메뉴 건너뛰기




Volumn 51, Issue 11, 2007, Pages 5416-5428

Classification of large data sets with mixture models via sufficient EM

Author keywords

Data compression; EM algorithm; Mixture models; Unsupervised classification; Web usage mining

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA COMPRESSION; DATA MINING; ESTIMATION; MATHEMATICAL MODELS; STATISTICAL METHODS;

EID: 34247860759     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2006.09.014     Document Type: Article
Times cited : (14)

References (18)
  • 2
    • 34247870411 scopus 로고    scopus 로고
    • Bradley, P., Fayyad, U., Reina, C., 1999. Scaling EM (expectation-maximization) clustering to large databases. Technical Report MSR-TR-98-35, Microsoft Research.
  • 3
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via EM algorithm
    • Dempster A., Laird N., and Rubin D. Maximum likelihood from incomplete data via EM algorithm. J. Roy. Statist. Soc. B 39 (1977) 1-38
    • (1977) J. Roy. Statist. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 4
    • 16244379311 scopus 로고    scopus 로고
    • Data squashing: constructing summary data sets
    • Abello J. (Ed), Kluwer Academic Publishers, Dordrecht, MA
    • DuMouchel W. Data squashing: constructing summary data sets. In: Abello J. (Ed). Handbook of Massive Data Sets (2001), Kluwer Academic Publishers, Dordrecht, MA
    • (2001) Handbook of Massive Data Sets
    • DuMouchel, W.1
  • 6
    • 0032091595 scopus 로고    scopus 로고
    • Guha, S., Rastogi, R., Shim, K., 1998. CURE: an efficient clustering algorithm for large databases. In: International Conference on Management of Data, ACM SIGMOD.
  • 7
    • 34247886589 scopus 로고    scopus 로고
    • Hinneburg, A., Keim, D., 1999. Optimal grid-clustering: towards breaking the curse of dimensionality in high-dimensional clustering. In: Proceedings of the 25th VLDB Conference, Edinburgh.
  • 10
    • 34247889054 scopus 로고    scopus 로고
    • Pötzelberger, K., Strasser, H., 1997. Data compression by unsupervised classification. Technical Report, Department of Statistics, Vienna University of Economics and Business Administration.
  • 12
    • 0010060286 scopus 로고    scopus 로고
    • Constructive statistics: estimators, algorithms, and asymptotics
    • Rocke D. Constructive statistics: estimators, algorithms, and asymptotics. Comput. Sci. Statist. 30 (1998) 3-14
    • (1998) Comput. Sci. Statist. , vol.30 , pp. 3-14
    • Rocke, D.1
  • 13
    • 0037287745 scopus 로고    scopus 로고
    • Sampling and subsampling for cluster analysis in data mining
    • Rocke D., and Dai J. Sampling and subsampling for cluster analysis in data mining. Data Mining and Knowledge Discovery 7 (2003) 215-232
    • (2003) Data Mining and Knowledge Discovery , vol.7 , pp. 215-232
    • Rocke, D.1    Dai, J.2
  • 14
    • 34247848465 scopus 로고    scopus 로고
    • SPSS Inc., 2003. Clementine 9.0 Algorithms Guide.
  • 15
    • 34247846870 scopus 로고    scopus 로고
    • Steiner, P., 2005. Identification of mixture models with compressed data: sufficient EM strategies for prototypes representing large data sets. Ph.D. Thesis, University of Vienna. URL 〈http://www.equi.at/stp.htm〉.
  • 16
    • 34247864442 scopus 로고    scopus 로고
    • Strasser, H., 2000. Reduction of complexity. Technical Report, Department of Statistics, Vienna University of Economics and Business Administration.
  • 17
    • 84994158589 scopus 로고    scopus 로고
    • STING: a statistical information grid approach to spatial data mining
    • Jarke M., Carey M., Dittrich K., Lochovsky F., Loucopoulos P., and Jeusfeld M. (Eds), Morgan Kaufmann, Athens, Greece
    • Wang W., Yang J., and Muntz R. STING: a statistical information grid approach to spatial data mining. In: Jarke M., Carey M., Dittrich K., Lochovsky F., Loucopoulos P., and Jeusfeld M. (Eds). Twenty-Third International Conference on Very Large Data Bases (1997), Morgan Kaufmann, Athens, Greece
    • (1997) Twenty-Third International Conference on Very Large Data Bases
    • Wang, W.1    Yang, J.2    Muntz, R.3
  • 18
    • 0030157145 scopus 로고    scopus 로고
    • Zhang, T., Ramakrishnan, R., Livny, M., 1996. BIRCH: an efficient data clustering method for very large databases. In: ACM SIGMOD International Conference on Management of Data, Montreal, Canada.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.