메뉴 건너뛰기




Volumn 51, Issue 1, 2006, Pages 3-20

Modelling the infiltration process with a multi-layer perceptron artificial neural network

Author keywords

Artificial neural network; Infiltration; Multilayer perceptron; Rainfall simulator

Indexed keywords

HYDRAULIC CONDUCTIVITY; MATHEMATICAL MODELS; MOISTURE; MULTILAYER NEURAL NETWORKS; RAIN; SENSITIVITY ANALYSIS; SOILS; TRANSFER FUNCTIONS;

EID: 32544458461     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.51.1.3     Document Type: Article
Times cited : (40)

References (44)
  • 1
    • 0036224943 scopus 로고    scopus 로고
    • Assessment and prediction of tropospheric ozone corcentration levels using artificial neural networks
    • Abdul-Wahah, S. A., & Al-Alawi, S. M. (2002) Assessment and prediction of tropospheric ozone corcentration levels using artificial neural networks. Envir. Modell. Softmare 17, 219-228.
    • (2002) Envir. Modell. Softmare , vol.17 , pp. 219-228
    • Abdul-Wahah, S.A.1    Al-Alawi, S.M.2
  • 2
    • 1142294041 scopus 로고    scopus 로고
    • A soil moisture index as an auxiliary ANN input for stream flow forecasting
    • Anctil, F., Michel, C., Perrin, C. & Andréassian, V. (2004) A soil moisture index as an auxiliary ANN input for stream flow forecasting. J. Hydrol. 286, 155-167.
    • (2004) J. Hydrol. , vol.286 , pp. 155-167
    • Anctil, F.1    Michel, C.2    Perrin, C.3    Andréassian, V.4
  • 3
    • 0025638685 scopus 로고
    • Process studies in hillslope hydrology: An overview
    • (ed. by M. G. Anderson & T. P. Burt), John Wiley & Sons Ltd, Chichester, UK
    • Anderson, M. G. & Burt, T. P. (1990) Process studies in hillslope hydrology: an overview. In: Process Studiex in Hillslope Hydrology (ed. by M. G. Anderson & T. P. Burt), 1-9. John Wiley & Sons Ltd, Chichester, UK.
    • (1990) Process Studiex in Hillslope Hydrology , pp. 1-9
    • Anderson, M.G.1    Burt, T.P.2
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I. Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a) Artificial neural networks in hydrology. I. Preliminary concepts. J. Hydrol. Engng ASCE 5(2), 115-123
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II. Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b) Artificial neural networks in hydrology. II. Hydrologic applications. J. Hydol. Engng ASCE 5(2), 124-137
    • (2000) J. Hydol. Engng ASCE , vol.5 , Issue.2 , pp. 124-137
  • 6
    • 32544439270 scopus 로고    scopus 로고
    • An efficient artificial neural network training method through induced learning retardation: Inhibited brain learning
    • Bandibas, J. C. & Kohyama, K. (2001) An efficient artificial neural network training method through induced learning retardation: inhibited brain learning, Asian J. Geoinformatics 1(4), 45-55.
    • (2001) Asian J. Geoinformatics , vol.1 , Issue.4 , pp. 45-55
    • Bandibas, J.C.1    Kohyama, K.2
  • 7
    • 0037087735 scopus 로고    scopus 로고
    • An evaluation of a traditional and a neural net modeling approach to flood forecasting for an upland catchment
    • Cameron, D., Kneale, P. & See, L. (2002) An evaluation of a traditional and a neural net modeling approach to flood forecasting for an upland catchment. Hydrol. Processes 16, 1033-1046.
    • (2002) Hydrol. Processes , vol.16 , pp. 1033-1046
    • Cameron, D.1    Kneale, P.2    See, L.3
  • 8
    • 0031282488 scopus 로고    scopus 로고
    • Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone
    • Cerdà A. (1997) Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. J. Hydrol. 198, 209-225.
    • (1997) J. Hydrol. , vol.198 , pp. 209-225
    • Cerdà, A.1
  • 9
    • 1342310688 scopus 로고    scopus 로고
