메뉴 건너뛰기




Volumn 51, Issue 11, 2007, Pages 5266-5294

Modelling nonlinear count time series with local mixtures of Poisson autoregressions

Author keywords

Count data; Maximum likelihood estimation; Mixtures of experts; Nonlinear time series; Poisson regression

Indexed keywords

MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; POISSON DISTRIBUTION; REGRESSION ANALYSIS; TIME SERIES ANALYSIS; VECTOR QUANTIZATION;

EID: 34247850854     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2006.09.032     Document Type: Article
Times cited : (23)

References (48)
  • 1
    • 34247864394 scopus 로고    scopus 로고
    • Akaike, H., 1973. Likelihood of a model and information criteria. Second International Symposium on Information Theory, pp. 267-281.
  • 2
    • 21144438166 scopus 로고
    • Information theory and the extension of the maximum likelihood principle
    • Akaike H. Information theory and the extension of the maximum likelihood principle. J. Econom. 16 (1981) 3-14
    • (1981) J. Econom. , vol.16 , pp. 3-14
    • Akaike, H.1
  • 3
    • 84986870293 scopus 로고
    • First order integer-valued autoregressive (inar) processes
    • Al-Osh M., and Alzaid A. First order integer-valued autoregressive (inar) processes. J. Time Series Anal. 8 (1987) 261-275
    • (1987) J. Time Series Anal. , vol.8 , pp. 261-275
    • Al-Osh, M.1    Alzaid, A.2
  • 4
    • 0003698154 scopus 로고
    • Harvard University Press, Cambridge, MA
    • Amemiya T. Advanced Econometrics (1985), Harvard University Press, Cambridge, MA
    • (1985) Advanced Econometrics
    • Amemiya, T.1
  • 5
    • 34247894469 scopus 로고    scopus 로고
    • Carvalho, A., Tanner, M., 2002. Mixtures-of-experts of generalized linear time series: asymptotic normality and model specification. Unpublished Technical Report, Department of Statistics, Northwestern University.
  • 6
    • 13844296867 scopus 로고    scopus 로고
    • Mixtures-of-experts of autoregressive time series: asymptotic normality and model specification
    • Carvalho A., and Tanner M. Mixtures-of-experts of autoregressive time series: asymptotic normality and model specification. IEEE Trans. Neural Networks 16 (2005) 39-56
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 39-56
    • Carvalho, A.1    Tanner, M.2
  • 7
    • 18444398360 scopus 로고    scopus 로고
    • Modeling nonlinear time series with local mixtures of generalized linear models
    • Carvalho A., and Tanner M. Modeling nonlinear time series with local mixtures of generalized linear models. The Canad. J. Statist. 33 (2005) 97-113
    • (2005) The Canad. J. Statist. , vol.33 , pp. 97-113
    • Carvalho, A.1    Tanner, M.2
  • 10
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A., Laird N., and Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. B 39 (1977) 1-38
    • (1977) J. Roy. Statist. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 11
    • 34247896165 scopus 로고    scopus 로고
    • Ghahramani, Z., Hinton, G., 1996. The EM algorithm for mixtures of factor analyzers. Technical Report, Department of Computer Science, University of Toronto.
  • 12
    • 0032366065 scopus 로고    scopus 로고
    • Bayesian inference for periodic regime-switching
    • Ghysels E., McCulloch R., and Tsay R. Bayesian inference for periodic regime-switching. J. Appl. Econometrics 13 (1998) 129-144
    • (1998) J. Appl. Econometrics , vol.13 , pp. 129-144
    • Ghysels, E.1    McCulloch, R.2    Tsay, R.3
  • 14
    • 77956889087 scopus 로고
    • Reversible jump markov chain monte carlo computation and Bayesian model determination
    • Green P. Reversible jump markov chain monte carlo computation and Bayesian model determination. Biometrika 82 (1995) 711-732
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 15
    • 0034229698 scopus 로고    scopus 로고
    • Mixture of experts for classification of gender, ethnic origin, and pose of human faces
    • Gutta S., Huang J., Jonathon P., and Wechsler H. Mixture of experts for classification of gender, ethnic origin, and pose of human faces. IEEE Trans. Neural Networks 11 (2000) 948-960
