-
1
-
-
34247864394
-
-
Akaike, H., 1973. Likelihood of a model and information criteria. Second International Symposium on Information Theory, pp. 267-281.
-
-
-
-
2
-
-
21144438166
-
Information theory and the extension of the maximum likelihood principle
-
Akaike H. Information theory and the extension of the maximum likelihood principle. J. Econom. 16 (1981) 3-14
-
(1981)
J. Econom.
, vol.16
, pp. 3-14
-
-
Akaike, H.1
-
3
-
-
84986870293
-
First order integer-valued autoregressive (inar) processes
-
Al-Osh M., and Alzaid A. First order integer-valued autoregressive (inar) processes. J. Time Series Anal. 8 (1987) 261-275
-
(1987)
J. Time Series Anal.
, vol.8
, pp. 261-275
-
-
Al-Osh, M.1
Alzaid, A.2
-
4
-
-
0003698154
-
-
Harvard University Press, Cambridge, MA
-
Amemiya T. Advanced Econometrics (1985), Harvard University Press, Cambridge, MA
-
(1985)
Advanced Econometrics
-
-
Amemiya, T.1
-
5
-
-
34247894469
-
-
Carvalho, A., Tanner, M., 2002. Mixtures-of-experts of generalized linear time series: asymptotic normality and model specification. Unpublished Technical Report, Department of Statistics, Northwestern University.
-
-
-
-
6
-
-
13844296867
-
Mixtures-of-experts of autoregressive time series: asymptotic normality and model specification
-
Carvalho A., and Tanner M. Mixtures-of-experts of autoregressive time series: asymptotic normality and model specification. IEEE Trans. Neural Networks 16 (2005) 39-56
-
(2005)
IEEE Trans. Neural Networks
, vol.16
, pp. 39-56
-
-
Carvalho, A.1
Tanner, M.2
-
7
-
-
18444398360
-
Modeling nonlinear time series with local mixtures of generalized linear models
-
Carvalho A., and Tanner M. Modeling nonlinear time series with local mixtures of generalized linear models. The Canad. J. Statist. 33 (2005) 97-113
-
(2005)
The Canad. J. Statist.
, vol.33
, pp. 97-113
-
-
Carvalho, A.1
Tanner, M.2
-
10
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster A., Laird N., and Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. B 39 (1977) 1-38
-
(1977)
J. Roy. Statist. Soc. B
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
11
-
-
34247896165
-
-
Ghahramani, Z., Hinton, G., 1996. The EM algorithm for mixtures of factor analyzers. Technical Report, Department of Computer Science, University of Toronto.
-
-
-
-
13
-
-
0003722376
-
-
Addison-Wesley Professional, Reading, MA
-
Goldberg D. Genetic Algorithms in Search, Optimization, and Machine Learning (1989), Addison-Wesley Professional, Reading, MA
-
(1989)
Genetic Algorithms in Search, Optimization, and Machine Learning
-
-
Goldberg, D.1
-
14
-
-
77956889087
-
Reversible jump markov chain monte carlo computation and Bayesian model determination
-
Green P. Reversible jump markov chain monte carlo computation and Bayesian model determination. Biometrika 82 (1995) 711-732
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.1
-
15
-
-
0034229698
-
Mixture of experts for classification of gender, ethnic origin, and pose of human faces
-
Gutta S., Huang J., Jonathon P., and Wechsler H. Mixture of experts for classification of gender, ethnic origin, and pose of human faces. IEEE Trans. Neural Networks 11 (2000) 948-960
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, pp. 948-960
-
-
Gutta, S.1
Huang, J.2
Jonathon, P.3
Wechsler, H.4
-
19
-
-
0035152904
-
A mixture model for the probability distribution of rain rate
-
Jeffries N., and Pfeiffer R. A mixture model for the probability distribution of rain rate. Environmetrics 12 (2001) 1-10
-
(2001)
Environmetrics
, vol.12
, pp. 1-10
-
-
Jeffries, N.1
Pfeiffer, R.2
-
20
-
-
0033248628
-
Hierarchical mixtures-of-experts for exponential family regression models: Approximation and maximum likelihood estimation
-
Jiang W., and Tanner M. Hierarchical mixtures-of-experts for exponential family regression models: Approximation and maximum likelihood estimation. Ann. Statist. 27 3 (1999) 987-1011
-
(1999)
Ann. Statist.
, vol.27
, Issue.3
, pp. 987-1011
-
-
Jiang, W.1
Tanner, M.2
-
21
-
-
0033161418
-
On the approximation rate of hierarchical mixtures-of-experts for generalized linear models
-
Jiang W., and Tanner M. On the approximation rate of hierarchical mixtures-of-experts for generalized linear models. Neural Comput. 11 (1999) 1183-1198
-
(1999)
Neural Comput.
