메뉴 건너뛰기




Volumn 15, Issue 4, 2003, Pages 430-437

Spatial control of exocytosis

Author keywords

[No Author keywords available]

Indexed keywords

CARRIER PROTEIN; MEMBRANE PROTEIN; SNARE PROTEIN;

EID: 0041765796     PISSN: 09550674     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0955-0674(03)00074-7     Document Type: Review
Times cited : (31)

References (74)
  • 2
    • 0036673069 scopus 로고    scopus 로고
    • Snares and Munc18 in synaptic vesicle fusion
    • Rizo J., Sudhof T.C. Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci. 3:2002;641-653.
    • (2002) Nat Rev Neurosci , vol.3 , pp. 641-653
    • Rizo, J.1    Sudhof, T.C.2
  • 4
    • 0035344650 scopus 로고    scopus 로고
    • Cell control by membrane-cytoskeleton adhesion
    • Sheetz M.P. Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol. 2:2001;392-396.
    • (2001) Nat Rev Mol Cell Biol , vol.2 , pp. 392-396
    • Sheetz, M.P.1
  • 5
    • 0037155686 scopus 로고    scopus 로고
    • Fusion and fission: Membrane trafficking in animal cytokinesis
    • Finger F.P., White J.G. Fusion and fission: membrane trafficking in animal cytokinesis. Cell. 108:2002;727-730.
    • (2002) Cell , vol.108 , pp. 727-730
    • Finger, F.P.1    White, J.G.2
  • 6
    • 0036707863 scopus 로고    scopus 로고
    • Membrane trafficking during plant cytokinesis
    • Bednarek S.Y., Falbel T.G. Membrane trafficking during plant cytokinesis. Traffic. 3:2002;621-629.
    • (2002) Traffic , vol.3 , pp. 621-629
    • Bednarek, S.Y.1    Falbel, T.G.2
  • 7
    • 0030045345 scopus 로고    scopus 로고
    • Origins of cell polarity
    • Drubin D.G., Nelson W.J. Origins of cell polarity. Cell. 84:1996;335-344.
    • (1996) Cell , vol.84 , pp. 335-344
    • Drubin, D.G.1    Nelson, W.J.2
  • 8
    • 0034599767 scopus 로고    scopus 로고
    • Imaging constitutive exocytosis with total internal reflection fluorescence microscopy
    • Schmoranzer J., Goulian M., Axelrod D., Simon S.M. Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J Cell Biol. 149:2000;23-32.
    • (2000) J Cell Biol , vol.149 , pp. 23-32
    • Schmoranzer, J.1    Goulian, M.2    Axelrod, D.3    Simon, S.M.4
  • 9
    • 0035147424 scopus 로고    scopus 로고
    • Multicolour imaging of post-Golgi sorting and trafficking in live cells
    • Multicolor imaging is combined with total internal reflection fluorescence microscopy to image segregation and trafficking of apical and basal-lateral cargo in living cells. Apical and basal-lateral marker proteins are transported within separate membrane carriers and sites of preferred exocytosis (hot spots) are revealed in the plasma membrane of PtK2 cells
    • Keller P., Toomre D., Diaz E., White J., Simons K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nat Cell Biol. 3:2001;140-149 Multicolor imaging is combined with total internal reflection fluorescence microscopy to image segregation and trafficking of apical and basal-lateral cargo in living cells. Apical and basal-lateral marker proteins are transported within separate membrane carriers and sites of preferred exocytosis (hot spots) are revealed in the plasma membrane of PtK2 cells.
    • (2001) Nat Cell Biol , vol.3 , pp. 140-149
    • Keller, P.1    Toomre, D.2    Diaz, E.3    White, J.4    Simons, K.5
  • 10
    • 0031938792 scopus 로고    scopus 로고
    • The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM)
    • Oheim M., Loerke D., Stuhmer W., Chow R.H. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J. 27:1998;83-98.
    • (1998) Eur Biophys J , vol.27 , pp. 83-98
    • Oheim, M.1    Loerke, D.2    Stuhmer, W.3    Chow, R.H.4
  • 11
    • 0034710691 scopus 로고    scopus 로고
    • Transport, capture and exocytosis of single synaptic vesicles at active zones
    • Zenisek D., Steyer J.A., Almers W. Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature. 406:2000;849-854.
