메뉴 건너뛰기




Volumn 332, Issue 5, 2003, Pages 1095-1113

Identification of substrate binding sites in enzymes by computational solvent mapping

Author keywords

Ligand binding; Organic solvent; Protein solvation; Structural genomics; X ray structure

Indexed keywords

ENZYME; HALOALKANE DEHALOGENASE; THERMOLYSIN; UNCLASSIFIED DRUG;

EID: 0042386537     PISSN: 00222836     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmb.2003.08.019     Document Type: Article
Times cited : (72)

References (69)
  • 2
    • 0034527014 scopus 로고    scopus 로고
    • Combining structural genomics and enzymology: Completing the picture in metabolic pathways and enzyme active sites
    • Erlandsen H., Abola E.E., Stevens R.C. Combining structural genomics and enzymology: completing the picture in metabolic pathways and enzyme active sites. Curr. Opin. Struct. Biol. 10:2000;719-730.
    • (2000) Curr. Opin. Struct. Biol. , vol.10 , pp. 719-730
    • Erlandsen, H.1    Abola, E.E.2    Stevens, R.C.3
  • 3
    • 0034060287 scopus 로고    scopus 로고
    • Structural genomics and its importance for gene function analysis
    • Skolnick J., Fetrow J.S., Kolinski A. Structural genomics and its importance for gene function analysis. Nature Biotechnol. 18:2000;283-287.
    • (2000) Nature Biotechnol. , vol.18 , pp. 283-287
    • Skolnick, J.1    Fetrow, J.S.2    Kolinski, A.3
  • 4
    • 0029868304 scopus 로고    scopus 로고
    • Locating and characterizing binding sites on proteins
    • Mattos C., Ringe D. Locating and characterizing binding sites on proteins. Nature Biotechnol. 14:1996;595-599.
    • (1996) Nature Biotechnol. , vol.14 , pp. 595-599
    • Mattos, C.1    Ringe, D.2
  • 5
    • 0033025808 scopus 로고    scopus 로고
    • Analysis of the binding surfaces of proteins
    • Ringe D., Mattos C. Analysis of the binding surfaces of proteins. Med. Res. Rev. 19:1999;321-331.
    • (1999) Med. Res. Rev. , vol.19 , pp. 321-331
    • Ringe, D.1    Mattos, C.2
  • 7
    • 0032705748 scopus 로고    scopus 로고
    • Locating interaction sites on proteins: The crystal structure of thermolysin soaked in 2% to 100% isopropanol
    • English A.C., Done S.H., Caves L.S., Groom C.R., Hubbard R.E. Locating interaction sites on proteins: the crystal structure of thermolysin soaked in 2% to 100% isopropanol. Proteins: Struct. Funct. Genet. 37:1999;628-640.
    • (1999) Proteins: Struct. Funct. Genet. , vol.37 , pp. 628-640
    • English, A.C.1    Done, S.H.2    Caves, L.S.3    Groom, C.R.4    Hubbard, R.E.5
  • 8
    • 0035044857 scopus 로고    scopus 로고
    • Experimental and computational mapping of the binding surface of a crystalline protein
    • English A.C., Groom C.R., Hubbard R.E. Experimental and computational mapping of the binding surface of a crystalline protein. Protein Eng. 14:2001;47-59.
    • (2001) Protein Eng. , vol.14 , pp. 47-59
    • English, A.C.1    Groom, C.R.2    Hubbard, R.E.3
  • 9
    • 0030965629 scopus 로고    scopus 로고
    • Organic solvents identify specific ligand binding sites on protein surfaces
    • Liepinsh E., Otting G. Organic solvents identify specific ligand binding sites on protein surfaces. Nature Biotechnol. 15:1997;264-268.
    • (1997) Nature Biotechnol. , vol.15 , pp. 264-268
    • Liepinsh, E.1    Otting, G.2
  • 10
    • 0037007068 scopus 로고    scopus 로고
    • Computational mapping identifies the binding sites of organic solvents on proteins
    • Dennis S., Kortvelyesi T., Vajda S. Computational mapping identifies the binding sites of organic solvents on proteins. Proc. Natl Acad. Sci. USA. 99:2002;4290-4295.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 4290-4295
    • Dennis, S.1    Kortvelyesi, T.2    Vajda, S.3
  • 12
    • 0029913807 scopus 로고    scopus 로고
    • The evolutionary trace method defines the binding surfaces common to a protein family
    • Lichtarge O., Bourne H.R., Cohen F.E. The evolutionary trace method defines the binding surfaces common to a protein family. J. Mol. Biol. 257:1996;342-358.
