메뉴 건너뛰기




Volumn 125, Issue 34, 2003, Pages 10301-10310

Is it homogeneous or heterogeneous catalysis? Identification of bulk ruthenium metal as the true catalyst in benzene hydrogenations starting with the monometallic precursor, Ru(II)(η6-C6Me 6)(OAc)2, plus kinetic characterization of the heterogeneous nucleation, then autocatalytic surface-growth mechanism of metal film formation

Author keywords

[No Author keywords available]

Indexed keywords

BENZENE; CHEMICAL VAPOR DEPOSITION; HYDROGENATION; KINETIC THEORY; NUCLEATION;

EID: 0042889440     PISSN: 00027863     EISSN: None     Source Type: Journal    
DOI: 10.1021/ja021436c     Document Type: Article
Times cited : (235)

References (116)
  • 2
    • 0013326691 scopus 로고    scopus 로고
    • Widegren, J. A.; Finke, R. G. J. Mol. Catal. A: Chem. 2003, 198, 317-341. Table S1 of the Appendix lists about 30 catalyst systems for which metal-particle heterogeneous catalysts are suspected, including arene hydrogenation systems with Ru-based precatalysts.
    • (2003) J. Mol. Catal. A: Chem. , vol.198 , pp. 317-341
    • Widegren, J.A.1    Finke, R.G.2
  • 12
    • 0041907098 scopus 로고
    • Ph.D. Dissertation, Department of Chemistry, University of Oregon, March
    • Lin, Y. Ph.D. Dissertation, Department of Chemistry, University of Oregon, March 1994.
    • (1994)
    • Lin, Y.1
  • 24
    • 0041907094 scopus 로고    scopus 로고
    • note
    • v by hydrogen to Nb(0) or Ta(0) metal particles is thermodynamically not possible under the reaction conditions; and (ii) the observed selectivity of the catalyst for the intramolecular hydrogenation of the aryloxide ligands is consistent with and strongly supportive of a homogeneous mononuclear catalyst, but difficult to explain if the true catalyst is heterogeneous (ortho-phenyl substituents on the aryloxide ligand are hydrogenated, while hydrogenation of phenyl rings meta or para to the aryloxide oxygen is not observed nor is hydrogenation of the phenoxide itself ever observed).
  • 25
    • 0000905257 scopus 로고
    • 5)Th arene hydrogenation catalysts merit mention for their single-metal nature: Eisen, M. S.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 10358.
    • (1992) J. Am. Chem. Soc. , vol.114 , pp. 10358
    • Eisen, M.S.1    Marks, T.J.2
  • 27
    • 0042408294 scopus 로고
    • Ph.D. Dissertation, Research School of Chemistry, Australian National University
    • Ennett, J. P. Ph.D. Dissertation, Research School of Chemistry, Australian National University, 1984,
    • (1984)
    • Ennett, J.P.1
  • 29
    • 0001115210 scopus 로고
    • Johnson, J. W.; Muetterties, E. L. J. Am. Chem. Soc. 1977, 99, 7395. These authors specifically state that they were unable to detect free hexamethylbenzene following catalytic reactions (their actual detection limits were, unfortunately and however, not stated). Even if their detection limits for free hexamethylbenzene were, say 3-5%, we commonly find - as also seen in the current study - that only a small amount of the precatalyst typically has to evolve before a highly active heterogeneous catalyst is formed, one often able to consume all of the: substrate before the remaining precatalyst evolves to the heterogeneous catalyst. In addition, one of the main messages of this work, our prior work, and a review of the literature of the "is it homogeneous or heterogeneous catalysis" problem is that kinetic studies are essential to identification of the true catalyst.
    • (1977) J. Am. Chem. Soc. , vol.99 , pp. 7395
    • Johnson, J.W.1    Muetterties, E.L.2
  • 38
    • 0001261391 scopus 로고    scopus 로고
    • Black, colloidal material is reported to form from several mononuclear Ru precatalysts used in lignin aromatic ring reduction in: James. B. R.; Wang, Y.; Alexander, C. S.; Hu, T. Q. Chem. Ind. 1998, 75, 233.
    • (1998) Chem. Ind. , vol.75 , pp. 233
    • James, B.R.1    Wang, Y.2    Alexander, C.S.3    Hu, T.Q.4
  • 39
    • 6144253216 scopus 로고
    • Strong inference
    • Platt, J. R. Strong Inference. Science 1964, 146, 347.