, vol.11
, pp. 1183-1198
-
-
Jiang, W.1
Tanner, M.2
-
22
-
-
0032863989
-
On the identifiability of mixtures-of-experts
-
Jiang W., and Tanner M. On the identifiability of mixtures-of-experts. Neural Networks 12 (1999) 1253-1258
-
(1999)
Neural Networks
, vol.12
, pp. 1253-1258
-
-
Jiang, W.1
Tanner, M.2
-
23
-
-
0034188427
-
On the asymptotic normality of hierarchical mixtures-of-experts for generalized linear models
-
Jiang W., and Tanner M. On the asymptotic normality of hierarchical mixtures-of-experts for generalized linear models. IEEE Trans. Inform. Theory 46 3 (2000) 1005-1013
-
(2000)
IEEE Trans. Inform. Theory
, vol.46
, Issue.3
, pp. 1005-1013
-
-
Jiang, W.1
Tanner, M.2
-
24
-
-
0030511667
-
Time series models with univariate margins in the convolution-closed infinitely divisible class
-
Joe H. Time series models with univariate margins in the convolution-closed infinitely divisible class. J. Appl. Probab. 33 (1996) 664-677
-
(1996)
J. Appl. Probab.
, vol.33
, pp. 664-677
-
-
Joe, H.1
-
25
-
-
0000262562
-
Hierarchical mixtures-of-experts and the EM algorithm
-
Jordan M., and Jacobs R. Hierarchical mixtures-of-experts and the EM algorithm. Neural Comput. 6 (1994) 181-214
-
(1994)
Neural Comput.
, vol.6
, pp. 181-214
-
-
Jordan, M.1
Jacobs, R.2
-
26
-
-
34247899635
-
-
Jung, R., Kukuk, M., Liesenfeld, R., 2005. Time series of count data: modelling and estimation. Economics Working Paper, Department of Economics, Christian-Albrechts-Universitat Kiel.
-
-
-
-
27
-
-
0033361244
-
Application of mixture of experts algorithm for signal processing in a noninvasive glucose monitoring system
-
Kurnik R., Oliver J., Waterhouse S., Dunn T., Jayalaksmi Y., Lesho M., Lopatina M., Tamada J., and Wei C. Application of mixture of experts algorithm for signal processing in a noninvasive glucose monitoring system. Sensors and Actuators B-Chemical 60 (1999) 19-26
-
(1999)
Sensors and Actuators B-Chemical
, vol.60
, pp. 19-26
-
-
Kurnik, R.1
Oliver, J.2
Waterhouse, S.3
Dunn, T.4
Jayalaksmi, Y.5
Lesho, M.6
Lopatina, M.7
Tamada, J.8
Wei, C.9
-
28
-
-
0442327789
-
Stochastic neural networks with applications to nonlinear time series
-
Lai T., and Wong S. Stochastic neural networks with applications to nonlinear time series. J. Amer. Statist. Assoc. 96 (2001) 968-981
-
(2001)
J. Amer. Statist. Assoc.
, vol.96
, pp. 968-981
-
-
Lai, T.1
Wong, S.2
-
29
-
-
0033375190
-
Hidden Markov mixtures of experts with an application to EEG recording from sleep
-
Liehr S., Pawelzik K., Kohlmorgen J., and Muller K. Hidden Markov mixtures of experts with an application to EEG recording from sleep. Theory Biosci. 118 (1999) 246-260
-
(1999)
Theory Biosci.
, vol.118
, pp. 246-260
-
-
Liehr, S.1
Pawelzik, K.2
Kohlmorgen, J.3
Muller, K.4
-
30
-
-
0034733016
-
A latent class mixed model for analysing biomarker trajectories with irregularly scheduled observations
-
Lin H., McCulloch C., Turnbull B., Slate E., and Clark L. A latent class mixed model for analysing biomarker trajectories with irregularly scheduled observations. Statist. Med. 19 (2000) 1303-1318
-
(2000)
Statist. Med.
, vol.19
, pp. 1303-1318
-
-
Lin, H.1
McCulloch, C.2
Turnbull, B.3
Slate, E.4
Clark, L.5
-
31
-
-
0003663926
-
-
Chapman & Hall, CRC, New York, Boca Raton, FL
-
McCullagh M., and Nelder J. Generalized Linear Models. Monographs on Statistics and Applied Probability vol. 37 (1998), Chapman & Hall, CRC, New York, Boca Raton, FL
-
(1998)
Generalized Linear Models. Monographs on Statistics and Applied Probability
, vol.37
-
-
McCullagh, M.1
Nelder, J.2
-
32
-
-
0002249968
-
Bayesian analysis of threshold autoregressive processes with a random number of regimes
-
McCulloch R., and Tsay R. Bayesian analysis of threshold autoregressive processes with a random number of regimes. Comput. Sci. Statist. 25 (1994) 253-262
-
(1994)
Comput. Sci. Statist.