    • (1996) J. Mol. Biol. , vol.257 , pp. 342-358
    • Lichtarge, O.1    Bourne, H.R.2    Cohen, F.E.3
  • 13
    • 0037423759 scopus 로고    scopus 로고
    • An accurate, sensitive, and scalable method to identify functional sites in protein structures
    • Yao H., Kristensen D.M., Mihalek I., Sowa M.E., Shaw C., Kimmel M., et al. An accurate, sensitive, and scalable method to identify functional sites in protein structures. J. Mol. Biol. 326:2003;255-261.
    • (2003) J. Mol. Biol. , vol.326 , pp. 255-261
    • Yao, H.1    Kristensen, D.M.2    Mihalek, I.3    Sowa, M.E.4    Shaw, C.5    Kimmel, M.6
  • 14
    • 0037470597 scopus 로고    scopus 로고
    • Automatic methods for predicting functionally important residues
    • del Sol Mesa A., Pazos F., Valencia A. Automatic methods for predicting functionally important residues. J. Mol. Biol. 326:2003;1289-1302.
    • (2003) J. Mol. Biol. , vol.326 , pp. 1289-1302
    • Del Sol Mesa, A.1    Pazos, F.2    Valencia, A.3
  • 15
    • 0031370977 scopus 로고    scopus 로고
    • LIGSITE: Automatic and efficient detection of potential small molecule-binding sites in enzymes
    • Hendlich M., Rippmann F., Barnickel G. LIGSITE: automatic and efficient detection of potential small molecule-binding sites in enzymes. J. Mol. Graph. Model. 15:1997;359-363.
    • (1997) J. Mol. Graph. Model. , vol.15 , pp. 359-363
    • Hendlich, M.1    Rippmann, F.2    Barnickel, G.3
  • 16
    • 0031687653 scopus 로고    scopus 로고
    • Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design
    • Liang J., Edelsbrunner J., Woodward C. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci. 7:1998;1884-1897.
    • (1998) Protein Sci. , vol.7 , pp. 1884-1897
    • Liang, J.1    Edelsbrunner, J.2    Woodward, C.3
  • 17
    • 0002052671 scopus 로고    scopus 로고
    • On the definition and the construction of pockets in macromolecules
    • Edelsbrunner H., Facello M., Liang J. On the definition and the construction of pockets in macromolecules. Disc. Appl. Math. 88:1998;83-102.
    • (1998) Disc. Appl. Math. , vol.88 , pp. 83-102
    • Edelsbrunner, H.1    Facello, M.2    Liang, J.3
  • 18
    • 0342424187 scopus 로고    scopus 로고
    • Fast prediction and visualization of protein binding pockets with PASS
    • Brady G.P. Jr, Stouten P.F.W. Fast prediction and visualization of protein binding pockets with PASS. J. Comput. Aided Mol. Des. 14:2000;383-401.
    • (2000) J. Comput. Aided Mol. Des. , vol.14 , pp. 383-401
    • Brady G.P., Jr.1    Stouten, P.F.W.2
  • 19
    • 0035940421 scopus 로고    scopus 로고
    • THEMATICS: A simple computational predictor of enzyme function from structure
    • Ondrechen M.J., Clifton J.G., Ringe D. THEMATICS: a simple computational predictor of enzyme function from structure. Proc. Natl Acad. Sci USA. 98:2001;12473-12478.
    • (2001) Proc. Natl Acad. Sci USA , vol.98 , pp. 12473-12478
    • Ondrechen, M.J.1    Clifton, J.G.2    Ringe, D.3
  • 20
    • 0042674397 scopus 로고    scopus 로고
    • Using a neural network and sparial clustering to predict the location of active sites in enzymes
    • Gutteridge A., Bartlett G.J., Thornton J.M. Using a neural network and sparial clustering to predict the location of active sites in enzymes. J. Mol. Biol. 330:2003;719-734.
