메뉴 건너뛰기




Volumn 51, Issue 11, 2007, Pages 5205-5210

Advances in Mixture Models

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34248221457     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2006.10.025     Document Type: Editorial
Times cited : (43)

References (73)
  • 1
    • 4944247358 scopus 로고    scopus 로고
    • Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies
    • Agresti A., Caffo B., and Ohman-Strickland P. Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies. Comput. Statist. Data Anal. 47 (2006) 639-653
    • (2006) Comput. Statist. Data Anal. , vol.47 , pp. 639-653
    • Agresti, A.1    Caffo, B.2    Ohman-Strickland, P.3
  • 2
    • 34247874596 scopus 로고    scopus 로고
    • Alfò, M., Farcomeni, A., Tardella, L., 2007. Robust semiparametric mixing for detecting differentially expressed genes in microarray experiments. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.08.009.
  • 3
    • 10444265258 scopus 로고    scopus 로고
    • The use of mixtures for dealing with non-normal regression errors
    • Bartolucci F., and Scaccia L. The use of mixtures for dealing with non-normal regression errors. Comput. Statist. Data Anal. 48 (2006) 821-834
    • (2006) Comput. Statist. Data Anal. , vol.48 , pp. 821-834
    • Bartolucci, F.1    Scaccia, L.2
  • 4
    • 0038683384 scopus 로고    scopus 로고
    • Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient
    • Benton D., and Krishnamoorthy D. Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient. Comput. Statist. Data Anal. 43 (2003) 249-267
    • (2003) Comput. Statist. Data Anal. , vol.43 , pp. 249-267
    • Benton, D.1    Krishnamoorthy, D.2
  • 5
    • 0242286590 scopus 로고    scopus 로고
    • Integrated squared error estimation of normal mixtures
    • Besbeas P., and Morgan B.T.J. Integrated squared error estimation of normal mixtures. Comput. Statist. Data Anal. 44 (2004) 517-526
    • (2004) Comput. Statist. Data Anal. , vol.44 , pp. 517-526
    • Besbeas, P.1    Morgan, B.T.J.2
  • 6
    • 30144431978 scopus 로고    scopus 로고
    • A mixture model for the classification of three-way proximity data
    • Bocci L., Vicari D., and Vichi M. A mixture model for the classification of three-way proximity data. Comput. Statist. Data Anal. 50 (2006) 1625-1654
    • (2006) Comput. Statist. Data Anal. , vol.50 , pp. 1625-1654
    • Bocci, L.1    Vicari, D.2    Vichi, M.3
  • 9
    • 85153252765 scopus 로고    scopus 로고
    • Böhning, D., Kuhnert, R., 2006. The equivalence of truncated count mixture distributions and mixtures of truncated count distributions. Biometrics. 62, 1207-1215.
  • 10
    • 14644415437 scopus 로고    scopus 로고
    • Asymptotic normality in mixtures of discrete distributions
    • Böhning D., and Patilea V. Asymptotic normality in mixtures of discrete distributions. Scand. J. Statist. 32 (2005) 115-132
    • (2005) Scand. J. Statist. , vol.32 , pp. 115-132
    • Böhning, D.1    Patilea, V.2
  • 11
    • 24944575623 scopus 로고    scopus 로고
    • Nonparametric maximum likelihood estimation of the population size based upon the counting distribution
    • Böhning D., and Schön D. Nonparametric maximum likelihood estimation of the population size based upon the counting distribution. J. Roy. Statist. Soc., Ser. C, Appl. Statist. 54 (2005) 721-737
    • (2005) J. Roy. Statist. Soc., Ser. C, Appl. Statist. , vol.54 , pp. 721-737
    • Böhning, D.1    Schön, D.2
  • 13
    • 0034665665 scopus 로고    scopus 로고
    • Space-time mixture modelling of public health data
    • Böhning D., Dietz E., and Schlattmann P. Space-time mixture modelling of public health data. Statist. Med. 9 (2000) 2333-2344
    • (2000) Statist. Med. , vol.9 , pp. 2333-2344
    • Böhning, D.1    Dietz, E.2    Schlattmann, P.3
  • 15
    • 34247868890 scopus 로고    scopus 로고
    • Bordes, L., Chauveau, D., Vandekerkhove, P., 2007. A stochastic EM algorithm for a semiparametric mixture model. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.08.015.
