-
1
-
-
3342908718
-
-
For recent reviews, see:
-
For recent reviews, see:. Pagliaro L., Felding J., Audouze K., Nielsen S.J., Terry R.B., Krog-Jensen C., and Butcher S. Curr. Opin. Chem. Biol. 8 (2004) 442
-
(2004)
Curr. Opin. Chem. Biol.
, vol.8
, pp. 442
-
-
Pagliaro, L.1
Felding, J.2
Audouze, K.3
Nielsen, S.J.4
Terry, R.B.5
Krog-Jensen, C.6
Butcher, S.7
-
6
-
-
9644273958
-
-
and references cited therein
-
Kritzer J.A., Stephens O.M., Guarracino D.A., Reznik S.K., and Schepartz A. Bioorg. Med. Chem. 13 (2005) 11 and references cited therein
-
(2005)
Bioorg. Med. Chem.
, vol.13
, pp. 11
-
-
Kritzer, J.A.1
Stephens, O.M.2
Guarracino, D.A.3
Reznik, S.K.4
Schepartz, A.5
-
7
-
-
0037415861
-
-
Ernst J.T., Becerril J., Park H.S., Yin H., and Hamilton A.D. Angew. Chem., Int. Ed. 42 (2003) 535
-
(2003)
Angew. Chem., Int. Ed.
, vol.42
, pp. 535
-
-
Ernst, J.T.1
Becerril, J.2
Park, H.S.3
Yin, H.4
Hamilton, A.D.5
-
9
-
-
0342327314
-
-
Selected examples for nonpeptide based α-helix mimetics, see:
-
Selected examples for nonpeptide based α-helix mimetics, see:. Albert J.S., Peczuh M.W., and Hamilton A.D. Bioorg. Med. Chem. 5 (1997) 1455
-
(1997)
Bioorg. Med. Chem.
, vol.5
, pp. 1455
-
-
Albert, J.S.1
Peczuh, M.W.2
Hamilton, A.D.3
-
10
-
-
0033596316
-
-
Haack T., Peczuh M.W., Salvatella X., Sanchez-Quesada J., de Mendoza J., Hamilton A.D., and Giralt E. J. Am. Chem. Soc. 121 (1999) 11813
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 11813
-
-
Haack, T.1
Peczuh, M.W.2
Salvatella, X.3
Sanchez-Quesada, J.4
de Mendoza, J.5
Hamilton, A.D.6
Giralt, E.7
-
11
-
-
0034620783
-
-
Xuereb H., Maletic M., Gildersleeve J., Pelczer I., and Kahne D. J. Am. Chem. Soc. 122 (2000) 1883
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 1883
-
-
Xuereb, H.1
Maletic, M.2
Gildersleeve, J.3
Pelczer, I.4
Kahne, D.5
-
12
-
-
22944431902
-
-
Yin H., Lee G.-I., Sedey K.A., Kutzki O., Park H.S., Orner B.P., Ernst J.T., Wang H.-G., Sebti S.M., and Hamilton A.D. J. Am. Chem. Soc. 127 (2005) 10191
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 10191
-
-
Yin, H.1
Lee, G.-I.2
Sedey, K.A.3
Kutzki, O.4
Park, H.S.5
Orner, B.P.6
Ernst, J.T.7
Wang, H.-G.8
Sebti, S.M.9
Hamilton, A.D.10
-
15
-
-
22844434675
-
-
Murata et al. recently reported the interaction of the ladder-shaped polycyclic ether with the α-helix that induces dissociation of glycopholin oligomers, see:
-
Murata et al. recently reported the interaction of the ladder-shaped polycyclic ether with the α-helix that induces dissociation of glycopholin oligomers, see:. Mori M., Oishi T., Matsuoka S., Ujihara S., Matsumori N., Murata M., Satake M., Oshima Y., Matsusita N., Aimoto S. Bioorg. Med. Chem. 13 (2005) 5099
-
(2005)
Bioorg. Med. Chem.
