-
1
-
-
0033200063
-
Protein misfolding, evolution and disease
-
Dobson C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24 (1999) 329-332
-
(1999)
Trends Biochem. Sci.
, vol.24
, pp. 329-332
-
-
Dobson, C.M.1
-
2
-
-
0033865052
-
Review: amyloidogenesis-unquestioned answers and unanswered questions
-
Kisilevsky R. Review: amyloidogenesis-unquestioned answers and unanswered questions. J. Struct. Biol. 130 (2000) 99-108
-
(2000)
J. Struct. Biol.
, vol.130
, pp. 99-108
-
-
Kisilevsky, R.1
-
3
-
-
0036195722
-
α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network
-
Narberhaus F. α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 66 (2002) 64-93
-
(2002)
Microbiol. Mol. Biol. Rev.
, vol.66
, pp. 64-93
-
-
Narberhaus, F.1
-
4
-
-
0033214149
-
Genome-wide expression profiling in Escherichia coli k-12
-
Richmond C., Glasner J.D., Mau R., Jin H., and Blattner F.R. Genome-wide expression profiling in Escherichia coli k-12. Nucl. Acids Res. 27 (1999) 3821-3835
-
(1999)
Nucl. Acids Res.
, vol.27
, pp. 3821-3835
-
-
Richmond, C.1
Glasner, J.D.2
Mau, R.3
Jin, H.4
Blattner, F.R.5
-
5
-
-
0030465351
-
Heat induction of hsp18 gene expression in Streptomyces albus G: transcriptional and posttranscriptional regulation
-
Servant P., and Mazodier P. Heat induction of hsp18 gene expression in Streptomyces albus G: transcriptional and posttranscriptional regulation. J. Bacteriol. 178 (1996) 7031-7036
-
(1996)
J. Bacteriol.
, vol.178
, pp. 7031-7036
-
-
Servant, P.1
Mazodier, P.2
-
6
-
-
0028882778
-
Expression of heat shock genes in clostridium acetobutylicum
-
Bahl H., Müller H., Behrens S., Joseph H., and Narberhaus F. Expression of heat shock genes in clostridium acetobutylicum. FEMS Microbiol. Rev. 17 (1995) 341-348
-
(1995)
FEMS Microbiol. Rev.
, vol.17
, pp. 341-348
-
-
Bahl, H.1
Müller, H.2
Behrens, S.3
Joseph, H.4
Narberhaus, F.5
-
7
-
-
0031858563
-
Cloning, characterization, and transcriptional analysis of a gene encoding an α-crystallin-related, small heat shock protein from the thermophilic cyanobacterium Synechococcus vulcanus
-
Roy S.K., and Nakamoto H. Cloning, characterization, and transcriptional analysis of a gene encoding an α-crystallin-related, small heat shock protein from the thermophilic cyanobacterium Synechococcus vulcanus. J. Bacteriol. 180 (1998) 3997-4001
-
(1998)
J. Bacteriol.
, vol.180
, pp. 3997-4001
-
-
Roy, S.K.1
Nakamoto, H.2
-
8
-
-
0344389028
-
Multiple small heat shock proteins in Rhizobia
-
Münchbach M., Nocker A., and Narberhaus F. Multiple small heat shock proteins in Rhizobia. J. Bacteriol. 181 (1999) 83-90
-
(1999)
J. Bacteriol.
, vol.181
, pp. 83-90
-
-
Münchbach, M.1
Nocker, A.2
Narberhaus, F.3
-
9
-
-
0027433255
-
Heat shock and development induce synthesis of a low-molecular-weight stress-responsive protein in the myxobacterium Stigmatella aurantiaca
-
Heidelbach M., Skladny H., and Schairer H.U. Heat shock and development induce synthesis of a low-molecular-weight stress-responsive protein in the myxobacterium Stigmatella aurantiaca. J. Bacteriol. 175 (1993) 7479-7482
-
(1993)
J. Bacteriol.
, vol.175
, pp. 7479-7482
-
-
Heidelbach, M.1
Skladny, H.2
Schairer, H.U.3
-
10
-
-
0028266734
-
Effects of temperature stress on bean-nodulating Rhizobium strains
-
Michiels J., Verreth C., and Vanderleyden J. Effects of temperature stress on bean-nodulating Rhizobium strains. Appl. Environ. Microbiol. 60 (1994) 1206-1212
-
(1994)
Appl. Environ. Microbiol.