  • 16
    • 34247853298 scopus 로고    scopus 로고
    • Caffo, B., An, M.-W., Rohde, C., 2007. Flexible random intercept models for binary outcomes using mixtures of normals. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.09.031.
  • 17
    • 34247850854 scopus 로고    scopus 로고
    • Carvalho, A.X., Tanner, M.A., 2007. Modelling nonlinear count time series with local mixtures of Poisson autoregressions. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.09.032.
  • 18
    • 34248221808 scopus 로고    scopus 로고
    • Celeux, G., Forbes, F., Robert, C., Titterington, D.M., 2006. Deviance Information Criteria for missing data models with discussion. Bayesian Anal., in print, published online.
  • 19
    • 0023526239 scopus 로고
    • Estimating the population size for capture-recapture data with unequal capture probabilities
    • Chao A. Estimating the population size for capture-recapture data with unequal capture probabilities. Biometrics 43 (1987) 783-791
    • (1987) Biometrics , vol.43 , pp. 783-791
    • Chao, A.1
  • 20
    • 24944462224 scopus 로고    scopus 로고
    • A model for non-parametric spatially varying regression effects
    • Congdon P. A model for non-parametric spatially varying regression effects. Comput. Statist. Data Anal. 50 (2006) 422-445
    • (2006) Comput. Statist. Data Anal. , vol.50 , pp. 422-445
    • Congdon, P.1
  • 21
    • 4043061882 scopus 로고    scopus 로고
    • Variational Bayesian model selection for mixture distributions
    • Jaakkola T., and Richardson T. (Eds), Morgan Kaufmann, Los Altos, CA
    • Corduneanu A., and Bishop C.M. Variational Bayesian model selection for mixture distributions. In: Jaakkola T., and Richardson T. (Eds). Artificial Intelligence and Statistics (2001), Morgan Kaufmann, Los Altos, CA 27-34
    • (2001) Artificial Intelligence and Statistics , pp. 27-34
    • Corduneanu, A.1    Bishop, C.M.2
  • 22
    • 18744395474 scopus 로고    scopus 로고
    • A mixture model for preferences data analysis
    • D'Elia A., and Piccolo D. A mixture model for preferences data analysis. Comput. Statist. Data Anal. 49 (2005) 917-934
    • (2005) Comput. Statist. Data Anal. , vol.49 , pp. 917-934
    • D'Elia, A.1    Piccolo, D.2
  • 23
    • 34247854939 scopus 로고    scopus 로고
    • Di Zio, M., Guarnera, U., Luzi, O., 2007. Imputation through finite Gaussian mixture models. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.10.002.
  • 24
    • 34247849296 scopus 로고    scopus 로고
    • Eilers, P.H.C., Borgdorff, M.W., 2007. Non-parametric log-concave mixtures. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.08.027.
  • 25
    • 34247863779 scopus 로고    scopus 로고
    • Formann, A.K., 2007. Mixture analysis of multivariate categorical data with covariates and missing entries. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.08.020.
  • 27
    • 34247897125 scopus 로고    scopus 로고
    • Garel, B., 2007. Recent asymptotic results in testing for mixtures. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.09.033.
  • 28
    • 34247868033 scopus 로고    scopus 로고
    • Grün, B., Leisch, F., 2007. Fitting finite mixtures of generalized linear regressions in R. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.08.014.
