of novel β-1,4-galactosyltransferase IV and β-1,3-N-acetylglucosaminyltransferase
-
Ujita M., McAuliffe J., Schwientek T., Almeida R., Hindsgaul O., Clausen H., Fukuda M. Synthesis of poly-N-acetyllactosamine in core 2 branched O-glycans. The requirement of novel β-1, 4-galactosyltransferase IV and β-1, 3-N-acetylglucosaminyltransferase. J Biol Chem. 273:1998;34843-34849
-
(1998)
J Biol Chem
, vol.273
, pp. 34843-34849
-
-
Ujita, M.1
McAuliffe, J.2
Schwientek, T.3
Almeida, R.4
Hindsgaul, O.5
Clausen, H.6
Fukuda, M.7
-
45
-
-
0038603867
-
The Golgi protein RCAS1 controls cell surface expression of tumor-associated O-linked glycan antigens
-
Originally characterised as a cell surface protein involved in apoptosis, the authors show that RCAS1 is actually a Golgi resident protein and that its overexpression leads to the truncation of O-linked glycans.
-
Engelsberg A., Hermosilla R., Karsten U., Schulein R., Dorken B., Rehm A. The Golgi protein RCAS1 controls cell surface expression of tumor-associated O-linked glycan antigens. J Biol Chem. 278:2003;22998-23007 Originally characterised as a cell surface protein involved in apoptosis, the authors show that RCAS1 is actually a Golgi resident protein and that its overexpression leads to the truncation of O-linked glycans.
-
(2003)
J Biol Chem
, vol.278
, pp. 22998-23007
-
-
Engelsberg, A.1
Hermosilla, R.2
Karsten, U.3
Schulein, R.4
Dorken, B.5
Rehm, A.6
-
46
-
-
0037168608
-
A unique molecular chaperone Cosmc required for activity of the mammalian core 1 β3-galactosyltransferase
-
The core 1 galactosyltransferase is vital for the production of most common O-glycans. The protein Cosmc functions as a molecular chaperone for this enzyme, thus controlling an important junction in O-linked biosynthesis. Jurkat cells have a mutation in Cosmc, leading to proteasome-mediated degradation of the galactosyltransferase, which can be prevented by complementation with the functional chaperone.
-
Ju T., Cummings R.D. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 β3-galactosyltransferase. Proc Natl Acad Sci USA. 99:2002;16613-16618 The core 1 galactosyltransferase is vital for the production of most common O-glycans. The protein Cosmc functions as a molecular chaperone for this enzyme, thus controlling an important junction in O-linked biosynthesis. Jurkat cells have a mutation in Cosmc, leading to proteasome-mediated degradation of the galactosyltransferase, which can be prevented by complementation with the functional chaperone.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 16613-16618
-
-
Ju, T.1
Cummings, R.D.2
|