    • (2003) J. Mol. Biol. , vol.330 , pp. 719-734
    • Gutteridge, A.1    Bartlett, G.J.2    Thornton, J.M.3
  • 22
    • 33845280830 scopus 로고
    • Structural basis of the action of thermolysin and related zinc peptidases
    • Matthews B.W. Structural basis of the action of thermolysin and related zinc peptidases. Accts Chem. Res. 21:1988;333-340.
    • (1988) Accts Chem. Res. , vol.21 , pp. 333-340
    • Matthews, B.W.1
  • 23
    • 7744244599 scopus 로고    scopus 로고
    • Recent advances in zinc enzymology
    • Lipscomb W.N., Strater N. Recent advances in zinc enzymology. Chem. Rev. 96:1996;2375-2433.
    • (1996) Chem. Rev. , vol.96 , pp. 2375-2433
    • Lipscomb, W.N.1    Strater, N.2
  • 24
    • 0030656495 scopus 로고    scopus 로고
    • Evidence by site-directed mutagenesis that arginine 203 of thermolysin and arginine 717 of neprilysin (neutral endopeptidase) play equivalent critical roles in substrate hydrolysis and inhibitor binding
    • Marie-Claire C., Ruffet E., Antonczak S., Beaumont A., O'Donohue M., Roques B.P., Fournie-Zaluski M.C. Evidence by site-directed mutagenesis that arginine 203 of thermolysin and arginine 717 of neprilysin (neutral endopeptidase) play equivalent critical roles in substrate hydrolysis and inhibitor binding. Biochemistry. 36:1997;13938-13945.
    • (1997) Biochemistry , vol.36 , pp. 13938-13945
    • Marie-Claire, C.1    Ruffet, E.2    Antonczak, S.3    Beaumont, A.4    O'Donohue, M.5    Roques, B.P.6    Fournie-Zaluski, M.C.7
  • 25
    • 0031767267 scopus 로고    scopus 로고
    • Differences in transition state stabilization between thermolysin (EC 3.4.24.27) and neprilysin (EC 3.4.24.11)
    • Marie-Claire C., Ruffet E., Tiraboschi G., Fournie-Zaluski M.C. Differences in transition state stabilization between thermolysin (EC 3.4.24.27) and neprilysin (EC 3.4.24.11). FEBS Letters. 438:1998;215-219.
    • (1998) FEBS Letters , vol.438 , pp. 215-219
    • Marie-Claire, C.1    Ruffet, E.2    Tiraboschi, G.3    Fournie-Zaluski, M.C.4
  • 27
    • 0030827288 scopus 로고    scopus 로고
    • Mechanism of enolase: The crystal structure of asymmetric dimer enolase - 2-phospho-D-glycerate/enolase - Phosphoenolpyruvate at 2.0 Å resolution
    • Zhang E., Brewer J.M., Minor W., Carreira L.A., Lebioda L. Mechanism of enolase: the crystal structure of asymmetric dimer enolase - 2-phospho-D-glycerate/enolase - phosphoenolpyruvate at 2.0 Å resolution. Biochemistry. 36:1997;12526-12534.
    • (1997) Biochemistry , vol.36 , pp. 12526-12534
    • Zhang, E.1    Brewer, J.M.2    Minor, W.3    Carreira, L.A.4    Lebioda, L.5
  • 28
    • 0030009782 scopus 로고    scopus 로고
    • A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: Structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 Å resolution
    • Larsen T.M., Wedekind J.E., Rayment I., Reed G.H. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 Å resolution. Biochemistry. 35:1996;4349-4358.
    • (1996) Biochemistry , vol.35 , pp. 4349-4358
    • Larsen, T.M.1    Wedekind, J.E.2    Rayment, I.3    Reed, G.H.4
  • 29
    • 0032473874 scopus 로고    scopus 로고
    • Significance of the enzymatic properties of yeast S39A enolase to the catalytic mechanism
    • Brewer J.M., Glover C.V.C., Holland M.J., Lebioda L. Significance of the enzymatic properties of yeast S39A enolase to the catalytic mechanism. Biochim. Biophys. Acta. 1383:1998;351-355.
    • (1998) Biochim. Biophys. Acta , vol.1383 , pp. 351-355
    • Brewer, J.M.1    Glover, C.V.C.2    Holland, M.J.3    Lebioda, L.4
  • 30
    • 0033554373 scopus 로고    scopus 로고
    • Role of His159 in yeast enolase catalysis
    • Vinarov D.A., Nowak T. Role of His159 in yeast enolase catalysis. Biochemistry. 18:1999;12138-12149.