  • 29
    • 0001354471 scopus 로고
    • A constrained formulation of maximum-likelihood estimation for normal mixture distributions
    • Hathaway R.J. A constrained formulation of maximum-likelihood estimation for normal mixture distributions. Ann. Statist. 13 (1985) 795-800
    • (1985) Ann. Statist. , vol.13 , pp. 795-800
    • Hathaway, R.J.1
  • 30
    • 0037454065 scopus 로고    scopus 로고
    • Robustness via a mixture of exponential power distributions
    • Hazan A., Landsmanm Z., and Makov U.E. Robustness via a mixture of exponential power distributions. Comput. Statist. Data Anal. 42 (2003) 111-121
    • (2003) Comput. Statist. Data Anal. , vol.42 , pp. 111-121
    • Hazan, A.1    Landsmanm, Z.2    Makov, U.E.3
  • 31
    • 27644489992 scopus 로고    scopus 로고
    • A hybrid EM approach to spatial clustering
    • Hu T., and Sung S.Y. A hybrid EM approach to spatial clustering. Comput. Statist. Data Anal. 50 (2006) 1188-1205
    • (2006) Comput. Statist. Data Anal. , vol.50 , pp. 1188-1205
    • Hu, T.1    Sung, S.Y.2
  • 32
    • 0033235690 scopus 로고    scopus 로고
    • Fitting a mixture model to three-mode three-way data with categorical and continuous missing information
    • Hunt L.A., and Basford K.E. Fitting a mixture model to three-mode three-way data with categorical and continuous missing information. J. Classification 18 (1999) 283-296
    • (1999) J. Classification , vol.18 , pp. 283-296
    • Hunt, L.A.1    Basford, K.E.2
  • 33
    • 0035540983 scopus 로고    scopus 로고
    • Fitting a mixture model to three-mode three-way data with missing information
    • Hunt L.A., and Basford K.E. Fitting a mixture model to three-mode three-way data with missing information. J. Classification 18 (2001) 209-226
    • (2001) J. Classification , vol.18 , pp. 209-226
    • Hunt, L.A.1    Basford, K.E.2
  • 34
    • 0037469115 scopus 로고    scopus 로고
    • Mixture model clustering for mixed data with missing information
    • Hunt L., and Jorgensen M. Mixture model clustering for mixed data with missing information. Comput. Statist. Data Anal. 41 (2003) 429-440
    • (2003) Comput. Statist. Data Anal. , vol.41 , pp. 429-440
    • Hunt, L.1    Jorgensen, M.2
  • 35
    • 10744224750 scopus 로고    scopus 로고
    • Fitting bivariate cumulative returns with copulas
    • Hürlimann W. Fitting bivariate cumulative returns with copulas. Comput. Statistist. Data Anal. 45 (2004) 355-372
    • (2004) Comput. Statistist. Data Anal. , vol.45 , pp. 355-372
    • Hürlimann, W.1
  • 36
    • 34247869709 scopus 로고    scopus 로고
    • Ingrassia, S., Rocci, R., 2007. Constrained monotone EM algorithms for finite mixture of multivariate Gaussians. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.10.011.
  • 38
    • 1142304590 scopus 로고    scopus 로고
    • On algorithms for restricted maximum likelihood estimation
    • Jamshidian M. On algorithms for restricted maximum likelihood estimation. Comput. Statist. Data Anal. 45 (2004) 137-157
    • (2004) Comput. Statist. Data Anal. , vol.45 , pp. 137-157
    • Jamshidian, M.1
  • 39
    • 34247862200 scopus 로고    scopus 로고
    • Jara, A., Garcia-Zattera, M.-J., Lesaffre, E., 2007. A Dirichlet process mixture model for the analysis correlated binary responses. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.09.010.
  • 40
    • 0000262562 scopus 로고
    • Hierarchical mixtures-of-experts and the EM algorithm
    • Jordan M., and Jacobs R. Hierarchical mixtures-of-experts and the EM algorithm. Neural Comput. 6 (1994) 181-214
    • (1994) Neural Comput. , vol.6 , pp. 181-214
    • Jordan, M.1    Jacobs, R.2
  • 41
  • 42
    • 34247850823 scopus 로고    scopus 로고
    • Karlis, D., Patilea, V., 2007. Confidence intervals of the hazard rate function for discrete distributions using mixtures. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.07.037.
  • 43
    • 34247862202 scopus 로고    scopus 로고
    • Kheiri, S., Kimber, A., Meshkani, M.R., 2007. Bayesian analysis of an inverse Gaussian correlated frailty model. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.07.026.