    • Estimatian and forecasting of daily suspended sediment data by multi-layer perceptrons
    • Cigizoglu, H. K. (2004) Estimatian and forecasting of daily suspended sediment data by multi-layer perceptrons. Adv. Water Resour. 27, 185-195.
    • (2004) Adv. Water Resour. , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 11
    • 0034749335 scopus 로고    scopus 로고
    • Hyrologocal modeling using artificial neural networks
    • Dawson, C. W. & Wilby, R. (2001) Hyrologocal modeling using artificial neural networks. Progr. Php. Geogr. 25, 80-18.
    • (2001) Progr. Php. Geogr. , vol.25 , pp. 80-118
    • Dawson, C.W.1    Wilby, R.2
  • 12
    • 0003000735 scopus 로고
    • Fast learning variations of back-propagations: An empirical
    • Morgan Kaufmann Publishers, Inc., San Francisco, California, USA
    • Fahlman, S. E. (1988) Fast learning variations of back-propagations: an empirical Proc. 1988 Consectionist Models Summer School, 38-51, Morgan Kaufmann Publishers, Inc., San Francisco, California, USA.
    • (1988) Proc. 1988 Consectionist Models Summer School , pp. 38-51
    • Fahlman, S.E.1
  • 13
    • 0032123339 scopus 로고    scopus 로고
    • Runoff forecasting using RBF networks with OLS algorithm
    • Fernando, D., Achela, K. & Jayawardena, A. W. (1998) Runoff forecasting using RBF networks with OLS algorithm J. Hydrol. Engng ASCE 3(3), 203-209.
    • (1998) J. Hydrol. Engng ASCE , vol.3 , Issue.3 , pp. 203-209
    • Fernando, D.1    Achela, K.2    Jayawardena, A.W.3
  • 14
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • German, S., Bienenstock, E. & Doursart, R. (1992) Neural networks and the bias/variance, dilemma. Neural Comp. 4, 1-58.
    • (1992) Neural Comp. , vol.4 , pp. 1-58
    • German, S.1    Bienenstock, E.2    Doursart, R.3
  • 15
    • 0002266184 scopus 로고
    • Studies in soil physics. I. Flow of air and water through soils
    • Green, W. H. & Ampt, G. A. (1911) Studies in soil physics. I. Flow of air and water through soils. J. Agric. Sci. 4, 1-24.
    • (1911) J. Agric. Sci. , vol.4 , pp. 1-24
    • Green, W.H.1    Ampt, G.A.2
  • 17
    • 0141907187 scopus 로고    scopus 로고
    • Infiltration on mountain slopes: A comparison of three environments
    • Harden, C. P. & Scruggs, P. D. (2003) Infiltration on mountain slopes: a comparison of three environments. Geomorphol. 55, 5-24.
    • (2003) Geomorphol. , vol.55 , pp. 5-24
    • Harden, C.P.1    Scruggs, P.D.2
  • 18
    • 84981344442 scopus 로고
    • The role of infiltration in the hydrological cycle
    • Horton, R. E. (1933) The role of infiltration in the hydrological cycle. Trans. Am. Geophys. Union 14, 446-460.
    • (1933) Trans. Am. Geophys. Union , vol.14 , pp. 446-460
    • Horton, R.E.1
  • 19
    • 0000206979 scopus 로고
    • An approach toward a physical interpretation of infiltrationt capacity
    • Horton, R. E. (1940) An approach toward a physical interpretation of infiltrationt capacity. Soil Sci. Soc. Am. J. 5, 399-417.
    • (1940) Soil Sci. Soc. Am. J. , vol.5 , pp. 399-417
    • Horton, R.E.1
  • 20
    • 0034174352 scopus 로고    scopus 로고
    • Artificial neural networks in remote sensing of hydrologic processes
    • Islam, S. & Kothari R. (2000) Artificial neural networks in remote sensing of hydrologic processes. J. Hydrol. Engng ASCE 5(2), 138-144.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 138-144
    • Islam, S.1    Kothari, R.2
  • 22
    • 0002705510 scopus 로고
    • On the dynamics of the coefficient of water-perccolation in soils and on the necessity of studying it forn a dynamic point of view far purposes of amelioration