    • (2000) Nature , vol.406 , pp. 849-854
    • Zenisek, D.1    Steyer, J.A.2    Almers, W.3
  • 12
    • 0035341309 scopus 로고    scopus 로고
    • SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis
    • This study demonstrates non-uniform distribution of SNARE proteins on the plasma membrane of neurosecretory cells and of cells that do not possess a regulated secretory pathway. Syntaxins are shown to be clustered in large (200 nm), cholesterol-dependent domains at which secretory vesicles preferentially dock and fuse
    • Lang T., Bruns D., Wenzel D., Riedel D., Holroyd P., Thiele C., Jahn R. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J. 20:2001;2202-2213 This study demonstrates non-uniform distribution of SNARE proteins on the plasma membrane of neurosecretory cells and of cells that do not possess a regulated secretory pathway. Syntaxins are shown to be clustered in large (200 nm), cholesterol-dependent domains at which secretory vesicles preferentially dock and fuse.
    • (2001) EMBO J , vol.20 , pp. 2202-2213
    • Lang, T.1    Bruns, D.2    Wenzel, D.3    Riedel, D.4    Holroyd, P.5    Thiele, C.6    Jahn, R.7
  • 13
    • 0034743458 scopus 로고    scopus 로고
    • Reconstituted syntaxin1a/SNAP25 interacts with negatively charged lipids as measured by lateral diffusion in planar supported bilayers
    • Wagner M.L., Tamm L.K. Reconstituted syntaxin1a/SNAP25 interacts with negatively charged lipids as measured by lateral diffusion in planar supported bilayers. Biophys J. 81:2001;266-275.
    • (2001) Biophys J , vol.81 , pp. 266-275
    • Wagner, M.L.1    Tamm, L.K.2
  • 14
    • 0035826727 scopus 로고    scopus 로고
    • SNARE proteins are highly enriched in lipid rafts in PC12 cells: Implications for the spatial control of exocytosis
    • Chamberlain L.H., Burgoyne R.D., Gould G.W. SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc Natl Acad Sci USA. 98:2001;5619-5624.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 5619-5624
    • Chamberlain, L.H.1    Burgoyne, R.D.2    Gould, G.W.3
  • 15
    • 0037175399 scopus 로고    scopus 로고
    • Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts
    • This study suggests a molecular mechanism for cell-adhesion-mediated synaptogenesis. Golgi-derived organelles are linked via spectrin to clusters of neural adhesion molecule, which are trapped at sites of initial neurite-to-neurite contact
    • Sytnyk V., Leshchyns'ka I., Delling M., Dityateva G., Dityatev A., Schachner M. Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. J Cell Biol. 159:2002;649-661 This study suggests a molecular mechanism for cell-adhesion-mediated synaptogenesis. Golgi-derived organelles are linked via spectrin to clusters of neural adhesion molecule, which are trapped at sites of initial neurite-to-neurite contact.
    • (2002) J Cell Biol , vol.159 , pp. 649-661
    • Sytnyk, V.1    Leshchyns'ka, I.2    Delling, M.3    Dityateva, G.4    Dityatev, A.5    Schachner, M.6
  • 17
    • 0037014456 scopus 로고    scopus 로고
    • Depolarization drives beta-catenin into neuronal spines promoting changes in synaptic structure and function
    • Murase S., Mosser E., Schuman E.M. Depolarization drives beta-catenin into neuronal spines promoting changes in synaptic structure and function. Neuron. 35:2002;91-105.
    • (2002) Neuron , vol.35 , pp. 91-105
    • Murase, S.1    Mosser, E.2    Schuman, E.M.3
  • 19
    • 0035655587 scopus 로고    scopus 로고
    • The immunological synapse of CTL contains a secretory domain and membrane bridges
    • Stinchcombe J.C., Bossi G., Booth S., Griffiths G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity. 15:2001;751-761.
    • (2001) Immunity , vol.15 , pp. 751-761
    • Stinchcombe, J.C.1    Bossi, G.2    Booth, S.3    Griffiths, G.M.4
  • 21
    • 0034739839 scopus 로고    scopus 로고
    • Cell cycle programs of gene expression control morphogenetic protein localization
    • Lord M., Yang M.C., Mischke M., Chant J. Cell cycle programs of gene expression control morphogenetic protein localization. J Cell Biol. 151:2000;1501-1512.