    • (1999) Biochemistry , vol.18 , pp. 12138-12149
    • Vinarov, D.A.1    Nowak, T.2
  • 32
    • 0030877826 scopus 로고    scopus 로고
    • 1. Atomic dissection of the enzyme-substrate interactions
    • 1. Atomic dissection of the enzyme-substrate interactions. Eur. J. Biochem. 247:1997;1-11.
    • (1997) Eur. J. Biochem. , vol.247 , pp. 1-11
    • Steyaert, J.1
  • 33
    • 0033604858 scopus 로고    scopus 로고
    • Modification of ribonuclease T1 specificity by random mutagenesis of the substrate binding segment
    • Hubner B., Haensler M., Hahn U. Modification of ribonuclease T1 specificity by random mutagenesis of the substrate binding segment. Biochemistry. 38:1999;1371-1376.
    • (1999) Biochemistry , vol.38 , pp. 1371-1376
    • Hubner, B.1    Haensler, M.2    Hahn, U.3
  • 35
    • 0035957255 scopus 로고    scopus 로고
    • Probing functional perfection in substructures of ribonuclease T-1: Double combinatorial random mutagenesis involving Asn43, Asn44, and Glu46 in the guanine binding loop
    • Kumar K., Walz F.G. Probing functional perfection in substructures of ribonuclease T-1: double combinatorial random mutagenesis involving Asn43, Asn44, and Glu46 in the guanine binding loop. Biochemistry. 40:2001;7348-7357.
    • (2001) Biochemistry , vol.40 , pp. 7348-7357
    • Kumar, K.1    Walz, F.G.2
  • 36
    • 0023498404 scopus 로고
    • Crystallography and site directed mutagenesis of yeast triosephosphate isomerase: What can we learn about catalysis from a "simple" enzyme?
    • Alber T.C., Davenport R.C. Jr, Giammona D.A., Lolis E., Petsko G.A., Ringe D. Crystallography and site directed mutagenesis of yeast triosephosphate isomerase: what can we learn about catalysis from a "simple" enzyme? Cold Spring Harbor Symp. Quant. Biol. 52:1987;603-613.
    • (1987) Cold Spring Harbor Symp. Quant. Biol. , vol.52 , pp. 603-613
    • Alber, T.C.1    Davenport R.C., Jr.2    Giammona, D.A.3    Lolis, E.4    Petsko, G.A.5    Ringe, D.6
  • 37
    • 0025015392 scopus 로고
    • Anatomy of a conformational change: Hinged "lid" motion of the triosephosphate isomerase loop
    • Joseph D., Petzko G.A., Karplus M. Anatomy of a conformational change: hinged "lid" motion of the triosephosphate isomerase loop. Science. 249:1990;1425-1428.
    • (1990) Science , vol.249 , pp. 1425-1428
    • Joseph, D.1    Petzko, G.A.2    Karplus, M.3
  • 38
    • 0035865949 scopus 로고    scopus 로고
    • Modeling, mutagenesis, and structural studies on the fully conserved phosphate-binding loop (loop 8) of triosephosphate isomerase: Toward a new substrate specificity
    • Norledge B.V., Lamber A.M., Abagyan R.A., Rottmann A., Fernandez A.M., Filimonov V.V., et al. Modeling, mutagenesis, and structural studies on the fully conserved phosphate-binding loop (loop 8) of triosephosphate isomerase: toward a new substrate specificity. Proteins: Struct. Funct. Genet. 42:2001;383-389.
    • (2001) Proteins: Struct. Funct. Genet. , vol.42 , pp. 383-389
    • Norledge, B.V.1    Lamber, A.M.2    Abagyan, R.A.3    Rottmann, A.4    Fernandez, A.M.5    Filimonov, V.V.6
  • 39
    • 0028905227 scopus 로고
    • Structural origins of substrate determination in trypsin and chymotrypsin
    • Perona J.J., Hedstrom L., Rutter W.J., Fletterick R.J. Structural origins of substrate determination in trypsin and chymotrypsin. Biochemistry. 34:1995;1489-1499.