, vol.60
, pp. 1206-1212
-
-
Michiels, J.1
Verreth, C.2
Vanderleyden, J.3
-
11
-
-
0031726358
-
A 16.6-kilodalton protein in the cyanobacterium Synechocystis sp. PCC 6803 plays a role in the heat shock response
-
Lee S., Prochaska D.J., Fang F., and Barnum S.R. A 16.6-kilodalton protein in the cyanobacterium Synechocystis sp. PCC 6803 plays a role in the heat shock response. Curr. Microbiol. 37 (1998) 403-407
-
(1998)
Curr. Microbiol.
, vol.37
, pp. 403-407
-
-
Lee, S.1
Prochaska, D.J.2
Fang, F.3
Barnum, S.R.4
-
12
-
-
0027391629
-
Small heat shock proteins are molecular chaperones
-
Jakob U., Gaestel M., Engel K., and Buchner J. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268 (1993) 1517-1520
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 1517-1520
-
-
Jakob, U.1
Gaestel, M.2
Engel, K.3
Buchner, J.4
-
13
-
-
0242540367
-
Protein folding: importance of the Anfinsen cage
-
Ellis R.J. Protein folding: importance of the Anfinsen cage. Curr. Biol. 13 (2003) R881-R883
-
(2003)
Curr. Biol.
, vol.13
-
-
Ellis, R.J.1
-
14
-
-
0027316898
-
To fold or not to fold
-
Agard D.A. To fold or not to fold. Science 260 (1993) 1903-1904
-
(1993)
Science
, vol.260
, pp. 1903-1904
-
-
Agard, D.A.1
-
15
-
-
0030056969
-
Characterization of the active intermediate of a GroEL-GroES-mediated protein-folding reaction
-
Weissman J.S., Rye H.S., Fenton W.A., Beechem J.M., and Horwich A.L. Characterization of the active intermediate of a GroEL-GroES-mediated protein-folding reaction. Cell 84 (1996) 481-490
-
(1996)
Cell
, vol.84
, pp. 481-490
-
-
Weissman, J.S.1
Rye, H.S.2
Fenton, W.A.3
Beechem, J.M.4
Horwich, A.L.5
-
16
-
-
0029858706
-
Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis
-
Hayer-Hartl M.K., Weber F., and Hartl F.U. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis. EMBO J. 15 (1996) 6111-6121
-
(1996)
EMBO J.
, vol.15
, pp. 6111-6121
-
-
Hayer-Hartl, M.K.1
Weber, F.2
Hartl, F.U.3
-
17
-
-
0028031345
-
Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding
-
Todd M.J., Viitanen P.V., and Lorimer G.H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265 (1994) 659-666
-
(1994)
Science
, vol.265
, pp. 659-666
-
-
Todd, M.J.1
Viitanen, P.V.2
Lorimer, G.H.3
-
18
-
-
0030006212
-
Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism
-
Todd M.J., Lorimer G.H., and Thirumalai D. Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism. Proc. Natl Acad. Sci. USA 93 (1996) 4030-4035
-
(1996)
Proc. Natl Acad. Sci. USA
, vol.93
, pp. 4030-4035
-
-
Todd, M.J.1
Lorimer, G.H.2
Thirumalai, D.3
-
19
-
-
0033617534
-
Chaperonin function: folding by forced unfolding
-
Shtilerman M., Lorimer G.H., and Englander S.W. Chaperonin function: folding by forced unfolding. Science 284 (1999) 822-825
-
(1999)
Science
, vol.284
, pp. 822-825
-
-
Shtilerman, M.1
Lorimer, G.H.2
Englander, S.W.3
-
20
-
-
0033515436
-
Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity
-
Betancourt M.R., and Thirumalai D. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. J. Mol. Biol. 287 (1999) 627-644
-
(1999)