    • (2000) J Cell Biol , vol.151 , pp. 1501-1512
    • Lord, M.1    Yang, M.C.2    Mischke, M.3    Chant, J.4
  • 22
    • 0036220079 scopus 로고    scopus 로고
    • Bud-site selection and cell polarity in budding yeast
    • This is a review of recent findings on the roles of cortical tags, GTPases and the cytoskeleton in the generation and maintenance of cell polarity in yeast
    • Casamayor A., Snyder M. Bud-site selection and cell polarity in budding yeast. Curr Opin Microbiol. 5:2002;179-186 This is a review of recent findings on the roles of cortical tags, GTPases and the cytoskeleton in the generation and maintenance of cell polarity in yeast.
    • (2002) Curr Opin Microbiol , vol.5 , pp. 179-186
    • Casamayor, A.1    Snyder, M.2
  • 23
    • 0035873848 scopus 로고    scopus 로고
    • A localized GTPase exchange factor, Bud5, determines the orientation of division axes in yeast
    • Marston A.L., Chen T., Yang M.C., Belhumeur P., Chant J. A localized GTPase exchange factor, Bud5, determines the orientation of division axes in yeast. Curr Biol. 11:2001;803-807.
    • (2001) Curr Biol , vol.11 , pp. 803-807
    • Marston, A.L.1    Chen, T.2    Yang, M.C.3    Belhumeur, P.4    Chant, J.5
  • 24
    • 0035861749 scopus 로고    scopus 로고
    • Cdc42 interacts with the exocyst and regulates polarized secretion
    • This report shows that polarized localization of the exocyst is controlled by Cdc42. In vitro studies indicate that Sec3p interacts directly with Cdc42 in its GTP-bound form. The authors propose that Cdc42 coordinates the machinery of vesicle docking and the actin cytoskeleton for polarized secretion
    • Zhang X., Bi E., Novick P., Du L., Kozminski K.G., Lipschutz J.H., Guo W. Cdc42 interacts with the exocyst and regulates polarized secretion. J Biol Chem. 276:2001;46745-46750 This report shows that polarized localization of the exocyst is controlled by Cdc42. In vitro studies indicate that Sec3p interacts directly with Cdc42 in its GTP-bound form. The authors propose that Cdc42 coordinates the machinery of vesicle docking and the actin cytoskeleton for polarized secretion.
    • (2001) J Biol Chem , vol.276 , pp. 46745-46750
    • Zhang, X.1    Bi, E.2    Novick, P.3    Du, L.4    Kozminski, K.G.5    Lipschutz, J.H.6    Guo, W.7
  • 25
    • 0029843493 scopus 로고    scopus 로고
    • The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae
    • TerBush D.R., Maurice T., Roth D., Novick P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15:1996;6483-6494.
    • (1996) EMBO J , vol.15 , pp. 6483-6494
    • TerBush, D.R.1    Maurice, T.2    Roth, D.3    Novick, P.4
  • 26
    • 0033551705 scopus 로고    scopus 로고
    • Exo84p is an exocyst protein essential for secretion
    • Guo W., Grant A., Novick P. Exo84p is an exocyst protein essential for secretion. J Biol Chem. 274:1999;23558-23564.
    • (1999) J Biol Chem , vol.274 , pp. 23558-23564
    • Guo, W.1    Grant, A.2    Novick, P.3
  • 27
    • 0037175386 scopus 로고    scopus 로고
    • Iqg1p links spatial and secretion landmarks to polarity and cytokinesis
    • Iqg1p, which is a target/effector for Cdc42p, is shown to interact with spatial landmark proteins for exocytosis (Sec3p) and marker proteins for axial bud-site selection in Saccharomyces cerevisiae
    • Osman M.A., Konopka J.B., Cerione R.A. Iqg1p links spatial and secretion landmarks to polarity and cytokinesis. J Cell Biol. 159:2002;601-611 Iqg1p, which is a target/effector for Cdc42p, is shown to interact with spatial landmark proteins for exocytosis (Sec3p) and marker proteins for axial bud-site selection in Saccharomyces cerevisiae.
