메뉴 건너뛰기




Volumn 51, Issue 11, 2007, Pages 5220-5235

Flexible random intercept models for binary outcomes using mixtures of normals

Author keywords

Logit normal; Marginalized multilevel models; Probit normal

Indexed keywords

CONTROL NONLINEARITIES; MATHEMATICAL MODELS;

EID: 34247853298     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2006.09.031     Document Type: Article
Times cited : (26)

References (36)
  • 2
    • 4944247358 scopus 로고    scopus 로고
    • Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies
    • Agresti A., Caffo B., and Ohman-Strickland P. Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies. Comput. Statist. Data Anal. 47 3 (2004) 639-653
    • (2004) Comput. Statist. Data Anal. , vol.47 , Issue.3 , pp. 639-653
    • Agresti, A.1    Caffo, B.2    Ohman-Strickland, P.3
  • 4
    • 0032958330 scopus 로고    scopus 로고
    • A general maximum likelihood analysis of variance components in generalized linear models
    • Aitkin M. A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 55 (1999) 117-128
    • (1999) Biometrics , vol.55 , pp. 117-128
    • Aitkin, M.1
  • 5
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • Albert J., and Chib S. Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 422 (1993) 669-678
    • (1993) J. Amer. Statist. Assoc. , vol.88 , Issue.422 , pp. 669-678
    • Albert, J.1    Chib, S.2
  • 6
    • 0011241944 scopus 로고
    • Approximate inference in generalized linear mixed models
    • Breslow N.E., and Clayton D.G. Approximate inference in generalized linear mixed models. J. Amer. Statist. Assoc. 88 (1993) 9-25
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 9-25
    • Breslow, N.E.1    Clayton, D.G.2
  • 7
    • 34247883381 scopus 로고    scopus 로고
    • Caffo, B., Griswold, M., 2005. A user-friendly tutorial on link-probit-normal models. Technical Report, Department of Biostatistics, Johns Hopkins University.
  • 8
    • 0000911137 scopus 로고    scopus 로고
    • Analysis of multivariate probit normals
    • Chib S., and Greenberg E. Analysis of multivariate probit normals. Biometrika 85 2 (1998) 347-361
    • (1998) Biometrika , vol.85 , Issue.2 , pp. 347-361
    • Chib, S.1    Greenberg, E.2
  • 9
    • 34247867080 scopus 로고    scopus 로고
    • Chib, S., Greenberg, E., Chen, Y., 1998. MCMC methods for fitting and comparing multinomial response models. Economics Working Paper Archive Econ WPA: econometrics 〈http://econwpa.wustl.edu:80/eps/em/papers/9802/9802001.pdf〉.
  • 11
    • 34247897749 scopus 로고    scopus 로고
    • Erkanli, A., Stangl, D., Mueller, P., 1993. A bayesian analysis of ordinal data using mixtures. American Statistical Association Proceedings of the Section on Bayesian Statistical Science, pp. 51-56.
  • 12
    • 80054997868 scopus 로고
    • Generalizing logistic regression by nonparametric mixing
    • Follmann D.A., and Lambert D. Generalizing logistic regression by nonparametric mixing. J. Amer. Statist. Assoc. 84 (1989) 295-300
    • (1989) J. Amer. Statist. Assoc. , vol.84 , pp. 295-300
    • Follmann, D.A.1    Lambert, D.2
  • 13
    • 34247864452 scopus 로고    scopus 로고
    • Geweke, J., Keane, M., 1997. Mixture of normals probit model. Technical Report 237, Federal Reserve Bank of Minneapolis.
  • 14
    • 34247872018 scopus 로고    scopus 로고
    • Griswold, M., 2005. Complex distributions, hmmmm... hiearchical mixtures of marginalized multilevel models. Ph.D. Thesis, Johns Hopkins University.
  • 15
    • 0030337321 scopus 로고    scopus 로고
    • Marginal regression models for clustered ordinal measurements
    • Heagerty P.J., and Zeger S.L. Marginal regression models for clustered ordinal measurements. J. Amer. Statist. Assoc. 91 (1996) 1024-1036
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 1024-1036
    • Heagerty, P.J.1    Zeger, S.L.2
  • 16
    • 0001780119 scopus 로고    scopus 로고
    • Marginalized multilevel models and likelihood inference
    • Heagerty P.J., and Zeger S.L. Marginalized multilevel models and likelihood inference. Statist. Sci. 15 1 (2000) 1-26
    • (2000) Statist. Sci. , vol.15 , Issue.1 , pp. 1-26
    • Heagerty, P.J.1    Zeger, S.L.2
  • 17
    • 9644300955 scopus 로고    scopus 로고
    • A Bayesian analysis of the multinomial probit model using marginal data augmentation
    • Imai K., and van Dyk D. A Bayesian analysis of the multinomial probit model using marginal data augmentation. J. Econometrics 124 (2005) 311-334
    • (2005) J. Econometrics , vol.124 , pp. 311-334
    • Imai, K.1    van Dyk, D.2
  • 18
    • 22544479764 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
    • Jasra A., Holmes C., and Stephens D. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statist. Sci. 20 1 (2005) 50-61