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 948-960
    • Gutta, S.1    Huang, J.2    Jonathon, P.3    Wechsler, H.4
  • 19
    • 0035152904 scopus 로고    scopus 로고
    • A mixture model for the probability distribution of rain rate
    • Jeffries N., and Pfeiffer R. A mixture model for the probability distribution of rain rate. Environmetrics 12 (2001) 1-10
    • (2001) Environmetrics , vol.12 , pp. 1-10
    • Jeffries, N.1    Pfeiffer, R.2
  • 20
    • 0033248628 scopus 로고    scopus 로고
    • Hierarchical mixtures-of-experts for exponential family regression models: Approximation and maximum likelihood estimation
    • Jiang W., and Tanner M. Hierarchical mixtures-of-experts for exponential family regression models: Approximation and maximum likelihood estimation. Ann. Statist. 27 3 (1999) 987-1011
    • (1999) Ann. Statist. , vol.27 , Issue.3 , pp. 987-1011
    • Jiang, W.1    Tanner, M.2
  • 21
    • 0033161418 scopus 로고    scopus 로고
    • On the approximation rate of hierarchical mixtures-of-experts for generalized linear models
    • Jiang W., and Tanner M. On the approximation rate of hierarchical mixtures-of-experts for generalized linear models. Neural Comput. 11 (1999) 1183-1198
    • (1999) Neural Comput. , vol.11 , pp. 1183-1198
    • Jiang, W.1    Tanner, M.2
  • 22
    • 0032863989 scopus 로고    scopus 로고
    • On the identifiability of mixtures-of-experts
    • Jiang W., and Tanner M. On the identifiability of mixtures-of-experts. Neural Networks 12 (1999) 1253-1258
    • (1999) Neural Networks , vol.12 , pp. 1253-1258
    • Jiang, W.1    Tanner, M.2
  • 23
    • 0034188427 scopus 로고    scopus 로고
    • On the asymptotic normality of hierarchical mixtures-of-experts for generalized linear models
    • Jiang W., and Tanner M. On the asymptotic normality of hierarchical mixtures-of-experts for generalized linear models. IEEE Trans. Inform. Theory 46 3 (2000) 1005-1013
    • (2000) IEEE Trans. Inform. Theory , vol.46 , Issue.3 , pp. 1005-1013
    • Jiang, W.1    Tanner, M.2
  • 24
    • 0030511667 scopus 로고    scopus 로고
    • Time series models with univariate margins in the convolution-closed infinitely divisible class
    • Joe H. Time series models with univariate margins in the convolution-closed infinitely divisible class. J. Appl. Probab. 33 (1996) 664-677
    • (1996) J. Appl. Probab. , vol.33 , pp. 664-677
    • Joe, H.1
  • 25
    • 0000262562 scopus 로고
    • Hierarchical mixtures-of-experts and the EM algorithm
    • Jordan M., and Jacobs R. Hierarchical mixtures-of-experts and the EM algorithm. Neural Comput. 6 (1994) 181-214
    • (1994) Neural Comput. , vol.6 , pp. 181-214
    • Jordan, M.1    Jacobs, R.2
  • 26
    • 34247899635 scopus 로고    scopus 로고
    • Jung, R., Kukuk, M., Liesenfeld, R., 2005. Time series of count data: modelling and estimation. Economics Working Paper, Department of Economics, Christian-Albrechts-Universitat Kiel.
  • 28
    • 0442327789 scopus 로고    scopus 로고
    • Stochastic neural networks with applications to nonlinear time series
    • Lai T., and Wong S. Stochastic neural networks with applications to nonlinear time series. J. Amer. Statist. Assoc. 96 (2001) 968-981
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 968-981
    • Lai, T.1    Wong, S.2
  • 29
    • 0033375190 scopus 로고    scopus 로고
    • Hidden Markov mixtures of experts with an application to EEG recording from sleep
    • Liehr S., Pawelzik K., Kohlmorgen J., and Muller K. Hidden Markov mixtures of experts with an application to EEG recording from sleep. Theory Biosci. 118 (1999) 246-260
    • (1999) Theory Biosci. , vol.118 , pp. 246-260
    • Liehr, S.1    Pawelzik, K.2    Kohlmorgen, J.3    Muller, K.4
  • 30
    • 0034733016 scopus 로고    scopus 로고
    • A latent class mixed model for analysing biomarker trajectories with irregularly scheduled observations
    • Lin H., McCulloch C., Turnbull B., Slate E., and Clark L. A latent class mixed model for analysing biomarker trajectories with irregularly scheduled observations. Statist. Med. 19 (2000) 1303-1318