  • 44
    • 13644265962 scopus 로고    scopus 로고
    • Tests for normal mixtures based on the empirical characteristic function
    • Klar B., and Meintanis S.G. Tests for normal mixtures based on the empirical characteristic function. Comput. Statist. Data Anal. 49 (2005) 227-242
    • (2005) Comput. Statist. Data Anal. , vol.49 , pp. 227-242
    • Klar, B.1    Meintanis, S.G.2
  • 45
    • 1642602502 scopus 로고    scopus 로고
    • Bayesian detection of clusters and discontinuities in disease maps
    • Knorr-Held L., and Raßer S. Bayesian detection of clusters and discontinuities in disease maps. Biometrics 56 (2000) 13-21
    • (2000) Biometrics , vol.56 , pp. 13-21
    • Knorr-Held, L.1    Raßer, S.2
  • 46
    • 24644456463 scopus 로고    scopus 로고
    • Two-way Poisson mixture models for simultaneous document classification and word clustering
    • Li J., and Zha H. Two-way Poisson mixture models for simultaneous document classification and word clustering. Comput. Statist. Data Anal. 50 (2006) 163-180
    • (2006) Comput. Statist. Data Anal. , vol.50 , pp. 163-180
    • Li, J.1    Zha, H.2
  • 47
    • 34248199087 scopus 로고    scopus 로고
    • Lindsay, B.G., 1995. Mixture models: theory geometry and applications. NSF-CBMS Regional Conference Series in Probability and Statistics, vol. 5. Institute of Mathematical Statistics, Hayward.
  • 48
    • 85153281683 scopus 로고    scopus 로고
    • Link, W.A., 2003. Nonidentifiability of population size from capture-recapture data with heterogenous detection populations. Biometrics 59, 1123-1130.
  • 49
    • 34247862199 scopus 로고    scopus 로고
    • Mao, C.X., 2007. Estimating population sizes for capture-recapture sampling with binomial mixtures. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.09.025.
  • 50
    • 34247869715 scopus 로고    scopus 로고
    • McGrory, C.A., Titterington, D.M., 2007. Variational approximations in Bayesian model selection for finite mixture distributions. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.07.020.
  • 53
    • 0037469105 scopus 로고    scopus 로고
    • Modelling high-dimensional data by mixtures of factor analyzers
    • McLachlan G.J., Peel D., and Bean R.W. Modelling high-dimensional data by mixtures of factor analyzers. Comput. Statist. Data Anal. 41 (2003) 379-388
    • (2003) Comput. Statist. Data Anal. , vol.41 , pp. 379-388
    • McLachlan, G.J.1    Peel, D.2    Bean, R.W.3
  • 54
    • 34247855883 scopus 로고    scopus 로고
    • McLachlan, G.J., Bean, R.W., Ben-Tovim Jones, L., 2007 Extension of the mixture of factor analyzers model to incorporate the multivariate t-Distribution. Comput. Statist. Data Anal. (this issue), doi:10.1016/j.csda.2006.09.015.
  • 56
    • 26444511091 scopus 로고    scopus 로고
    • Information matrices for Laplace and Pareto mixtures
    • Nadarajah S. Information matrices for Laplace and Pareto mixtures. Comput. Statist. Data Anal. 50 (2006) 950-966
    • (2006) Comput. Statist. Data Anal. , vol.50 , pp. 950-966
    • Nadarajah, S.1
  • 57
    • 13644260928 scopus 로고    scopus 로고
    • An improved method for the computation of maximum likelihood estimates for multinomial overdispersion models
    • Neerchal N.K., and Morel J.G. An improved method for the computation of maximum likelihood estimates for multinomial overdispersion models. Comput. Statist. Data Anal. 49 (2005) 33-43
    • (2005) Comput. Statist. Data Anal. , vol.49 , pp. 33-43
    • Neerchal, N.K.1    Morel, J.G.2
  • 58
    • 24944436600 scopus 로고    scopus 로고
    • Segmenting magnetic resonance images via hierarchical mixture modelling
    • Priebe C.E., Miller M.I., and Ratnanather T. Segmenting magnetic resonance images via hierarchical mixture modelling. Comput. Statist. Data Anal. 50 (2006) 551-567
    • (2006) Comput. Statist. Data Anal. , vol.50 , pp. 551-567
    • Priebe, C.E.1    Miller, M.I.2    Ratnanather, T.3
  • 59
    • 34247885954 scopus 로고    scopus 로고
    • Rufo, M.J., Pérez, C.J., Martín, J., 2007. Bayesian analysis of finite mixtures of multinomial and negative-multinomial distributions. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.09.026.
