메뉴 건너뛰기




Volumn 50, Issue 5, 2006, Pages 1188-1205

A hybrid EM approach to spatial clustering

Author keywords

Expectation maximization algorithm; Gaussian mixture; Spatial clustering; Spatial penalty term

Indexed keywords

ALGORITHMS; CONVERGENCE OF NUMERICAL METHODS; INFORMATION RETRIEVAL; ITERATIVE METHODS; PERSONNEL TRAINING;

EID: 27644489992     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2004.12.005     Document Type: Article
Times cited : (21)

References (27)
  • 1
    • 0032131450 scopus 로고    scopus 로고
    • Convergence of an EM-type algorithm for spatial clustering
    • C. Ambroise, and G. Govaert Convergence of an EM-type algorithm for spatial clustering Pattern Recognition Lett. 19 10 1998 919 927
    • (1998) Pattern Recognition Lett. , vol.19 , Issue.10 , pp. 919-927
    • Ambroise, C.1    Govaert, G.2
  • 2
    • 0001626339 scopus 로고
    • A classification em algorithm for clustering and two stochastic versions
    • G. Celeux, and G. Govaert A classification EM algorithm for clustering and two stochastic versions Comput. Statist. Data Anal. 14 3 1992 315 332
    • (1992) Comput. Statist. Data Anal. , vol.14 , Issue.3 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A.P. Dempster, N.M. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm J. Roy. Statist. Soc. B(39) 1977 1 38
    • (1977) J. Roy. Statist. Soc. , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 8
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions and the bayesian restoration of images
    • S. Geman, and D. Geman Stochastic relaxation, gibbs distributions and the bayesian restoration of images IEEE Trans. Pattern Anal. Mach. Intell. 6 1984 721 741
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 11
    • 38049135335 scopus 로고
    • Another interpretation of the em algorithm for mixture distributions
    • R.J. Hathaway Another interpretation of the EM algorithm for mixture distributions Statist. Probab. Lett. 4 1986 53 56
    • (1986) Statist. Probab. Lett. , vol.4 , pp. 53-56
    • Hathaway, R.J.1
  • 12
    • 0026398342 scopus 로고
    • Unsupervised texture segmentation using gabor filters
    • A.K. Jain, and F. Farrokhnia Unsupervised texture segmentation using gabor filters Pattern Recognition 24 12 1991 1167 1186
    • (1991) Pattern Recognition , vol.24 , Issue.12 , pp. 1167-1186
    • Jain, A.K.1    Farrokhnia, F.2
  • 13
    • 0032686723 scopus 로고    scopus 로고
    • CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
    • G. Karypis, E.H. Han, and V. Kumar CHAMELEON a hierarchical clustering algorithm using dynamic modeling Computer 32 8 1999 68 75
    • (1999) Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.H.2    Kumar, V.3
  • 16
    • 0023482603 scopus 로고
    • Constrained clustering
    • Legendre, P., Legendre, L., (Eds.), Developments in Numerical Ecology
    • Legendre, P., 1987. Constrained clustering. In: Legendre, P., Legendre, L., (Eds.), Developments in Numerical Ecology, NATO ASI Series G 14, pp. 289-307.
    • (1987) NATO ASI Series G , vol.14 , pp. 289-307
    • Legendre, P.1
  • 19
    • 0003408496 scopus 로고
    • Department of Information and Computer Science, University of California at Irvine
    • Murphy, P.M., Aha, D.W., 1994. UCI Repository of machine learning databases. Department of Information and Computer Science, University of California at Irvine, http://www.ics.uci.edu/mlearn/MLRepository.html.
    • (1994) UCI Repository of Machine Learning Databases
    • Murphy, P.M.1    Aha, D.W.2
  • 20
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • Jordan, M. (Ed.) Kluwer Academic Publishers, Dordrecht
    • Neal, R., Hinton, G., A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan, M. (Ed.), Learning in Graphical Models. Kluwer Academic Publishers, Dordrecht, pp. 355-368.
    • Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 21
    • 0035340181 scopus 로고    scopus 로고
    • A continuous density interpretation of discrete HMM systems and MMI-neural networks
    • C. Neukirchen, J. Rottland, D. Willett, and G. Rigoll A continuous density interpretation of discrete HMM systems and MMI-neural networks IEEE Trans. Speech Audio Process. 9 4 2001 367 377
    • (2001) IEEE Trans. Speech Audio Process. , vol.9 , Issue.4 , pp. 367-377
    • Neukirchen, C.1    Rottland, J.2    Willett, D.3    Rigoll, G.4
  • 22
    • 0036709106 scopus 로고    scopus 로고
    • CLARANS: A method for clustering objects for spatial data mining
    • R. Ng, and J. Han CLARANS a method for clustering objects for spatial data mining IEEE Trans. Knowledge Data Eng. 14 5 2002 1003 1016
    • (2002) IEEE Trans. Knowledge Data Eng. , vol.14 , Issue.5 , pp. 1003-1016
    • Ng, R.1    Han, J.2
  • 24
    • 0041497796 scopus 로고
    • Multivariate discriminant analysis and maximum penalized likelihood density estimation
    • Rasson, J.P., Granville, V., 1995. Multivariate discriminant analysis and maximum penalized likelihood density estimation. J. Roy. Statist. Soc. B (57), 501-517.
    • (1995) J. Roy. Statist. Soc. B , Issue.57 , pp. 501-517
    • Rasson, J.P.1    Granville, V.2
  • 26
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the em algorithm for Gaussian mixtures
    • L. Xu, and M.I. Jordan On convergence properties of the EM algorithm for Gaussian mixtures Neural Comput. 8 1996 129 151
    • (1996) Neural Comput. , vol.8 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 27
    • 0035272084 scopus 로고    scopus 로고
    • Self-organizing mixture networks for probability density estimation
    • H. Yin, and N.M. Allinson Self-organizing mixture networks for probability density estimation IEEE Trans. Neural Networks 12 2 2001 405 411
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.2 , pp. 405-411
    • Yin, H.1    Allinson, N.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.