    • (2002) J Cell Biol , vol.159 , pp. 601-611
    • Osman, M.A.1    Konopka, J.B.2    Cerione, R.A.3
  • 28
    • 0032548828 scopus 로고    scopus 로고
    • Sec3p is a spatial landmark for polarized secretion in budding yeast
    • Finger F.P., Hughes T.E., Novick P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell. 92:1998;559-571.
    • (1998) Cell , vol.92 , pp. 559-571
    • Finger, F.P.1    Hughes, T.E.2    Novick, P.3
  • 30
    • 0032577562 scopus 로고    scopus 로고
    • Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells
    • Grindstaff K.K., Yeaman C., Anandasabapathy N., Hsu S.C., Rodriguez-Boulan E., Scheller R.H., Nelson W.J. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell. 93:1998;731-740.
    • (1998) Cell , vol.93 , pp. 731-740
    • Grindstaff, K.K.1    Yeaman, C.2    Anandasabapathy, N.3    Hsu, S.C.4    Rodriguez-Boulan, E.5    Scheller, R.H.6    Nelson, W.J.7
  • 31
    • 0035969243 scopus 로고    scopus 로고
    • Sec6/8 complexes on trans-Golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells
    • Yeaman C., Grindstaff K.K., Wright J.R., Nelson W.J. Sec6/8 complexes on trans-Golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells. J Cell Biol. 155:2001;593-604.
    • (2001) J Cell Biol , vol.155 , pp. 593-604
    • Yeaman, C.1    Grindstaff, K.K.2    Wright, J.R.3    Nelson, W.J.4
  • 32
    • 0033638380 scopus 로고    scopus 로고
    • Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins
    • Lipschutz J.H., Guo W., O'Brien L.E., Nguyen Y.H., Novick P., Mostov K.E. Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins. Mol Biol Cell. 11:2000;4259-4275.
    • (2000) Mol Biol Cell , vol.11 , pp. 4259-4275
    • Lipschutz, J.H.1    Guo, W.2    O'Brien, L.E.3    Nguyen, Y.H.4    Novick, P.5    Mostov, K.E.6
  • 33
    • 0037320597 scopus 로고    scopus 로고
    • Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells
    • Exocytosis of basal-lateral marker proteins is shown to occur exclusively within the upper half of the lateral membrane. Apical marker proteins do not fuse anywhere within the basal-lateral membrane, and, only upon microtubule disruption, appear to fuse with the basal membrane, correlating with unconfined localization of syntaxin 3 throughout the apical and basal-lateral domains of microtubule-disrupted cells
    • Kreitzer G., Schmoranzer J., Low S.H., Li X., Gan Y., Weimbs T., Simon S.M., Rodriguez-Boulan E. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nat Cell Biol. 5:2003;126-136 Exocytosis of basal-lateral marker proteins is shown to occur exclusively within the upper half of the lateral membrane. Apical marker proteins do not fuse anywhere within the basal-lateral membrane, and, only upon microtubule disruption, appear to fuse with the basal membrane, correlating with unconfined localization of syntaxin 3 throughout the apical and basal-lateral domains of microtubule-disrupted cells.
    • (2003) Nat Cell Biol , vol.5 , pp. 126-136
    • Kreitzer, G.1    Schmoranzer, J.2    Low, S.H.3    Li, X.4    Gan, Y.5    Weimbs, T.6    Simon, S.M.7    Rodriguez-Boulan, E.8
  • 34
    • 0033558032 scopus 로고    scopus 로고
    • The Sec6/8 complex is located at neurite outgrowth and axonal synapse-assembly domains
    • Hazuka C.D., Foletti D.L., Hsu S.C., Kee Y., Hopf F.W., Scheller R.H. The Sec6/8 complex is located at neurite outgrowth and axonal synapse-assembly domains. J Neurosci. 19:1999;1324-1334.
    • (1999) J Neurosci , vol.19 , pp. 1324-1334
    • Hazuka, C.D.1    Foletti, D.L.2    Hsu, S.C.3    Kee, Y.4    Hopf, F.W.5    Scheller, R.H.6
  • 35
    • 0036629335 scopus 로고    scopus 로고
    • Vesicle tethering complexes in membrane traffic
    • In this review, the authors outline recent findings indicating a new family of 'quaterfoil' tethering complexes, which may interact with a set of fourfold-symmetric components, such as the core domain of a trans SNARE complex
    • Whyte J.R., Munro S. Vesicle tethering complexes in membrane traffic. J Cell Sci. 115:2002;2627-2637 In this review, the authors outline recent findings indicating a new family of 'quaterfoil' tethering complexes, which may interact with a set of fourfold-symmetric components, such as the core domain of a trans SNARE complex.