, vol.25
, pp. 253-262
-
-
McCulloch, R.1
Tsay, R.2
-
34
-
-
0001598228
-
Uniform convergence in probability and stochastic equicontinuity
-
Newey W. Uniform convergence in probability and stochastic equicontinuity. Econometrica 59 (1991) 1161-1167
-
(1991)
Econometrica
, vol.59
, pp. 1161-1167
-
-
Newey, W.1
-
35
-
-
0030327271
-
Bayesian inference in mixtures-of-experts and hierarchical mixtures-of-experts models with an application to speech recognition
-
Peng F., Jacobs R., and Tanner M. Bayesian inference in mixtures-of-experts and hierarchical mixtures-of-experts models with an application to speech recognition. J. Amer. Statist. Assoc. 91 435 (1996) 953-960
-
(1996)
J. Amer. Statist. Assoc.
, vol.91
, Issue.435
, pp. 953-960
-
-
Peng, F.1
Jacobs, R.2
Tanner, M.3
-
36
-
-
0001642762
-
A note on the Aitkin-Rubin approach to hypothesis testing in mixture models
-
Quinn B., McLachlan G., and Hjort H. A note on the Aitkin-Rubin approach to hypothesis testing in mixture models. J. Roy. Statist. Soc. B 39 (1987) 311-314
-
(1987)
J. Roy. Statist. Soc. B
, vol.39
, pp. 311-314
-
-
Quinn, B.1
McLachlan, G.2
Hjort, H.3
-
37
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz G. Estimating the dimension of a model. Ann. Statist. 6 (1978) 461-464
-
(1978)
Ann. Statist.
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
38
-
-
34247864393
-
-
Siek, M.B.L.A., Solomatine, D.P., 2005. Optimizing mixtures of local experts in tree-like regression models. Proceedings of IASTED Conference on Artificial Intelligence and Applications, Innsbruck, Austria.
-
-
-
-
40
-
-
0033556788
-
Mixtures of probabilistic principal component analyzers
-
Tipping M., and Bishop C. Mixtures of probabilistic principal component analyzers. Neural Comput. 11 (1999) 443-482
-
(1999)
Neural Comput.
, vol.11
, pp. 443-482
-
-
Tipping, M.1
Bishop, C.2
-
42
-
-
0029446195
-
Nonlinear gated experts for time series: Discovering regimes and avoid overfitting
-
Weigend A., Mangeas M., and Srivastava A. Nonlinear gated experts for time series: Discovering regimes and avoid overfitting. Internat. J. Neural Systems 6 (1995) 373-399
-
(1995)
Internat. J. Neural Systems
, vol.6
, pp. 373-399
-
-
Weigend, A.1
Mangeas, M.2
Srivastava, A.3
-
44
-
-
0005884541
-
On a logistic mixture autoregressive model
-
Wong C., and Li W. On a logistic mixture autoregressive model. Biometrika 88 3 (2001) 833-846
-
(2001)
Biometrika
, vol.88
, Issue.3
, pp. 833-846
-
-
Wong, C.1
Li, W.2
-
45
-
-
0003091132
-
Theory of partial likelihood
-
Wong W. Theory of partial likelihood. Ann. Statist. 14 1 (1986) 88-123
-
(1986)
Ann. Statist.
, vol.14
, Issue.1
, pp. 88-123
-
-
Wong, W.1
-
46
-
-
13844262338
-
Bayesian mixture of splines for spatially adaptive nonparametric regression
-
Wood S., Jiang W., and Tanner M. Bayesian mixture of splines for spatially adaptive nonparametric regression. Biometrika 89 3 (2002) 513-528
-
(2002)
Biometrika
, vol.89
, Issue.3
, pp. 513-528
-
-
Wood, S.1
Jiang, W.2
Tanner, M.3
-
48
-
-
0031037819
-
Density estimation through convex combinations of densities: approximation and estimation bounds
-
Zeevi A., and Meir R. Density estimation through convex combinations of densities: approximation and estimation bounds. Neural Networks 10 1 (1996) 99-109
-
(1996)
Neural Networks
, vol.10
, Issue.1
, pp. 99-109
-
-
Zeevi, A.1
Meir, R.2
|