J. Mol. Biol.
, vol.287
, pp. 627-644
-
-
Betancourt, M.R.1
Thirumalai, D.2
-
21
-
-
0028023724
-
Statistical mechanics of kinetic proofreading in protein folding in vivo
-
Gulukota K., and Wolynes P.G. Statistical mechanics of kinetic proofreading in protein folding in vivo. Proc. Natl Acad. Sci. USA 91 (1994) 9292-9296
-
(1994)
Proc. Natl Acad. Sci. USA
, vol.91
, pp. 9292-9296
-
-
Gulukota, K.1
Wolynes, P.G.2
-
24
-
-
0037438479
-
Annealing function of GroEL: structural and bioinformatic analysis
-
Stan G., Thirumalai D., Lorimer G.H., and Brooks B.R. Annealing function of GroEL: structural and bioinformatic analysis. Biophys. Chemist. 100 (2003) 453-467
-
(2003)
Biophys. Chemist.
, vol.100
, pp. 453-467
-
-
Stan, G.1
Thirumalai, D.2
Lorimer, G.H.3
Brooks, B.R.4
-
25
-
-
33344476423
-
Nanopore-protein interactions dramatically alter stability and yield of the native state in restricted spaces
-
Cheung M.S., and Thirumalai D. Nanopore-protein interactions dramatically alter stability and yield of the native state in restricted spaces. J. Mol. Biol. 357 (2006) 632-634
-
(2006)
J. Mol. Biol.
, vol.357
, pp. 632-634
-
-
Cheung, M.S.1
Thirumalai, D.2
-
26
-
-
0035913902
-
Dual function of protein confinement in chaperonin-assisted protein folding
-
Brinker A., Pfeifer G., Kerner M.J., Naylor D.J., Hartl F.U., and Hayer-Hartl M. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107 (2001) 223-233
-
(2001)
Cell
, vol.107
, pp. 223-233
-
-
Brinker, A.1
Pfeifer, G.2
Kerner, M.J.3
Naylor, D.J.4
Hartl, F.U.5
Hayer-Hartl, M.6
-
27
-
-
0141482088
-
How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations
-
Takagi F., Koga N., and Takada S. How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations. Proc. Natl Acad. Sci. USA 100 (2003) 11367-11372
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 11367-11372
-
-
Takagi, F.1
Koga, N.2
Takada, S.3
-
28
-
-
0043238073
-
Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape
-
Baumketner A., Jewett A.I., and Shea J.-E. Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape. J. Mol. Biol. 332 (2003) 701-713
-
(2003)
J. Mol. Biol.
, vol.332
, pp. 701-713
-
-
Baumketner, A.1
Jewett, A.I.2
Shea, J.-E.3
-
29
-
-
0037799371
-
Effects of confinement and crowding on the thermodynamics and kinetics of folding of an off-lattice protein model
-
Friedel M., Sheeler D.J., and Shea J.-E. Effects of confinement and crowding on the thermodynamics and kinetics of folding of an off-lattice protein model. J. Chem. Phys. 118 (2003) 8106-8113
-
(2003)
J. Chem. Phys.
, vol.118
, pp. 8106-8113
-
-
Friedel, M.1
Sheeler, D.J.2
Shea, J.-E.3
-
30
-
-
16344389134
-
Molecular crowding enhances native state stability and refolding rates of globular proteins
-
Cheung M.S., Klimov D., and Thirumalai D. Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc. Natl Acad. Sci. USA 102 (2005) 4753-4758
-
(2005)
Proc. Natl Acad. Sci. USA
, vol.102
, pp. 4753-4758
-
-
Cheung, M.S.1
Klimov, D.2
Thirumalai, D.3
-
31
-
-
4444330162
-
Accelerated folding in the weak hydrophobic environment of a chaperonin cavity: creation of an alternate fast folding pathway
-
Jewett A.I., Baumketner A., and Shea J.-E. Accelerated folding in the weak hydrophobic environment of a chaperonin cavity: creation of an alternate fast folding pathway. Proc. Natl Acad. Sci. USA 101 (2004) 13192-13197
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 13192-13197
-
-
Jewett, A.I.1
Baumketner, A.2
Shea, J.-E.3
-
32
-
-
0032984605
-
GroEL accelerates the refolding of hen lysozyme without changing its folding mechanism
-
Coyle J.E., Texter F.L., Ashcroft A.E., Masselos D., Robinson C.V., and Radford S.E. GroEL accelerates the refolding of hen lysozyme without changing its folding mechanism. Nat. Struct. Biol. 6 (1999) 683-690
-
(1999)
Nat. Struct. Biol.