    • (2002) J Cell Sci , vol.115 , pp. 2627-2637
    • Whyte, J.R.1    Munro, S.2
  • 37
    • 0029847075 scopus 로고    scopus 로고
    • Differential localization of syntaxin isoforms in polarized Madin-Darby canine kidney cells
    • Low S.H., Chapin S.J., Weimbs T., Komuves L.G., Bennett M.K., Mostov K.E. Differential localization of syntaxin isoforms in polarized Madin-Darby canine kidney cells. Mol Biol Cell. 7:1996;2007-2018.
    • (1996) Mol Biol Cell , vol.7 , pp. 2007-2018
    • Low, S.H.1    Chapin, S.J.2    Weimbs, T.3    Komuves, L.G.4    Bennett, M.K.5    Mostov, K.E.6
  • 38
    • 0036838541 scopus 로고    scopus 로고
    • SNARE expression and localization in renal epithelial cells suggest mechanism for variability of trafficking phenotypes
    • Li X., Low S.H., Miura M., Weimbs T. SNARE expression and localization in renal epithelial cells suggest mechanism for variability of trafficking phenotypes. Am J Physiol Renal Physiol. 283:2002;F1111-1122.
    • (2002) Am J Physiol Renal Physiol , vol.283 , pp. 1111-1122
    • Li, X.1    Low, S.H.2    Miura, M.3    Weimbs, T.4
  • 39
    • 0028030275 scopus 로고
    • Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis
    • Brennwald P., Kearns B., Champion K., Keranen S., Bankaitis V., Novick P. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell. 79:1994;245-258.
    • (1994) Cell , vol.79 , pp. 245-258
    • Brennwald, P.1    Kearns, B.2    Champion, K.3    Keranen, S.4    Bankaitis, V.5    Novick, P.6
  • 40
    • 0031852067 scopus 로고    scopus 로고
    • Spatial regulation of exocytosis: Lessons from yeast
    • Finger F.P., Novick P. Spatial regulation of exocytosis: lessons from yeast. J Cell Biol. 142:1998;609-612.
    • (1998) J Cell Biol , vol.142 , pp. 609-612
    • Finger, F.P.1    Novick, P.2
  • 41
    • 0036156362 scopus 로고    scopus 로고
    • Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells
    • Musch A., Cohen D., Yeaman C., Nelson W.J., Rodriguez-Boulan E., Brennwald P.J. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells. Mol Biol Cell. 13:2002;158-168.
    • (2002) Mol Biol Cell , vol.13 , pp. 158-168
    • Musch, A.1    Cohen, D.2    Yeaman, C.3    Nelson, W.J.4    Rodriguez-Boulan, E.5    Brennwald, P.J.6
  • 43
    • 0034704771 scopus 로고    scopus 로고
    • Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex
    • Misura K.M., Scheller R.H., Weis W.I. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature. 404:2000;355-362.
    • (2000) Nature , vol.404 , pp. 355-362
    • Misura, K.M.1    Scheller, R.H.2    Weis, W.I.3
  • 44
    • 0033606766 scopus 로고    scopus 로고
    • Sec1p binds to SNARE complexes and concentrates at sites of secretion
    • Carr C.M., Grote E., Munson M., Hughson F.M., Novick P.J. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J Cell Biol. 146:1999;333-344.
    • (1999) J Cell Biol , vol.146 , pp. 333-344
    • Carr, C.M.1    Grote, E.2    Munson, M.3    Hughson, F.M.4    Novick, P.J.5
  • 45
    • 0031669173 scopus 로고    scopus 로고
    • Interaction of Munc-18-2 with syntaxin 3 controls the association of apical SNAREs in epithelial cells
    • Riento K., Galli T., Jansson S., Ehnholm C., Lehtonen E., Olkkonen V.M. Interaction of Munc-18-2 with syntaxin 3 controls the association of apical SNAREs in epithelial cells. J Cell Sci. 111:1998;2681-2688.