    • (1964) Science , vol.146 , pp. 347
    • Platt, J.R.1
  • 41
    • 0041405988 scopus 로고    scopus 로고
    • note
    • 2.
  • 47
    • 0033536428 scopus 로고    scopus 로고
    • Aiken, J. D., III; Finke, R. G. J. Mol. Catal. A: Chem. 1999, 145, 1. See refs 1-35 therein for additional reviews and introductory references to the interest, uses, and current research problems of nanoclusters and colloids in catalysis and other areas of science.
    • (1999) J. Mol. Catal. A: Chem. , vol.145 , pp. 1
    • Aiken J.D. III1    Finke, R.G.2
  • 49
    • 0008649408 scopus 로고
    • In Chem. Engr. (N.Y.) 1990, 97 (Dec 20), 25.
    • (1990) Chem. Engr. (N.Y.) , vol.97 , Issue.DEC 20 , pp. 25
  • 53
    • 0002732241 scopus 로고    scopus 로고
    • New DVDs provide opportunities for polymers
    • Tullo, A. New DVDs Provide Opportunities for Polymers. In Chem, Eng. News 1999, 77, 14.
    • (1999) Chem. Eng. News , vol.77 , pp. 14
    • Tullo, A.1
  • 54
    • 0042408290 scopus 로고    scopus 로고
    • note
    • Unlike the literature, we formulate 1 as the anhydrous complex. The justification for this is that 1 is synthesized and stored in a drybox and because we have no evidence for waters of hydration. Further comments are provided in the Materials section.
  • 65
    • 0035913729 scopus 로고    scopus 로고
    • A very nice example showing how soluble metal particle, seeded growth gives kinetically faster, well-controlled nanocluster formation is: Yu, H.; Gibbons, P. C.; Kelton, K. F.; Buhro, W. E. J. Am. Chem. Soc. 2001, 123, 9198. Note, however, that these authors use the term "heterogeneous" in their title ("Heterogeneous Seeded Growth...") to mean different metal nucleation, an unfortunate usage as it will get confused with the earlier. well-defined term heterogeneous nucleation.
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 9198
    • Yu, H.1    Gibbons, P.C.2    Kelton, K.F.3    Buhro, W.E.4
  • 66
    • 0042408281 scopus 로고    scopus 로고
    • note
    • 1 as we have seen.
  • 67
    • 0001782795 scopus 로고    scopus 로고
    • 3 variability is the same as the reliability of current nucleation theory, Oxtoby having noted "Nucleation theory is one of the few areas of science where agreement between predicted and measured rates to within several orders of magnitude is considered a major success": Oxtoby, D. W. Acc. Chem. Res. 1998, 31, 91.
    • (1998) Acc. Chem. Res. , vol.31 , pp. 91
    • Oxtoby, D.W.1
  • 68
    • 0029650768 scopus 로고
    • Epstein, I. R. Nature 1995, 374, 321 (The Consequences of Imperfect Mixing in Autocatalytic Chemical and Biological Systems).
    • (1995) Nature , vol.374 , pp. 321
    • Epstein, I.R.1
  • 69
    • 0032560990 scopus 로고    scopus 로고
    • 2 (solution) mass transfer results in very poorly formed, broad dispersions of nanoclusters in a system that otherwise produces near-monodisperse nanoclusters: Aiken, J. D., III; Finke, R. G. J. Am. Chem. Soc. 1998, 120, 9545.
    • (1998) J. Am. Chem. Soc. , vol.120 , pp. 9545
    • Aiken J.D. III1    Finke, R.G.2
  • 70
    • 0042408280 scopus 로고    scopus 로고
    • note
    • 2-derived system.
  • 71
    • 0041405981 scopus 로고    scopus 로고
    • note
    • The Hg(0)-poisoning experiment is occasionally performed improperly and with a lack of understanding of what this experiment is designed to test. In one literature example, a solution of precatalyst was stirred with Hg(0) for 1 h, the solution was filtered removing the Hg(0), and a catalytic hydrogenation reaction was then started. The hydrogenation proceeded with the same catalytic activity as an experiment in which Hg(0) was never present. This was then used - erroneously! - to rule out the presence of a nanocluster catalyst. The obvious problem with this experiment is that the Hg(0) was removed by filtration before the catalytic reaction was allowed to start, that is, before any metal-particle heterogeneous catalyst was allowed to be formed. As performed, this experiment shows only that the precatalyst does not react with Hg(0). One needs to add Hg(0) to a solution that already has been shown to be active. In the above example, the Hg(0) should have remained in the reaction solution for the duration of the catalytic reaction or have been added after the catalytic reaction had already begun, as done elsewhere.