, vol.6
, pp. 683-690
-
-
Coyle, J.E.1
Texter, F.L.2
Ashcroft, A.E.3
Masselos, D.4
Robinson, C.V.5
Radford, S.E.6
-
33
-
-
0033543671
-
Identification of substrate binding site of GroEL minichaperone in solution
-
Tanaka N., and Fersht A.R. Identification of substrate binding site of GroEL minichaperone in solution. J. Mol. Biol. 292 (1999) 173-180
-
(1999)
J. Mol. Biol.
, vol.292
, pp. 173-180
-
-
Tanaka, N.1
Fersht, A.R.2
-
34
-
-
0032514615
-
GroEL-GroES-mediated protein folding requires an intact central cavity
-
Wang J.D., Michelitsch M.D., and Weissman J.S. GroEL-GroES-mediated protein folding requires an intact central cavity. Proc. Natl Acad. Sci. USA 95 (1998) 12163-12168
-
(1998)
Proc. Natl Acad. Sci. USA
, vol.95
, pp. 12163-12168
-
-
Wang, J.D.1
Michelitsch, M.D.2
Weissman, J.S.3
-
35
-
-
0027144068
-
Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP
-
Makino Y., Taguchi H., and Yoshida M. Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP. FEBS Lett. 336 (1993) 363-367
-
(1993)
FEBS Lett.
, vol.336
, pp. 363-367
-
-
Makino, Y.1
Taguchi, H.2
Yoshida, M.3
-
36
-
-
0030461621
-
Chaperone activity and structure of monomeric polypeptide binding domains of GroEL
-
Zahn R., Buckle A.M., Perrett S., Johnson C.M., Corrales F.J., Golbik R., and Fersht A.R. Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proc. Natl Acad. Sci. USA 93 (1996) 15024-15029
-
(1996)
Proc. Natl Acad. Sci. USA
, vol.93
, pp. 15024-15029
-
-
Zahn, R.1
Buckle, A.M.2
Perrett, S.3
Johnson, C.M.4
Corrales, F.J.5
Golbik, R.6
Fersht, A.R.7
-
38
-
-
0030890701
-
Refolding chromatography with immobilized mini-chaperones
-
Altamirano M.M., Golbik R., Zahn R., Buckle A.M., and Fersht A.R. Refolding chromatography with immobilized mini-chaperones. Proc. Natl Acad. Sci. USA 94 (1997) 3576-3578
-
(1997)
Proc. Natl Acad. Sci. USA
, vol.94
, pp. 3576-3578
-
-
Altamirano, M.M.1
Golbik, R.2
Zahn, R.3
Buckle, A.M.4
Fersht, A.R.5
-
39
-
-
0028366080
-
Monomeric chaperonin-60 and its 50-kda fragment possess the ability to interact with non-native proteins, to suppress aggregation, and to promote protein folding
-
Taguchi H., Makino Y., and Yoshida M. Monomeric chaperonin-60 and its 50-kda fragment possess the ability to interact with non-native proteins, to suppress aggregation, and to promote protein folding. J. Biol. Chem. 269 (1994) 8529-8534
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 8529-8534
-
-
Taguchi, H.1
Makino, Y.2
Yoshida, M.3
-
40
-
-
0024314918
-
Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures
-
Ellis J.R., and Hemmingsen S.M. Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem. Sci. 14 (1989) 339-342
-
(1989)
Trends Biochem. Sci.
, vol.14
, pp. 339-342
-
-
Ellis, J.R.1
Hemmingsen, S.M.2
-
41
-
-
20544466881
-
Probing the "annealing" mechanism of GroEL minichaperone using molecular dynamics simulations
-
Stan G., Brooks B.R., and Thirumalai D. Probing the "annealing" mechanism of GroEL minichaperone using molecular dynamics simulations. J. Mol. Biol. 350 (2005) 817-829
-
(2005)