  • 60
    • 27644502899 scopus 로고    scopus 로고
    • Efficient calculation of the NPMLE of a mixing distribution for mixtures of exponentials
    • Seidel W., Sever K., and Ševčiková H. Efficient calculation of the NPMLE of a mixing distribution for mixtures of exponentials. Comput. Statist. Data Anal. 50 (2006) 1248-1271
    • (2006) Comput. Statist. Data Anal. , vol.50 , pp. 1248-1271
    • Seidel, W.1    Sever, K.2    Ševčiková, H.3
  • 62
    • 34247860759 scopus 로고    scopus 로고
    • Steiner, P.M., Hudec, M., 2007. Classification of large data sets with mixture models via sufficient EM. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.09.014.
  • 63
    • 34247892314 scopus 로고    scopus 로고
    • Sultan, K.S., Ismail, M.A., Al-Moisheer, A.S., 2007. Mixture of two inverse Weibull distributions: properties and estimation. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.09.016.
  • 64
    • 3042684740 scopus 로고    scopus 로고
    • Drug risk assessment with determining the number of sub-populations under finite mixture normal models
    • Tao J., Shi N.-Z., and Lee S.Y. Drug risk assessment with determining the number of sub-populations under finite mixture normal models. Comput. Statist. Data Anal. 46 (2004) 661-676
    • (2004) Comput. Statist. Data Anal. , vol.46 , pp. 661-676
    • Tao, J.1    Shi, N.-Z.2    Lee, S.Y.3
  • 66
    • 0036887504 scopus 로고    scopus 로고
    • Bayesian model search for mixture models based on optimizing variational bounds
    • Ueda N., and Ghahramani Z. Bayesian model search for mixture models based on optimizing variational bounds. Neural Networks 15 (2002) 1223-1241
    • (2002) Neural Networks , vol.15 , pp. 1223-1241
    • Ueda, N.1    Ghahramani, Z.2
  • 69
    • 9144238101 scopus 로고    scopus 로고
    • Multilevel latent class models
    • Vermunt J.K. Multilevel latent class models. Sociological Methodology 33 (2003) 213-239
    • (2003) Sociological Methodology , vol.33 , pp. 213-239
    • Vermunt, J.K.1
  • 70
    • 34247860763 scopus 로고    scopus 로고
    • Vermunt, J.K., 2007. A hierarchical mixture model for clustering three-way data sets. Comput. Statist. Data Anal. (this issue), 10.1016/j.csda.2006.08.005.
  • 71
    • 0141889523 scopus 로고    scopus 로고
    • Testing for outliers from a mixture distribution when some data are missing
    • Woodward W.A., and Sain S.R. Testing for outliers from a mixture distribution when some data are missing. Comput. Statist. Data Anal. 44 (2003) 193-210
    • (2003) Comput. Statist. Data Anal. , vol.44 , pp. 193-210
    • Woodward, W.A.1    Sain, S.R.2
  • 72
    • 0029530171 scopus 로고
    • Correlated individual frailty: an advantageous approach to survival analysis of bivariate data
    • Yashin A.I., Vaupel J.W., and Iachine I. Correlated individual frailty: an advantageous approach to survival analysis of bivariate data. Math. Popul. Studies 5 (1995) 1-15
    • (1995) Math. Popul. Studies , vol.5 , pp. 1-15
    • Yashin, A.I.1    Vaupel, J.W.2    Iachine, I.3
  • 73
    • 3042716474 scopus 로고    scopus 로고
    • Quantification of variability and uncertainty using mixture distributions: evaluation of sample size, mixing weights, and separation between components
    • Zheng J., and Frey H.C. Quantification of variability and uncertainty using mixture distributions: evaluation of sample size, mixing weights, and separation between components. Risk Anal. 24 (2004) 553-571
    • (2004) Risk Anal. , vol.24 , pp. 553-571
    • Zheng, J.1    Frey, H.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.