    • (1995) Biochemistry , vol.34 , pp. 1489-1499
    • Perona, J.J.1    Hedstrom, L.2    Rutter, W.J.3    Fletterick, R.J.4
  • 40
    • 0023161184 scopus 로고
    • The three-dimensional structure of Asn102 mutant of trypsin: Role of Asp102 in serine protease catalysis
    • Sprang S., Standing T., Fletterick R.J., Stroud R.M., Finer-Moore J., Xuong N.H., et al. The three-dimensional structure of Asn102 mutant of trypsin: role of Asp102 in serine protease catalysis. Science. 237:1987;905-909.
    • (1987) Science , vol.237 , pp. 905-909
    • Sprang, S.1    Standing, T.2    Fletterick, R.J.3    Stroud, R.M.4    Finer-Moore, J.5    Xuong, N.H.6
  • 41
    • 0031698348 scopus 로고    scopus 로고
    • The crystal structure of anionic salmon trypsin in complex with bovine pancreatic trypsin inhibitor
    • Helland R., Leiros I., Berglund G.I., Willassen N.P., Smalas A.O. The crystal structure of anionic salmon trypsin in complex with bovine pancreatic trypsin inhibitor. Eur. J. Biochem. 256:1998;317-324.
    • (1998) Eur. J. Biochem. , vol.256 , pp. 317-324
    • Helland, R.1    Leiros, I.2    Berglund, G.I.3    Willassen, N.P.4    Smalas, A.O.5
  • 42
    • 0034713880 scopus 로고    scopus 로고
    • Crystal structures of fructose-1,6-bisphosphatase: Mechanism of catalysis and allosteric inhibition revealed in product complexes
    • Choe J., Fromm H.J., Honzatko R.B. Crystal structures of fructose-1,6-bisphosphatase: mechanism of catalysis and allosteric inhibition revealed in product complexes. Biochemistry. 39:2000;8565-8574.
    • (2000) Biochemistry , vol.39 , pp. 8565-8574
    • Choe, J.1    Fromm, H.J.2    Honzatko, R.B.3
  • 43
    • 0026568163 scopus 로고
    • Crystal structure of the neutral form of fructose-1,6-bisphosphatase complexed with regulatory inhibitor fructose-2,6-bisphosphate at 2.6 Å resolution
    • Liang J., Huang S., Zhang Y., Ke H., Lipscomb W.N. Crystal structure of the neutral form of fructose-1,6-bisphosphatase complexed with regulatory inhibitor fructose-2,6-bisphosphate at 2.6 Å resolution. Proc. Natl Acad. Sci. USA. 89:1992;2404-2408.
    • (1992) Proc. Natl Acad. Sci. USA , vol.89 , pp. 2404-2408
    • Liang, J.1    Huang, S.2    Zhang, Y.3    Ke, H.4    Lipscomb, W.N.5
  • 44
    • 0025160386 scopus 로고
    • Crystal structure of fructose-1,6-bisphosphatase complexed with fructose 6-phosphate, AMP, and magnesium
    • Ke H., Zhang Y., Lipscomb W.N. Crystal structure of fructose-1,6-bisphosphatase complexed with fructose 6-phosphate, AMP, and magnesium. Proc. Natl Acad. Sci. USA. 87:1990;5243-5247.
    • (1990) Proc. Natl Acad. Sci. USA , vol.87 , pp. 5243-5247
    • Ke, H.1    Zhang, Y.2    Lipscomb, W.N.3
  • 45
    • 0029088924 scopus 로고
    • Crystallographic evidence for the action of potassium, thallium, and lithium ions on fructose-1,6-bisphosphatase
    • Villeret V., Huang S., Fromm H.J., Lipscomb W.N. Crystallographic evidence for the action of potassium, thallium, and lithium ions on fructose-1,6-bisphosphatase. Proc. Natl Acad. Sci. USA. 92:1995;8916-8920.
    • (1995) Proc. Natl Acad. Sci. USA , vol.92 , pp. 8916-8920
    • Villeret, V.1    Huang, S.2    Fromm, H.J.3    Lipscomb, W.N.4
  • 46
    • 0029800609 scopus 로고    scopus 로고
    • Kinetic characterization and X-ray structure of a mutant of haloalkane dehalogenase with higher catalytic activity and modified substrate range
    • Schanstra J.P., Ridder I.S., Heimeriks G.J., Rink R., Poelarends G.J., Kalk K.H., et al. Kinetic characterization and X-ray structure of a mutant of haloalkane dehalogenase with higher catalytic activity and modified substrate range. Biochemistry. 35:1996;13186-13195.