  • 72
    • 0041405982 scopus 로고    scopus 로고
    • note
    • 2, and then check for catalytic activity.
  • 77
    • 0041907084 scopus 로고    scopus 로고
    • note
    • Hg(0) is probably most effective in poisoning metals that form an amalgam, such as Pt, Pd, and Ni; metals that do not form amalgams with Hg(0), such as Ir, Rh, and Ru, may be more difficult to poison with Hg(0). Hence, if the addition of Hg(0) to the reaction solution suppresses the catalytic activity, one should perform a control experiment showing that the precatalyst complex does not react with Hg(0); if Hg(0) does react with the precatalyst, then this test becomes ambiguous. Similarly, if the addition of Hg(0) to the reaction solution has little effect on the catalytic activity, one should perform a control experiment showing that an authentic heterogeneous catalyst of the same metal is poisoned under the identical conditions.
  • 81
    • 0000512558 scopus 로고
    • Lead papers citing autocatalysis in metal film growth: (a) Lee, T. R.; Whitesides, G. M. Acc. Chem. Res. 1992, 25, 266. (b) Lee, T. R.; Laibinis, P. E.; Folkers, J. P.; Whitesides, G. M. Pure Appl. Chem. 1991, 63, 821. (c) Chae, Y. K.; Komiyama, H. J. Appl. Phys. 2001, 90, 3610. (d) Kellerman, B. K.; Chason, E.; Adams, D. P.; Mayer, T. M.; White, J. M. Surf. Sci. 1997, 375, 331. (e) Adams, D. P.; Mayer, T. M.; Chason, E.; Kellerman, B. K.; Swartzentruber, B. S. Surf. Sci. 1997, 371, 445. (f) Crane, E. L.; You, Y.; Nuzzo, R. G.; Girolami, G. S. J. Am. Chem. Soc. 2000, 122, 3422.
    • (1992) Acc. Chem. Res. , vol.25 , pp. 266
    • Lee, T.R.1    Whitesides, G.M.2
  • 82
    • 0001662593 scopus 로고
    • Lead papers citing autocatalysis in metal film growth: (a) Lee, T. R.; Whitesides, G. M. Acc. Chem. Res. 1992, 25, 266. (b) Lee, T. R.; Laibinis, P. E.; Folkers, J. P.; Whitesides, G. M. Pure Appl. Chem. 1991, 63, 821. (c) Chae, Y. K.; Komiyama, H. J. Appl. Phys. 2001, 90, 3610. (d) Kellerman, B. K.; Chason, E.; Adams, D. P.; Mayer, T. M.; White, J. M. Surf. Sci. 1997, 375, 331. (e) Adams, D. P.; Mayer, T. M.; Chason, E.; Kellerman, B. K.; Swartzentruber, B. S. Surf. Sci. 1997, 371, 445. (f) Crane, E. L.; You, Y.; Nuzzo, R. G.; Girolami, G. S. J. Am. Chem. Soc. 2000, 122, 3422.
    • (1991) Pure Appl. Chem. , vol.63 , pp. 821
    • Lee, T.R.1    Laibinis, P.E.2    Folkers, J.P.3    Whitesides, G.M.4
  • 83
    • 0035477532 scopus 로고    scopus 로고
    • Lead papers citing autocatalysis in metal film growth: (a) Lee, T. R.; Whitesides, G. M. Acc. Chem. Res. 1992, 25, 266. (b) Lee, T. R.; Laibinis, P. E.; Folkers, J. P.; Whitesides, G. M. Pure Appl. Chem. 1991, 63, 821. (c) Chae, Y. K.; Komiyama, H. J. Appl. Phys. 2001, 90, 3610. (d) Kellerman, B. K.; Chason, E.; Adams, D. P.; Mayer, T. M.; White, J. M. Surf. Sci. 1997, 375, 331. (e) Adams, D. P.; Mayer, T. M.; Chason, E.; Kellerman, B. K.; Swartzentruber, B. S. Surf. Sci. 1997, 371, 445. (f) Crane, E. L.; You, Y.; Nuzzo, R. G.; Girolami, G. S. J. Am. Chem. Soc. 2000, 122, 3422.