J. Mol. Biol.
, vol.350
, pp. 817-829
-
-
Stan, G.1
Brooks, B.R.2
Thirumalai, D.3
-
43
-
-
0033060521
-
Molecular chaperone-like properties of an unfolded protein, α-casein
-
Bhattacharyya J., and Das K.P. Molecular chaperone-like properties of an unfolded protein, α-casein. J. Biol. Chem. 274 (1999) 15505-15509
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 15505-15509
-
-
Bhattacharyya, J.1
Das, K.P.2
-
44
-
-
0023030976
-
Detergent-assisted refolding of guanidinium chloride-denatured rhodanese
-
Tandon S., and Horowitz P. Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. J. Biol. Chem. 261 (1986) 15615-15681
-
(1986)
J. Biol. Chem.
, vol.261
, pp. 15615-15681
-
-
Tandon, S.1
Horowitz, P.2
-
45
-
-
0028152452
-
Detergent, liposome and micelle-assisted protein folding
-
Zardenta G., and Horowitz P.M. Detergent, liposome and micelle-assisted protein folding. Anal. Biochem. 223 (1994) 1-6
-
(1994)
Anal. Biochem.
, vol.223
, pp. 1-6
-
-
Zardenta, G.1
Horowitz, P.M.2
-
46
-
-
0026703239
-
Denatured rhodanese binding to cardiolipin-containing lauryl maltoside micelles results in slower refolding kinetics but greater enzyme reactivation
-
Zardenta G., and Horowitz P.M. Denatured rhodanese binding to cardiolipin-containing lauryl maltoside micelles results in slower refolding kinetics but greater enzyme reactivation. J. Biol. Chem. 267 (1992) 5811-5816
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 5811-5816
-
-
Zardenta, G.1
Horowitz, P.M.2
-
47
-
-
0026656965
-
Polyethylene glycol enhanced protein refolding
-
Cleland J.L., Builder S.E., Swartz J.R., Winkler M., Chang J.Y., and Wang D.I.C. Polyethylene glycol enhanced protein refolding. Bio/Technology 10 (1992) 1013-1019
-
(1992)
Bio/Technology
, vol.10
, pp. 1013-1019
-
-
Cleland, J.L.1
Builder, S.E.2
Swartz, J.R.3
Winkler, M.4
Chang, J.Y.5
Wang, D.I.C.6
-
48
-
-
0026770746
-
Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model
-
Cleland J.L., Hedgepeth C., and Wang D.I. Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model. J. Biol. Chem. 267 (1992) 13327-13334
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 13327-13334
-
-
Cleland, J.L.1
Hedgepeth, C.2
Wang, D.I.3
-
49
-
-
17444385593
-
The mechanism of PNIPAAm-assisted refolding of lysozyme denatured by urea
-
Lu D., Liu Z., Zhang M., Liu Z., and Zhou H. The mechanism of PNIPAAm-assisted refolding of lysozyme denatured by urea. Biochem. Eng. J. 24 (2005) 55-64
-
(2005)
Biochem. Eng. J.
, vol.24
, pp. 55-64
-
-
Lu, D.1
Liu, Z.2
Zhang, M.3
Liu, Z.4
Zhou, H.5
-
51
-
-
0002617993
-
A simple model of chaperonin-mediated protein folding
-
Chan H.S., and Dill K.A. A simple model of chaperonin-mediated protein folding. Proteins: Struct. Funct. Genet. 24 (1996) 345-351
-
(1996)
Proteins: Struct. Funct. Genet.
, vol.24
, pp. 345-351
-
-
Chan, H.S.1
Dill, K.A.2
-
52
-
-
0032540350
-
Interactions of chaperone α-crystallin with the molten globule state of xylose reductase
-
Rawat U., and Rao M. Interactions of chaperone α-crystallin with the molten globule state of xylose reductase. J. Biol. Chem. 273 (1998) 9415-9423
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 9415-9423
-
-
Rawat, U.1
Rao, M.2
-
53
-
-
0028290816
-
On the role of GroES in the chaperonin-assisted folding reaction-3 case studies
-
Schmidt M., Buchner J., Todd M.J., Lorimer G.H., and Viitanen P.V. On the role of GroES in the chaperonin-assisted folding reaction-3 case studies. J. Biol. Chem. 269 (1994) 10304-10311
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 10304-10311
-
-
Schmidt, M.1
Buchner, J.2
Todd, M.J.3
Lorimer, G.H.4
Viitanen, P.V.5
-
54
-
-
0026643094
-
The nature of folded states of globular-proteins
-
Honeycutt J.D., and Thirumalai D. The nature of folded states of globular-proteins. Biopolymers 32 (1992) 695-709
-
(1992)
Biopolymers
, vol.32
, pp. 695-709
-
-
Honeycutt, J.D.1
Thirumalai, D.2
-
55
-
-
0034321011
-
Energetic frustration and the nature of the transition state in protein folding
-
Shea J.E., Onuchic J.N., and Brooks III C.L. Energetic frustration and the nature of the transition state in protein folding. J. Chem. Phys. 113 (2000) 7663-7671
-
(2000)