    • (1998) J Cell Sci , vol.111 , pp. 2681-2688
    • Riento, K.1    Galli, T.2    Jansson, S.3    Ehnholm, C.4    Lehtonen, E.5    Olkkonen, V.M.6
  • 46
    • 0033558093 scopus 로고    scopus 로고
    • The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis
    • Guo W., Roth D., Walch-Solimena C., Novick P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18:1999;1071-1080.
    • (1999) EMBO J , vol.18 , pp. 1071-1080
    • Guo, W.1    Roth, D.2    Walch-Solimena, C.3    Novick, P.4
  • 47
    • 0035839569 scopus 로고    scopus 로고
    • The brain exocyst complex interacts with RalA in a GTP-dependent manner: Identification of a novel mammalian Sec3 gene and a second Sec15 gene
    • Brymora A., Valova V.A., Larsen M.R., Roufogalis B.D., Robinson P.J. The brain exocyst complex interacts with RalA in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene. J Biol Chem. 276:2001;29792-29797.
    • (2001) J Biol Chem , vol.276 , pp. 29792-29797
    • Brymora, A.1    Valova, V.A.2    Larsen, M.R.3    Roufogalis, B.D.4    Robinson, P.J.5
  • 48
    • 0036141393 scopus 로고    scopus 로고
    • The exocyst is a Ral effector complex
    • Activated Ral, a member of the Ras-family of GTPases, is shown to interact directly with exocyst component Sec5. Disruption of Ral expression and function results in disruption of exocyst assembly, mislocalization of basal-lateral marker proteins, and suppression of regulated exocytosis in synaptosomes and PC12 cells
    • Moskalenko S., Henry D.O., Rosse C., Mirey G., Camonis J.H., White M.A. The exocyst is a Ral effector complex. Nat Cell Biol. 4:2002;66-72 Activated Ral, a member of the Ras-family of GTPases, is shown to interact directly with exocyst component Sec5. Disruption of Ral expression and function results in disruption of exocyst assembly, mislocalization of basal-lateral marker proteins, and suppression of regulated exocytosis in synaptosomes and PC12 cells.
    • (2002) Nat Cell Biol , vol.4 , pp. 66-72
    • Moskalenko, S.1    Henry, D.O.2    Rosse, C.3    Mirey, G.4    Camonis, J.H.5    White, M.A.6
  • 49
    • 0036178046 scopus 로고    scopus 로고
    • Ral-GTPase influences the regulation of the readily releasable pool of synaptic vesicles
    • Polzin A., Shipitsin M., Goi T., Feig L.A., Turner T.J. Ral-GTPase influences the regulation of the readily releasable pool of synaptic vesicles. Mol Cell Biol. 22:2002;1714-1722.
    • (2002) Mol Cell Biol , vol.22 , pp. 1714-1722
    • Polzin, A.1    Shipitsin, M.2    Goi, T.3    Feig, L.A.4    Turner, T.J.5
  • 50
    • 0036141434 scopus 로고    scopus 로고
    • The exocyst complex binds the small GTPase RalA to mediate filopodia formation
    • Sugihara K., Asano S., Tanaka K., Iwamatsu A., Okawa K., Ohta Y. The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat Cell Biol. 4:2002;73-78.
    • (2002) Nat Cell Biol , vol.4 , pp. 73-78
    • Sugihara, K.1    Asano, S.2    Tanaka, K.3    Iwamatsu, A.4    Okawa, K.5    Ohta, Y.6
  • 51
    • 0035067186 scopus 로고    scopus 로고
    • Spatial regulation of the exocyst complex by Rho1 GTPase
    • •]), the GTP-bound form of Rho1 is shown to interact with Sec3. Mutant alleles of rho1 affect localization of Sec3 and other components of the exocyst
    • •]), the GTP-bound form of Rho1 is shown to interact with Sec3. Mutant alleles of rho1 affect localization of Sec3 and other components of the exocyst.
    • (2001) Nat Cell Biol , vol.3 , pp. 353-360
    • Guo, W.1    Tamanoi, F.2    Novick, P.3
  • 53
    • 0032897432 scopus 로고    scopus 로고
    • Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells
    • Toomre D., Keller P., White J., Olivo J.C., Simons K. Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J Cell Sci. 112:1999;21-33.