    • (2001) J. Appl. Phys. , vol.90 , pp. 3610
    • Chae, Y.K.1    Komiyama, H.2
  • 84
    • 0031124180 scopus 로고    scopus 로고
    • Lead papers citing autocatalysis in metal film growth: (a) Lee, T. R.; Whitesides, G. M. Acc. Chem. Res. 1992, 25, 266. (b) Lee, T. R.; Laibinis, P. E.; Folkers, J. P.; Whitesides, G. M. Pure Appl. Chem. 1991, 63, 821. (c) Chae, Y. K.; Komiyama, H. J. Appl. Phys. 2001, 90, 3610. (d) Kellerman, B. K.; Chason, E.; Adams, D. P.; Mayer, T. M.; White, J. M. Surf. Sci. 1997, 375, 331. (e) Adams, D. P.; Mayer, T. M.; Chason, E.; Kellerman, B. K.; Swartzentruber, B. S. Surf. Sci. 1997, 371, 445. (f) Crane, E. L.; You, Y.; Nuzzo, R. G.; Girolami, G. S. J. Am. Chem. Soc. 2000, 122, 3422.
    • (1997) Surf. Sci. , vol.375 , pp. 331
    • Kellerman, B.K.1    Chason, E.2    Adams, D.P.3    Mayer, T.M.4    White, J.M.5
  • 85
    • 0031077492 scopus 로고    scopus 로고
    • Lead papers citing autocatalysis in metal film growth: (a) Lee, T. R.; Whitesides, G. M. Acc. Chem. Res. 1992, 25, 266. (b) Lee, T. R.; Laibinis, P. E.; Folkers, J. P.; Whitesides, G. M. Pure Appl. Chem. 1991, 63, 821. (c) Chae, Y. K.; Komiyama, H. J. Appl. Phys. 2001, 90, 3610. (d) Kellerman, B. K.; Chason, E.; Adams, D. P.; Mayer, T. M.; White, J. M. Surf. Sci. 1997, 375, 331. (e) Adams, D. P.; Mayer, T. M.; Chason, E.; Kellerman, B. K.; Swartzentruber, B. S. Surf. Sci. 1997, 371, 445. (f) Crane, E. L.; You, Y.; Nuzzo, R. G.; Girolami, G. S. J. Am. Chem. Soc. 2000, 122, 3422.
    • (1997) Surf. Sci. , vol.371 , pp. 445
    • Adams, D.P.1    Mayer, T.M.2    Chason, E.3    Kellerman, B.K.4    Swartzentruber, B.S.5
  • 86
    • 0034639918 scopus 로고    scopus 로고
    • Lead papers citing autocatalysis in metal film growth: (a) Lee, T. R.; Whitesides, G. M. Acc. Chem. Res. 1992, 25, 266. (b) Lee, T. R.; Laibinis, P. E.; Folkers, J. P.; Whitesides, G. M. Pure Appl. Chem. 1991, 63, 821. (c) Chae, Y. K.; Komiyama, H. J. Appl. Phys. 2001, 90, 3610. (d) Kellerman, B. K.; Chason, E.; Adams, D. P.; Mayer, T. M.; White, J. M. Surf. Sci. 1997, 375, 331. (e) Adams, D. P.; Mayer, T. M.; Chason, E.; Kellerman, B. K.; Swartzentruber, B. S. Surf. Sci. 1997, 371, 445. (f) Crane, E. L.; You, Y.; Nuzzo, R. G.; Girolami, G. S. J. Am. Chem. Soc. 2000, 122, 3422.
    • (2000) J. Am. Chem. Soc. , vol.122 , pp. 3422
    • Crane, E.L.1    You, Y.2    Nuzzo, R.G.3    Girolami, G.S.4
  • 87
    • 33751392578 scopus 로고
    • Kinetic studies of autocatalytic metal film growth: (a) Xue, Z.; Thridandam, H.; Kaesz, H. D.; Hicks, R. F. Chem. Mater. 1992, 4, 162. (b) See also their short review: Zinn, A.; Niemer, B.; Kaesz, H. D. Adv. Mater. 1992, 4, 375.
    • (1992) Chem. Mater. , vol.4 , pp. 162
    • Xue, Z.1    Thridandam, H.2    Kaesz, H.D.3    Hicks, R.F.4
  • 88
    • 0000144751 scopus 로고
    • Kinetic studies of autocatalytic metal film growth: (a) Xue, Z.; Thridandam, H.; Kaesz, H. D.; Hicks, R. F. Chem. Mater. 1992, 4, 162. (b) See also their short review: Zinn, A.; Niemer, B.; Kaesz, H. D. Adv. Mater. 1992, 4, 375.