    • (2000) Statist. Med. , vol.19 , pp. 1303-1318
    • Lin, H.1    McCulloch, C.2    Turnbull, B.3    Slate, E.4    Clark, L.5
  • 32
    • 0002249968 scopus 로고
    • Bayesian analysis of threshold autoregressive processes with a random number of regimes
    • McCulloch R., and Tsay R. Bayesian analysis of threshold autoregressive processes with a random number of regimes. Comput. Sci. Statist. 25 (1994) 253-262
    • (1994) Comput. Sci. Statist. , vol.25 , pp. 253-262
    • McCulloch, R.1    Tsay, R.2
  • 34
    • 0001598228 scopus 로고
    • Uniform convergence in probability and stochastic equicontinuity
    • Newey W. Uniform convergence in probability and stochastic equicontinuity. Econometrica 59 (1991) 1161-1167
    • (1991) Econometrica , vol.59 , pp. 1161-1167
    • Newey, W.1
  • 35
    • 0030327271 scopus 로고    scopus 로고
    • Bayesian inference in mixtures-of-experts and hierarchical mixtures-of-experts models with an application to speech recognition
    • Peng F., Jacobs R., and Tanner M. Bayesian inference in mixtures-of-experts and hierarchical mixtures-of-experts models with an application to speech recognition. J. Amer. Statist. Assoc. 91 435 (1996) 953-960
    • (1996) J. Amer. Statist. Assoc. , vol.91 , Issue.435 , pp. 953-960
    • Peng, F.1    Jacobs, R.2    Tanner, M.3
  • 36
    • 0001642762 scopus 로고
    • A note on the Aitkin-Rubin approach to hypothesis testing in mixture models
    • Quinn B., McLachlan G., and Hjort H. A note on the Aitkin-Rubin approach to hypothesis testing in mixture models. J. Roy. Statist. Soc. B 39 (1987) 311-314
    • (1987) J. Roy. Statist. Soc. B , vol.39 , pp. 311-314
    • Quinn, B.1    McLachlan, G.2    Hjort, H.3
  • 37
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Statist. 6 (1978) 461-464
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 38
    • 34247864393 scopus 로고    scopus 로고
    • Siek, M.B.L.A., Solomatine, D.P., 2005. Optimizing mixtures of local experts in tree-like regression models. Proceedings of IASTED Conference on Artificial Intelligence and Applications, Innsbruck, Austria.
  • 40
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • Tipping M., and Bishop C. Mixtures of probabilistic principal component analyzers. Neural Comput. 11 (1999) 443-482
    • (1999) Neural Comput. , vol.11 , pp. 443-482
    • Tipping, M.1    Bishop, C.2
  • 42
    • 0029446195 scopus 로고
    • Nonlinear gated experts for time series: Discovering regimes and avoid overfitting
    • Weigend A., Mangeas M., and Srivastava A. Nonlinear gated experts for time series: Discovering regimes and avoid overfitting. Internat. J. Neural Systems 6 (1995) 373-399
    • (1995) Internat. J. Neural Systems , vol.6 , pp. 373-399
    • Weigend, A.1    Mangeas, M.2    Srivastava, A.3
  • 44
    • 0005884541 scopus 로고    scopus 로고
    • On a logistic mixture autoregressive model
    • Wong C., and Li W. On a logistic mixture autoregressive model. Biometrika 88 3 (2001) 833-846
    • (2001) Biometrika , vol.88 , Issue.3 , pp. 833-846
    • Wong, C.1    Li, W.2
  • 45
    • 0003091132 scopus 로고
    • Theory of partial likelihood
    • Wong W. Theory of partial likelihood. Ann. Statist. 14 1 (1986) 88-123
    • (1986) Ann. Statist. , vol.14 , Issue.1 , pp. 88-123
    • Wong, W.1
  • 46
    • 13844262338 scopus 로고    scopus 로고
    • Bayesian mixture of splines for spatially adaptive nonparametric regression
    • Wood S., Jiang W., and Tanner M. Bayesian mixture of splines for spatially adaptive nonparametric regression. Biometrika 89 3 (2002) 513-528
    • (2002) Biometrika , vol.89 , Issue.3 , pp. 513-528
    • Wood, S.1    Jiang, W.2    Tanner, M.3
  • 48
    • 0031037819 scopus 로고    scopus 로고
    • Density estimation through convex combinations of densities: approximation and estimation bounds
    • Zeevi A., and Meir R. Density estimation through convex combinations of densities: approximation and estimation bounds. Neural Networks 10 1 (1996) 99-109
    • (1996) Neural Networks , vol.10 , Issue.1 , pp. 99-109
    • Zeevi, A.1    Meir, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.