    • Kostiakov, A. N. (1932) On the dynamics of the coefficient of water-perccolation in soils and on the necessity of studying it forn a dynamic point of view far purposes of amelioration. Trans. Sixth Comm. ofthe Int. Soc. of Soil Sci., Part A, 17-31.
    • (1932) Trans. Sixth Comm. of the Int. Soc. of Soil Sci. , Issue.PART A , pp. 17-31
    • Kostiakov, A.N.1
  • 23
    • 0001857994 scopus 로고    scopus 로고
    • Efficient back Prop
    • (ed. by G. B. Orr & K. R. Müller), Springer-Verlag, Berlin, Germany
    • LeCun, Y., Bottou, L., Orr, G. B. & Müller, K. R. (1998) Efficient back Prop. In Neural Networks: Tricks of the Trade (ed. by G. B. Orr & K. R. Müller), 9-53. Springer-Verlag, Berlin, Germany.
    • (1998) Neural Networks: Tricks of the Trade , pp. 9-53
    • LeCun, Y.1    Bottou, L.2    Orr, G.B.3    Müller, K.R.4
  • 24
    • 0032034197 scopus 로고    scopus 로고
    • Understanding the behavior and optimising the performance of back-propagation neural networks: An empirical study
    • Maier, H. R. & Dandy, G. C. (1998) Understanding the behavior and optimising the performance of back-propagation neural networks: an empirical study. Envir. Mudell. Software 13, 179-191.
    • (1998) Envir. Mudell. Software , vol.13 , pp. 179-191
    • Maier, H.R.1    Dandy, G.C.2
  • 25
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R. & Dandy, G. C. (2001) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Envir. Modell. Software 15, 101-124.
    • (2001) Envir. Modell. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 26
    • 0035975959 scopus 로고    scopus 로고
    • Comparison of soil infiltration rates in burned and unburned mountainous watersheds
    • Martin, D. A. & Moody, J. A. (2001) Comparison of soil infiltration rates in burned and unburned mountainous watersheds. Hydrol. Processes 15, 2893-2903.
    • (2001) Hydrol. Processes , vol.15 , pp. 2893-2903
    • Martin, D.A.1    Moody, J.A.2
  • 27
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W. & Hall, M. J. (1996) Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 41(3), 399-417.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 30
    • 32544457603 scopus 로고
    • Division of Plant Industry, CSIRO, Australia
    • Philip, J. R. (1957) Theory of Infilltration. Division of Plant Industry, CSIRO, Australia.
    • (1957) Theory of Infilltration
    • Philip, J.R.1
  • 32
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkar, M. P., Kothyari, U. C. & Chaube, U. C. (2004) Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol. 285, 96-113.
    • (2004) J. Hydrol. , vol.285 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 33
    • 0002923505 scopus 로고
    • Infiltration and soil water movement
    • Chapter 5 (ed. by D. R. Maidment), McGraw-Hill, Inc., New York, USA
    • Rawls, W. J., Ahuja, L. R., Brakensiek, D. J. & Shirmohammadi A. (1993) Infiltration and soil water movement Chapter 5 in: Handbook of Hydrology (ed. by D. R. Maidment), McGraw-Hill, Inc., New York, USA.
    • (1993) Handbook of Hydrology
    • Rawls, W.J.1    Ahuja, L.R.2    Brakensiek, D.J.3    Shirmohammadi, A.4
  • 34
    • 34247647193 scopus 로고
    • Capillary conduction of liquids through porous mediums
    • Richards, L. A. (1931) Capillary conduction of liquids through porous mediums. Physics 1, 318-333.
    • (1931) Physics , vol.1 , pp. 318-333
    • Richards, L.A.1
  • 35
    • 0034174278 scopus 로고    scopus 로고
    • Regional drought analysis based an neural networks
    • Shin, H. S. & Salas, J. D. (2000) Regional drought analysis based an neural networks. J. Hydrol. Engng ASCE 5(2), 145-155.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 145-155
    • Shin, H.S.1    Salas, J.D.2