    • (1992) Adv. Mater. , vol.4 , pp. 375
    • Zinn, A.1    Niemer, B.2    Kaesz, H.D.3
  • 89
    • 0041907079 scopus 로고
    • Kinetics of the related topic of autocatalytic electrochemical metal film growth: (a) Lyamina, L. I.; Tarasova, N. I.; Gorbunova, K. M. Elektrokhimiya 1979, 15, 1615. (b) Schrebler, R.; Basaez, L.; Gardiazabal, I.; Gomez, H.; Cordova, R.; Quierolo, F. Boletin de la Sociedad Chilena de Quimico 1991, 36, 65.
    • (1979) Elektrokhimiya , vol.15 , pp. 1615
    • Lyamina, L.I.1    Tarasova, N.I.2    Gorbunova, K.M.3
  • 92
    • 0030018753 scopus 로고    scopus 로고
    • 2, are: (a) Lin, W.; Wiegand, B. C.; Nuzzo, R. G.; Girolami, G. S. J. Am. Chem. Soc. 1996, 118, 5977. (b) Lin, W.; Nuzzo, R. G.; Girolami, G. S. J. Am. Chem. Soc. 1996, 118, 5988.
    • (1996) J. Am. Chem. Soc. , vol.118 , pp. 5988
    • Lin, W.1    Nuzzo, R.G.2    Girolami, G.S.3
  • 95
    • 0041907077 scopus 로고    scopus 로고
    • note
    • 3COOH + acetone. We thank a referee for pointing out this possibility.
  • 96
    • 0036812966 scopus 로고    scopus 로고
    • Consistent with this argument, the simple addition of a noncoordinating base such as Proton Sponge produces a much better nanocluster stabilizer: Özkar, S.; Finke, R. G. Langmuir 2002, 18, 7653.
    • (2002) Langmuir , vol.18 , pp. 7653
    • Özkar, S.1    Finke, R.G.2
  • 97
    • 0042408274 scopus 로고    scopus 로고
    • note
    • The curve-fit is easily within experimental error of the data for at least the first half of the benzene hydrogenation reaction. However, at longer times the hydrogenation is slower than predicted by the curve-fit. Deviations between the curve-fit and the data near the end of the reaction can occur for a variety of understood reasons. For example, the pseudoelementary step method used herein assumes that the catalytic reaction is zero order in substrate. Obviously, at some point later in the reaction, when the substrate concentration approaches zero, this assumption is no longer true. Also, any deactivation process that occurs to a significant extent on the time scale of the experiment will cause deviations such as those seen in Figure 2. For example, a loss of catalyst surface area due to (observed) bulk metal formation will cause the reaction to be slower than predicted. For these reasons, only the first half of the data in Figure 2 was used to generate the curve-fit, a precaution we typically employ.
  • 100
    • 0042909154 scopus 로고    scopus 로고
    • note
    • 2.
  • 104
    • 0041907068 scopus 로고    scopus 로고
    • note
    • 6)], a catalyst previously believed to be homogeneous. The bottom line here is that these criteria are not reliable indicators of whether the catalyst is homogeneous or heterogeneous and, hence, are not recommended, especially now that the now proven methodology in Figure 1 is available. Note also that it is unlikely that further studies of these criteria will ever make them easy to use or reliable (i.e., in comparison to the methods in Figure 1). This follows since one would need, for each system at hand, to have authentic homogeneous and heterogeneous (i.e., both nanocluster and bulk metal) catalysts of the same metal, ligands, and nanocluster stabilizers available for the needed control studies; that is, one would have to have presolved the "is it homogeneous or heterogeneous catalysis?" question before such criteria could be reliably used! The conceptual significance of, and the "Catch 22" situation present by, such up-front control experiments with authentic catalysts is presented and discussed as the topmost part of Figure 5 elsewhere.
  • 105
    • 0042909150 scopus 로고    scopus 로고
    • Experiments in progress
    • Hagen, C.; Finke, R. G. Experiments in progress.
    • Hagen, C.1    Finke, R.G.2
  • 106
    • 0042909153 scopus 로고    scopus 로고
    • note
    • formation bulk metal (low activity to inactive).
  • 115
    • 0042408270 scopus 로고    scopus 로고
    • note
    • -1.
  • 116
    • 0042909152 scopus 로고    scopus 로고
    • note
    • 2 pressure uptake curve shown in Figure 3.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.