    • (1999) J Cell Sci , vol.112 , pp. 21-33
    • Toomre, D.1    Keller, P.2    White, J.3    Olivo, J.C.4    Simons, K.5
  • 54
    • 0034056057 scopus 로고    scopus 로고
    • Polarization of cell growth in yeast
    • Pruyne D., Bretscher A. Polarization of cell growth in yeast. J Cell Sci. 113:2000;571-585.
    • (2000) J Cell Sci , vol.113 , pp. 571-585
    • Pruyne, D.1    Bretscher, A.2
  • 55
    • 0037010173 scopus 로고    scopus 로고
    • Sphingolipid trafficking and protein sorting in epithelial cells
    • Ait Slimane T., Hoekstra D. Sphingolipid trafficking and protein sorting in epithelial cells. FEBS Lett. 529:2002;54-59.
    • (2002) FEBS Lett , vol.529 , pp. 54-59
    • Ait Slimane, T.1    Hoekstra, D.2
  • 56
  • 57
    • 0040971539 scopus 로고    scopus 로고
    • Myosin II is involved in the production of constitutive transport vesicles from the TGN
    • Musch A., Cohen D., Rodriguez-Boulan E. Myosin II is involved in the production of constitutive transport vesicles from the TGN. J Cell Biol. 138:1997;291-306.
    • (1997) J Cell Biol , vol.138 , pp. 291-306
    • Musch, A.1    Cohen, D.2    Rodriguez-Boulan, E.3
  • 58
    • 0034705287 scopus 로고    scopus 로고
    • Sorting and signaling at the Golgi complex
    • Donaldson J.G., Lippincott-Schwartz J. Sorting and signaling at the Golgi complex. Cell. 101:2000;693-696.
    • (2000) Cell , vol.101 , pp. 693-696
    • Donaldson, J.G.1    Lippincott-Schwartz, J.2
  • 59
    • 0037421188 scopus 로고    scopus 로고
    • Direct cadherin-activated cell signaling: A view from the plasma membrane
    • Yap A.S., Kovacs E.M. Direct cadherin-activated cell signaling: a view from the plasma membrane. J Cell Biol. 160:2003;11-16.
    • (2003) J Cell Biol , vol.160 , pp. 11-16
    • Yap, A.S.1    Kovacs, E.M.2
  • 60
    • 0033126052 scopus 로고    scopus 로고
    • Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells
    • Kroschewski R., Hall A., Mellman I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat Cell Biol. 1:1999;8-13.
    • (1999) Nat Cell Biol , vol.1 , pp. 8-13
    • Kroschewski, R.1    Hall, A.2    Mellman, I.3
  • 61
    • 0035341316 scopus 로고    scopus 로고
    • Cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network
    • In this report, mutants of Cdc42 are shown to inhibit export of basal-lateral marker proteins from the Golgi complex
    • Musch A., Cohen D., Kreitzer G., Rodriguez-Boulan E. Cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 20:2001;2171-2179 In this report, mutants of Cdc42 are shown to inhibit export of basal-lateral marker proteins from the Golgi complex.
    • (2001) EMBO J , vol.20 , pp. 2171-2179
    • Musch, A.1    Cohen, D.2    Kreitzer, G.3    Rodriguez-Boulan, E.4
  • 62
    • 0035830496 scopus 로고    scopus 로고
    • Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network
    • Liljedahl M., Maeda Y., Colanzi A., Ayala I., Van Lint J., Malhotra V. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell. 104:2001;409-420.
    • (2001) Cell , vol.104 , pp. 409-420
    • Liljedahl, M.1    Maeda, Y.2    Colanzi, A.3    Ayala, I.4    Van Lint, J.5    Malhotra, V.6
  • 63
    • 0036166541 scopus 로고    scopus 로고
    • Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing
    • Modulated polarization microscopy and three-dimensional image reconstruction were used to image microtubule-organizing center (MTOC) movement to the immunological synapse. The MTOC is drawn vectorially by a microtubule sliding mechanism to the contact site between the cytotoxic T cell and its target cell
    • Kuhn J.R., Poenie M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity. 16:2002;111-121 Modulated polarization microscopy and three-dimensional image reconstruction were used to image microtubule-organizing center (MTOC) movement to the immunological synapse. The MTOC is drawn vectorially by a microtubule sliding mechanism to the contact site between the cytotoxic T cell and its target cell.