    • (1996) Biochemistry , vol.35 , pp. 13186-13195
    • Schanstra, J.P.1    Ridder, I.S.2    Heimeriks, G.J.3    Rink, R.4    Poelarends, G.J.5    Kalk, K.H.6
  • 47
    • 0033554390 scopus 로고    scopus 로고
    • Crystallographic and kinetic evidence of a collision complex formed during halide import in haloalkane dehalogenase
    • Pikkemaat M.G., Ridder I.S., Rozeboom H.J., Kalk K.H., Dijkstra B.W., Janssen D.B. Crystallographic and kinetic evidence of a collision complex formed during halide import in haloalkane dehalogenase. Biochemistry. 38:1999;12052-12061.
    • (1999) Biochemistry , vol.38 , pp. 12052-12061
    • Pikkemaat, M.G.1    Ridder, I.S.2    Rozeboom, H.J.3    Kalk, K.H.4    Dijkstra, B.W.5    Janssen, D.B.6
  • 49
    • 0021871375 scopus 로고
    • A computational procedure for determining energetically favorable binding sites on biologically important macromolecules
    • Goodford P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28:1985;849-875.
    • (1985) J. Med. Chem. , vol.28 , pp. 849-875
    • Goodford, P.J.1
  • 50
    • 0025916872 scopus 로고
    • Functionality maps of binding sites: A multiple copy simultaneous search method
    • Miranker A., Karplus M. Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins: Struct. Funct. Genet. 11:1991;29-34.
    • (1991) Proteins: Struct. Funct. Genet. , vol.11 , pp. 29-34
    • Miranker, A.1    Karplus, M.2
  • 51
    • 0032530578 scopus 로고    scopus 로고
    • Clustering of low-energy conformations near the native structures of small proteins
    • Shortle D., Simons K.T., Baker D. Clustering of low-energy conformations near the native structures of small proteins. Proc. Natl Acad. Sci. USA. 95:1998;11158-11162.
    • (1998) Proc. Natl Acad. Sci. USA , vol.95 , pp. 11158-11162
    • Shortle, D.1    Simons, K.T.2    Baker, D.3
  • 52
    • 85031070769 scopus 로고    scopus 로고
    • ClusPro: An automated docking and discrimination method for the prediction of protein complexes
    • in the press
    • Comeau S.R., Gatchell D., Vajda S., Camacho C.J. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics. 2003;. in the press.
    • (2003) Bioinformatics
    • Comeau, S.R.1    Gatchell, D.2    Vajda, S.3    Camacho, C.J.4
  • 54
    • 0025135112 scopus 로고
    • Automated docking of substrates to proteins by simulated annealing
    • Goodsell D.S., Olson A.J. Automated docking of substrates to proteins by simulated annealing. Proteins: Struct. Funct. Genet. 8:1990;195-202.
    • (1990) Proteins: Struct. Funct. Genet. , vol.8 , pp. 195-202
    • Goodsell, D.S.1    Olson, A.J.2
  • 55
    • 0035859857 scopus 로고    scopus 로고
    • Propagating conformational changes over long (and short) distances in proteins
    • Yu E.W., Koshland D.E. Jr. Propagating conformational changes over long (and short) distances in proteins. Proc. Natl. Acad. Sci. USA. 98:2001;9517-9520.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 9517-9520
    • Yu, E.W.1    Koshland D.E., Jr.2
  • 56
    • 0033963834 scopus 로고    scopus 로고
    • Molecular modeling and biocatalysis: Explanations, predictions, limitations, and opportunities
    • Kazlauskas R.J. Molecular modeling and biocatalysis: explanations, predictions, limitations, and opportunities. Curr. Opin. Chem. Biol. 4:2000;81-88.
    • (2000) Curr. Opin. Chem. Biol. , vol.4 , pp. 81-88
    • Kazlauskas, R.J.1
  • 57
    • 0030749297 scopus 로고    scopus 로고
    • Substrate docking algorithms and predictions of the substrate specificity of cytochrome P450cam and its L244A mutant
    • DeVoss J.J., Sibbesen O., Zhang Z., Ortiz de Montellano P.R. Substrate docking algorithms and predictions of the substrate specificity of cytochrome P450cam and its L244A mutant. J. Am. Chem. Soc. 119:1997;5489-5498.