  • 36
    • 0038105929 scopus 로고    scopus 로고
    • Radial basis function neural network for modeling rating curves
    • Sudheer, K. P. & Jain, S. K. (2003) Radial basis function neural network for modeling rating curves. J. Hydrol. Engng ASCES 8(3), 161-164.
    • (2003) J. Hydrol. Engng ASCE , vol.8 , Issue.3 , pp. 161-164
    • Sudheer, K.P.1    Jain, S.K.2
  • 37
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K. P., Gossin, A. K. & Rangan, D. M. (2002) A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Processes 16, 1325-1330,
    • (2002) Hydrol. Processes , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gossin, A.K.2    Rangan, D.M.3
  • 38
    • 0344035546 scopus 로고    scopus 로고
    • Evaluation of neural networks far modeling nitrate concentration in rivers
    • Suen, J. P. & Eheart, J. W. (2003) Evaluation of neural networks far modeling nitrate concentration in rivers. J. Water Resour. Plan. Manage 129(6), 505-510.
    • (2003) J. Water Resour. Plan. Manage , vol.129 , Issue.6 , pp. 505-510
    • Suen, J.P.1    Eheart, J.W.2
  • 39
    • 32544431620 scopus 로고    scopus 로고
    • Artificial neural network modeling of infiltration from plot-scale rainfall simulator data
    • (ed. by S.Y. Liong K. K. Phoon & V. Babovic) (Proc. Sixth Int. Conf. on Hydroinformatics, June 2004), World Scientific Publishing Co., Pte. Ltd., Singapore
    • Sy, N. L. (2004) Artificial neural network modeling of infiltration from plot-scale rainfall simulator data. Hydroinformatics (ed. by S.Y. Liong K. K. Phoon & V. Babovic) (Proc. Sixth Int. Conf. on Hydroinformatics, June 2004), 1433-1440. World Scientific Publishing Co., Pte. Ltd., Singapore.
    • (2004) Hydroinformatics , pp. 1433-1440
    • Sy, N.L.1
  • 40
    • 32544441945 scopus 로고    scopus 로고
    • Utilization of the USC-CED field rainfall simulator as a research tool for understanding the infiltration process of the hydrologic cycle
    • (De La Salle Univ., Manila, Philippines, 2-4 May 2001) De La Salle Univ. Press, Manila, Philippines
    • Sy, N. L. & Calo, E T. (2001) Utilization of the USC-CED field rainfall simulator as a research tool for understanding the infiltration process of the hydrologic cycle. In:Proc. Fourth National Civil Engng Education Congress (De La Salle Univ., Manila, Philippines, 2-4 May 2001). De La Salle Univ. Press, Manila, Philippines.
    • (2001) Proc. Fourth National Civil Engng Education Congress
    • Sy, N.L.1    Calo, E.T.2
  • 41
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar, A. S. & Momcilo, M. (2000) Precipitation-runoff modeling using artificial neural networks and conceptual models, J. Hydrol. Engng ASCE 5(20), 156-161.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.20 , pp. 156-161
    • Tokar, A.S.1    Momcilo, M.2
  • 42
    • 0346875564 scopus 로고    scopus 로고
    • Forecasting of reference evapotranspiration by artificial neural networks
    • Trajkovic, S., Todorovic, B. & Stankovic, M. (2003) Forecasting of reference evapotranspiration by artificial neural networks. J. Irrig. Drain. Div. ASCE 128(6), 454-457.
    • (2003) J. Irrig. Drain. Div. ASCE , vol.128 , Issue.6 , pp. 454-457
    • Trajkovic, S.1    Todorovic, B.2    Stankovic, M.3
  • 44
    • 0037466126 scopus 로고    scopus 로고
    • Geomorphology-based artificial neural networks (GANN) far estimation of direct runoff over watershed
    • Zhang, B. & Govindaraju, R. S. (2003) Geomorphology-based artificial neural networks (GANN) far estimation of direct runoff over watershed, J. Hydrol. 273, 18-34.
    • (2003) J. Hydrol. , vol.273 , pp. 18-34
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.