메뉴 건너뛰기




Volumn 37, Issue 5, 2005, Pages 545-553

Applying support vector machines to predict building energy consumption in tropical region

Author keywords

Building energy consumption prediction; Support vector machine; Tropical region; Weather data

Indexed keywords

ATMOSPHERIC HUMIDITY; ENERGY UTILIZATION; FUNCTIONS; MATHEMATICAL MODELS; PROBLEM SOLVING; QUADRATIC PROGRAMMING; RISK ASSESSMENT; WEATHER FORECASTING;

EID: 13244270060     PISSN: 03787788     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enbuild.2004.09.009     Document Type: Article
Times cited : (709)

References (27)
  • 1
    • 0008488863 scopus 로고
    • Special issue devoted to measuring energy savings, the Princeton scorekeeping method (PRISM)
    • M. Fels Special issue devoted to measuring energy savings, the Princeton scorekeeping method (PRISM) Energy and Buildings 9 1-2 1986
    • (1986) Energy and Buildings , vol.9 , Issue.12
    • Fels, M.1
  • 4
    • 0033076160 scopus 로고    scopus 로고
    • Series model to predict hourly heating and cooling energy use in commercial buildings with outdoor temperature as the only weather variable
    • A. Dhar, T.A. Reddy, D.E. Claridge, and A. Fourier Series model to predict hourly heating and cooling energy use in commercial buildings with outdoor temperature as the only weather variable Journal of Solar Energy Engineering 121 1999 47 53
    • (1999) Journal of Solar Energy Engineering , vol.121 , pp. 47-53
    • Dhar, A.1    Reddy, T.A.2    Claridge, D.E.3    Fourier, A.4
  • 5
    • 13244273238 scopus 로고    scopus 로고
    • A holistic utility bill analysis method for baselining whole commercial building energy consumption in Singapore
    • in press
    • B. Dong, S.E. Lee, M.H. Sapar, A holistic utility bill analysis method for baselining whole commercial building energy consumption in Singapore, Energy and buildings, in press, 2004.
    • (2004) Energy and Buildings
    • Dong, B.1    Lee, S.E.2    Sapar, M.H.3
  • 8
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation and signal processing
    • V.N. Vapnik, S.E. Golowich, and A.J. Smola Support vector method for function approximation, regression estimation and signal processing Advanced Neural Information Processing System 9 1996 281 287
    • (1996) Advanced Neural Information Processing System , vol.9 , pp. 281-287
    • Vapnik, V.N.1    Golowich, S.E.2    Smola, A.J.3
  • 11
    • 0742275248 scopus 로고    scopus 로고
    • Regime signalling techniques for nonstationary time series forecasting
    • R. Doss, and Z. Obradovic Regime signalling techniques for nonstationary time series forecasting Neurovest Journal 4 5 1998 7 15
    • (1998) Neurovest Journal , vol.4 , Issue.5 , pp. 7-15
    • Doss, R.1    Obradovic, Z.2
  • 12
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • L.J. Cao, Francis, and E.H. Tay Support vector machine with adaptive parameters in financial time series forecasting IEEE Transactions on Neural Networks 14 6 2003
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.6
    • Cao, L.J.1    Francis2    Tay, E.H.3
  • 13
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • V. Cherkassky, and Y. Ma Practical selection of SVM parameters and noise estimation for SVM regression Neural Networks 17 2004 113 126
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 15
    • 0347458328 scopus 로고    scopus 로고
    • Periodic posting to the Usenet news group comp.ai.neural-nets
    • W.S. Sarle, 1997. Neural Network FAQ. Periodic posting to the Usenet news group comp.ai.neural-nets available: ftp://ftp.sas.com/pub/neural/FAQ.html.
    • (1997) Neural Network FAQ
    • Sarle, W.S.1
  • 17
    • 0011922443 scopus 로고
    • Commercial building energy performance analysis using multiple regression
    • R. Sullivan, S. Nozari, R. Johnson, and S. Selkowitz Commercial building energy performance analysis using multiple regression ASHRAE Transactions 91 1985 337 353
    • (1985) ASHRAE Transactions , vol.91 , pp. 337-353
    • Sullivan, R.1    Nozari, S.2    Johnson, R.3    Selkowitz, S.4
  • 18
    • 0041571108 scopus 로고
    • Measurement of energy savings from demand-side management programs in U.S. electric utilities
    • M.F. Fels, and K.M. Keating Measurement of energy savings from demand-side management programs in U.S. electric utilities Annual Review Energy Environment 18 1993 57 88
    • (1993) Annual Review Energy Environment , vol.18 , pp. 57-88
    • Fels, M.F.1    Keating, K.M.2
  • 20
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • S.S. Keerthi, and C.-J. Lin Asymptotic behaviors of support vector machines with Gaussian kernel Neural Computation 15 7 2001 1667 1689
    • (2001) Neural Computation , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 21
    • 3843050541 scopus 로고    scopus 로고
    • A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods
    • Department of Computer Science and Information Engineering, National Taiwan University
    • H.-T. Lin, C.-J. Lin, 2003. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods, Technical report, Department of Computer Science and Information Engineering, National Taiwan University.
    • (2003) Technical Report
    • Lin, H.-T.1    Lin, C.-J.2
  • 23
    • 0002941010 scopus 로고    scopus 로고
    • Support vector machines for dynamic reconstruction of a chaotic system
    • B. Scholkopf J. Burges A. Smola MIT Press Cambridge, MA
    • D. Mattera, and S. Haykin Support vector machines for dynamic reconstruction of a chaotic system B. Scholkopf J. Burges A. Smola Advances in Kernel Methods: Support Vector Machine 1999 MIT Press Cambridge, MA
    • (1999) Advances in Kernel Methods: Support Vector Machine
    • Mattera, D.1    Haykin, S.2
  • 24
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Department of Computer Science and Information Engineering, National Taiwan University
    • C.-W. Hsu, C.-C. Chang, C.-J. Lin, 2003. A Practical Guide to Support Vector Classification, Technical report, Department of Computer Science and Information Engineering, National Taiwan University.
    • (2003) Technical Report
    • Hsu, C.-W.1    Chang, C.-C.2    Lin, C.-J.3
  • 26
    • 17144445852 scopus 로고    scopus 로고
    • Comparison of methods for predicting monthly post-retrofit energy use in buildings
    • Z.Q. Chen, R.M. Nelson, and D.A. Ashlock Comparison of methods for predicting monthly post-retrofit energy use in buildings ASHRAE Transactions 109 2003 449 459
    • (2003) ASHRAE Transactions , vol.109 , pp. 449-459
    • Chen, Z.Q.1    Nelson, R.M.2    Ashlock, D.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.