J. Chem. Phys.
, vol.113
, pp. 7663-7671
-
-
Shea, J.E.1
Onuchic, J.N.2
Brooks III, C.L.3
-
56
-
-
0012321230
-
Simulation of mutation: influence of a side group on global minimum structure and dynamics of a protein model
-
Vekhter B., and Berry R.S. Simulation of mutation: influence of a side group on global minimum structure and dynamics of a protein model. J. Chem. Phys. 111 (1999) 3753-3760
-
(1999)
J. Chem. Phys.
, vol.111
, pp. 3753-3760
-
-
Vekhter, B.1
Berry, R.S.2
-
57
-
-
0032568599
-
Folding funnels and frustration in off-lattice minimalist protein landscapes
-
Nymeyer H., García A.E., and Onuchic J.N. Folding funnels and frustration in off-lattice minimalist protein landscapes. Proc. Natl Acad. Sci. USA 95 (1998) 5921-5928
-
(1998)
Proc. Natl Acad. Sci. USA
, vol.95
, pp. 5921-5928
-
-
Nymeyer, H.1
García, A.E.2
Onuchic, J.N.3
-
58
-
-
0000870658
-
Exploring the space of protein folding Hamiltonians: the balance of forces in a minimalist β-barrel model
-
Shea J.-E., Nochomovitz Y.D., Guo Z., and Brooks III C.L. Exploring the space of protein folding Hamiltonians: the balance of forces in a minimalist β-barrel model. J. Chem. Phys. 109 (1998) 2895-2903
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 2895-2903
-
-
Shea, J.-E.1
Nochomovitz, Y.D.2
Guo, Z.3
Brooks III, C.L.4
-
59
-
-
10044255342
-
Probing the kinetics of single molecule protein folding
-
Leite V.B.P., Onuchic J.N., Stell G., and Wang J. Probing the kinetics of single molecule protein folding. Biophys. J. 87 (2004) 3633-3641
-
(2004)
Biophys. J.
, vol.87
, pp. 3633-3641
-
-
Leite, V.B.P.1
Onuchic, J.N.2
Stell, G.3
Wang, J.4
-
61
-
-
0030624384
-
Protein folding kinetics: time scales, pathways, and energy landscapes in terms of sequence dependent properties
-
(The complete article is only at: http://xxx.lanl.gov/pdf/cond-mat/9611065)
-
Veitshans T., Klimov D., and Thirumalai D. Protein folding kinetics: time scales, pathways, and energy landscapes in terms of sequence dependent properties. Fold Des. 2 (1997) 1-22. http://xxx.lanl.gov/pdf/cond-mat/9611065 (The complete article is only at: http://xxx.lanl.gov/pdf/cond-mat/9611065)
-
(1997)
Fold Des.
, vol.2
, pp. 1-22
-
-
Veitshans, T.1
Klimov, D.2
Thirumalai, D.3
-
62
-
-
0000399469
-
Viscosity-dependence of the folding rates of proteins
-
Klimov D.K., and Thirumalai D. Viscosity-dependence of the folding rates of proteins. Phys. Rev. Lett. 79 (1997) 317-320
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 317-320
-
-
Klimov, D.K.1
Thirumalai, D.2
-
63
-
-
4444221565
-
UCSF Chimera-A visualization system for exploratory research and analysis
-
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., and Ferrin T.E. UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem. 25 (2004) 1605-1612
-
(2004)
J. Comput. Chem.
, vol.25
, pp. 1605-1612
-
-
Pettersen, E.F.1
Goddard, T.D.2
Huang, C.C.3
Couch, G.S.4
Greenblatt, D.M.5
Meng, E.C.6
Ferrin, T.E.7
|