    • (2005) Statist. Sci. , vol.20 , Issue.1 , pp. 50-61
    • Jasra, A.1    Holmes, C.2    Stephens, D.3
  • 19
    • 0023378266 scopus 로고
    • Modelling binary data from a three ponit cross-over trial
    • Jones B., and Kenward M. Modelling binary data from a three ponit cross-over trial. Statist. Med. 6 (1987) 555-564
    • (1987) Statist. Med. , vol.6 , pp. 555-564
    • Jones, B.1    Kenward, M.2
  • 20
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S., and Leibler R.A. On information and sufficiency. Ann. Math. Statist. 22 1 (1951) 79-86
    • (1951) Ann. Math. Statist. , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 21
    • 84950456463 scopus 로고
    • Simultaneously modeling joint and marginal distributions of multivariate categorical responses
    • Lang J.B., and Agresti A. Simultaneously modeling joint and marginal distributions of multivariate categorical responses. J. Amer. Statist. Assoc. 89 (1994) 625-632
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 625-632
    • Lang, J.B.1    Agresti, A.2
  • 23
    • 14544302160 scopus 로고    scopus 로고
    • Conditional and marginal models: another view
    • Lee Y., and Nelder J. Conditional and marginal models: another view. Statist. Sci. 19 2 (2004) 219-238
    • (2004) Statist. Sci. , vol.19 , Issue.2 , pp. 219-238
    • Lee, Y.1    Nelder, J.2
  • 24
    • 0028154818 scopus 로고
    • On the use of the quasi-likelihood method in teratolgy experiments
    • Liang K., and Hanfelt J. On the use of the quasi-likelihood method in teratolgy experiments. Biometrics 50 (1994) 872-880
    • (1994) Biometrics , vol.50 , pp. 872-880
    • Liang, K.1    Hanfelt, J.2
  • 25
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang K., and Zeger S.L. Longitudinal data analysis using generalized linear models. Biometrika 73 (1986) 13-22
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.1    Zeger, S.L.2
  • 26
    • 0030329265 scopus 로고    scopus 로고
    • A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians
    • Magder L., and Zeger S. A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians. J. Amer. Statist. Assoc. 91 (1996) 1141-1151
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 1141-1151
    • Magder, L.1    Zeger, S.2
  • 28
    • 43949158952 scopus 로고
    • An exact likelihood analysis of the multinomial probit model
    • McCulloch R., and Rossi P. An exact likelihood analysis of the multinomial probit model. J. Econometrics 64 (1994) 207-240
    • (1994) J. Econometrics , vol.64 , pp. 207-240
    • McCulloch, R.1    Rossi, P.2
  • 29
    • 0041327199 scopus 로고
    • * (z) and computation of the logistic-normal integral
    • Balakrishnan (Ed), Marcel Dekker, New York
    • * (z) and computation of the logistic-normal integral. In: Balakrishnan (Ed). Handbook of the Logistic Distribution (1992), Marcel Dekker, New York 529-540
    • (1992) Handbook of the Logistic Distribution , pp. 529-540
    • Monahan, J.1    Stefanski, L.2
  • 30
  • 33
    • 3843067509 scopus 로고    scopus 로고
    • Matching conditional and marginal shapes in binary random intercept models using a bridge distribution function
    • Wang Z., and Louis T. Matching conditional and marginal shapes in binary random intercept models using a bridge distribution function. Biometrika 90 4 (2003) 765-775
    • (2003) Biometrika , vol.90 , Issue.4 , pp. 765-775
    • Wang, Z.1    Louis, T.2
  • 34
    • 10944236044 scopus 로고    scopus 로고
    • Marginalized binary mixed-effects with covariate-dependent random effects and likelihood inference
    • Wang Z., and Louis T. Marginalized binary mixed-effects with covariate-dependent random effects and likelihood inference. Biometrics 60 4 (2004) 884-891
    • (2004) Biometrics , vol.60 , Issue.4 , pp. 884-891
    • Wang, Z.1    Louis, T.2
  • 35
    • 0014772440 scopus 로고
    • Selection of the valid number of sampling units and a consideration of their combination in toxicological studies involving reproduction, teratogenisis or carcinogenisis
    • Weil C. Selection of the valid number of sampling units and a consideration of their combination in toxicological studies involving reproduction, teratogenisis or carcinogenisis. Food Cosmetics Toxicol. 8 (1970) 177-182
    • (1970) Food Cosmetics Toxicol. , vol.8 , pp. 177-182
    • Weil, C.1
  • 36
    • 0024205301 scopus 로고
    • Models for longitudinal data: a generalized estimating equation approach
    • Zeger S., Liang K., and Albert P. Models for longitudinal data: a generalized estimating equation approach. Biometrics 44 (1988) 1049-1060
    • (1988) Biometrics , vol.44 , pp. 1049-1060
    • Zeger, S.1    Liang, K.2    Albert, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.