, vol.13
, pp. 5099
-
-
Mori, M.1
Oishi, T.2
Matsuoka, S.3
Ujihara, S.4
Matsumori, N.5
Murata, M.6
Satake, M.7
Oshima, Y.8
Matsusita, N.9
Aimoto, S.10
-
16
-
-
11144320327
-
-
For recent reviews and accounts, see:
-
For recent reviews and accounts, see:. Fujiwara K., and Murai A. Bull. Chem. Soc. Jpn. 77 (2004) 2129
-
(2004)
Bull. Chem. Soc. Jpn.
, vol.77
, pp. 2129
-
-
Fujiwara, K.1
Murai, A.2
-
23
-
-
0039596263
-
-
Rodríguez R.M., Morales E.Q., Delgado M., Espínola C.G., Alvarez E., Pérez R., and Martín J.D. Org. Lett. 1 (1999) 725
-
(1999)
Org. Lett.
, vol.1
, pp. 725
-
-
Rodríguez, R.M.1
Morales, E.Q.2
Delgado, M.3
Espínola, C.G.4
Alvarez, E.5
Pérez, R.6
Martín, J.D.7
-
25
-
-
13344250452
-
-
and references cited therein
-
Schug K.A., and Lindner W. Chem. Rev. 105 (2005) 67 and references cited therein
-
(2005)
Chem. Rev.
, vol.105
, pp. 67
-
-
Schug, K.A.1
Lindner, W.2
-
27
-
-
0034606975
-
-
Matsuo G., Hinou H., Koshino H., Suenaga T., and Nakata T. Tetrahedron Lett. 41 (2000) 903
-
(2000)
Tetrahedron Lett.
, vol.41
, pp. 903
-
-
Matsuo, G.1
Hinou, H.2
Koshino, H.3
Suenaga, T.4
Nakata, T.5
-
34
-
-
0025146271
-
-
Nicolaou K.C., Hwang C.K., Marron B.E., DeFrees S.A., Couladouros E.A., Abe Y., Carroll P.J., and Snyder J.P. J. Am. Chem. Soc. 112 (1990) 3040
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 3040
-
-
Nicolaou, K.C.1
Hwang, C.K.2
Marron, B.E.3
DeFrees, S.A.4
Couladouros, E.A.5
Abe, Y.6
Carroll, P.J.7
Snyder, J.P.8
-
35
-
-
33745741533
-
-
note
-
2 were unsuccessful.
-
-
-
-
36
-
-
33745762897
-
-
note
-
The stereochemistries of 19 and 20 were unambiguously determined by NMR analysis after acetylation. The coupling constants between H9 and H10 for the triacetate of 19 and the diacetate of 20 were J = 6.0 and 9.0 Hz, respectively. A plausible explanation for the stereochemical outcome at C9 is as follows.{A figure is presented}
-
-
-
-
37
-
-
33745747657
-
-
note
-
The stereochemistry of 18 was unambiguously determined by NOE experiments.{A figure is presented}
-
-
-
-
38
-
-
33745760687
-
-
note
-
13a.
-
-
-
-
39
-
-
33745742988
-
-
note
-
Reduction of the corresponding acetate in place of benzoate 15 resulted in the formation of the desired tetracyclic ether in a lower yield (36%). This suggests that the electron-withdrawing nature of the benzoate group plays an important role in this conversion.
-
-
-
-
41
-
-
33745742390
-
-
note
-
The peptide concentration was determined by the BCA (bicinchoninic acid) protein assay (Pierce) using BSA (bovine serum albumin) as a standard.
-
-
-
-
42
-
-
33745744918
-
-
note
-
24 The percentages of helicity of the peptides were determined as i + 3 (63%), i + 4 (56%), i + 5 (71%), and i + 11 (64%) by monitoring the ellipticity at 222 nm using the average of 120 points collected over 60 s.
-
-
-
-
44
-
-
33745746158
-
-
note
-
To ensure that the mode of binding was 1:1, a Job CD titration was conducted with peptide i + 4 and receptor 2 in 10% water/methanol at 25 °C. Maximum signal change was observed when the molar composition of i + 4 and 2 were equivalent, indicative of the 1:1 complex formation.{A figure is presented}
-
-
-
|