    • (1997) J. Am. Chem. Soc. , vol.119 , pp. 5489-5498
    • DeVoss, J.J.1    Sibbesen, O.2    Zhang, Z.3    Ortiz de Montellano, P.R.4
  • 58
    • 0037079587 scopus 로고    scopus 로고
    • Docking of small ligands to low-resolution and theoretically predicted receptor structures
    • Wojciechowski M., Skolnick J. Docking of small ligands to low-resolution and theoretically predicted receptor structures. J. Comp. Chem. 23:2002;189-197.
    • (2002) J. Comp. Chem. , vol.23 , pp. 189-197
    • Wojciechowski, M.1    Skolnick, J.2
  • 59
    • 0023779259 scopus 로고
    • Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies, and conformational analysis
    • Gilson M.K., Honig B. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins: Struct. Funct. Genet. 4:1988;7-18.
    • (1988) Proteins: Struct. Funct. Genet. , vol.4 , pp. 7-18
    • Gilson, M.K.1    Honig, B.2
  • 60
    • 0029016182 scopus 로고
    • Classical electrostatics in biology and chemistry
    • Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 268:1995;1144-1149.
    • (1995) Science , vol.268 , pp. 1144-1149
    • Honig, B.1    Nicholls, A.2
  • 61
    • 0000915619 scopus 로고
    • Grid positioning independence and the reduction of self-energy in the solution of the Poisson-Boltzmann equation
    • Bruccoleri R.E. Grid positioning independence and the reduction of self-energy in the solution of the Poisson-Boltzmann equation. J. Comp. Chem. 14:1993;1417-1422.
    • (1993) J. Comp. Chem. , vol.14 , pp. 1417-1422
    • Bruccoleri, R.E.1
  • 62
    • 0031552370 scopus 로고    scopus 로고
    • Determination of atomic desolvation energies from the structures of crystallized proteins
    • Zhang C., Vasmatzis G., Cornette J.L., DeLisi C. Determination of atomic desolvation energies from the structures of crystallized proteins. J. Mol. Biol. 267:1996;707-726.
    • (1996) J. Mol. Biol. , vol.267 , pp. 707-726
    • Zhang, C.1    Vasmatzis, G.2    Cornette, J.L.3    DeLisi, C.4
  • 63
    • 33845377127 scopus 로고
    • Estimation of effective interresidue contact energies from protein crystal structures: Quasi-chemical approximation
    • Miyazava S., Jernigan R. Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules. 18:1985;534-552.
    • (1985) Macromolecules , vol.18 , pp. 534-552
    • Miyazava, S.1    Jernigan, R.2
  • 64
    • 0028984540 scopus 로고
    • Protein docking for low-resolution structures
    • Vakser I.A. Protein docking for low-resolution structures. Protein Eng. 8:1995;371-377.
    • (1995) Protein Eng. , vol.8 , pp. 371-377
    • Vakser, I.A.1
  • 65
    • 0033587727 scopus 로고    scopus 로고
    • A systematic study of low-resolution recognition in protein-protein complexes
    • Vakser I.A., Matar O.G., Lam C.F. A systematic study of low-resolution recognition in protein-protein complexes. Proc. Natl Acad. Sci. USA. 96:1999;8477-8482.
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 8477-8482
    • Vakser, I.A.1    Matar, O.G.2    Lam, C.F.3
  • 66
    • 0012227656 scopus 로고    scopus 로고
    • A comprehensive analytical treatment of continuum electrostatics
    • Schaefer M., Karplus M.A. A comprehensive analytical treatment of continuum electrostatics. J. Phys. Chem. 100:1996;1578-1599.
    • (1996) J. Phys. Chem. , vol.100 , pp. 1578-1599
    • Schaefer, M.1    Karplus, M.A.2
  • 68
    • 0028922586 scopus 로고
    • LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions
    • Wallace A.C., Laskowski R.A., Thornton J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8:1995;127-134.
    • (1995) Protein Eng. , vol.8 , pp. 127-134
    • Wallace, A.C.1    Laskowski, R.A.2    Thornton, J.M.3
  • 69
    • 0028304962 scopus 로고
    • Satisfying hydrogen bonding potential in proteins
    • McDonald I.K., Thornton J.M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238:1994;777-793.
    • (1994) J. Mol. Biol. , vol.238 , pp. 777-793
    • McDonald, I.K.1    Thornton, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.