    • (2002) Immunity , vol.16 , pp. 111-121
    • Kuhn, J.R.1    Poenie, M.2
  • 64
    • 0033769661 scopus 로고    scopus 로고
    • Cadherin-mediated regulation of microtubule dynamics
    • Chausovsky A., Bershadsky A.D., Borisy G.G. Cadherin-mediated regulation of microtubule dynamics. Nat Cell Biol. 2:2000;797-804.
    • (2000) Nat Cell Biol , vol.2 , pp. 797-804
    • Chausovsky, A.1    Bershadsky, A.D.2    Borisy, G.G.3
  • 65
    • 0037157842 scopus 로고    scopus 로고
    • Role of KIFC3 motor protein in Golgi positioning and integration
    • Xu Y., Takeda S., Nakata T., Noda Y., Tanaka Y., Hirokawa N. Role of KIFC3 motor protein in Golgi positioning and integration. J Cell Biol. 158:2002;293-303.
    • (2002) J Cell Biol , vol.158 , pp. 293-303
    • Xu, Y.1    Takeda, S.2    Nakata, T.3    Noda, Y.4    Tanaka, Y.5    Hirokawa, N.6
  • 66
    • 0035823004 scopus 로고    scopus 로고
    • Argosomes: A potential vehicle for the spread of morphogens through epithelia
    • This study reveals a novel type of membrane exovesicles, argosomes, that disperse the morphogen protein Wingless over large distances through the Drosophila imaginal disk epithelium
    • Greco V., Hannus M., Eaton S. Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell. 106:2001;633-645 This study reveals a novel type of membrane exovesicles, argosomes, that disperse the morphogen protein Wingless over large distances through the Drosophila imaginal disk epithelium.
    • (2001) Cell , vol.106 , pp. 633-645
    • Greco, V.1    Hannus, M.2    Eaton, S.3
  • 67
    • 0037194733 scopus 로고    scopus 로고
    • Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane
    • This study reveals surprising transport of MHC II molecules from lysosomes to the plasma membrane. In live dendritic cells, GFP-tagged MHC II molecules were observed to exit lysosomes in tubular carriers that go on to fuse with the plasma membrane
    • Chow A., Toomre D., Garrett W., Mellman I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature. 418:2002;988-994 This study reveals surprising transport of MHC II molecules from lysosomes to the plasma membrane. In live dendritic cells, GFP-tagged MHC II molecules were observed to exit lysosomes in tubular carriers that go on to fuse with the plasma membrane.
    • (2002) Nature , vol.418 , pp. 988-994
    • Chow, A.1    Toomre, D.2    Garrett, W.3    Mellman, I.4
  • 68
    • 0036330559 scopus 로고    scopus 로고
    • Lysosomes and the plasma membrane: Trypanosomes reveal a secret relationship
    • In this review, recent evidence on the role of lysosomes as regulated secretory compartments that interact directly with the plasma membrane is discussed
    • Andrews N.W. Lysosomes and the plasma membrane: trypanosomes reveal a secret relationship. J Cell Biol. 158:2002;389-394 In this review, recent evidence on the role of lysosomes as regulated secretory compartments that interact directly with the plasma membrane is discussed.
    • (2002) J Cell Biol , vol.158 , pp. 389-394
    • Andrews, N.W.1
  • 70
    • 0038185307 scopus 로고    scopus 로고
    • Role of microtubules in fusion of post-Golgi vesicles to the plasma membrane
    • Schmoranzer J., Simon S.M. Role of microtubules in fusion of post-Golgi vesicles to the plasma membrane. Mol Biol Cell. 14:2003;1558-1569.
    • (2003) Mol Biol Cell , vol.14 , pp. 1558-1569
    • Schmoranzer, J.1    Simon, S.M.2
  • 71
    • 0037380088 scopus 로고    scopus 로고
    • Distinct cytoskeletal tracks direct individual vesicle populations to the apical membrane of epithelial cells
    • Jacob R., Heine M., Alfalah M., Naim H.Y. Distinct cytoskeletal tracks direct individual vesicle populations to the apical membrane of epithelial cells. Curr Biol. 13:2003;607-612.
    • (2003) Curr Biol , vol.13 , pp. 607-612
    • Jacob, R.1    Heine, M.2    Alfalah, M.3    Naim, H.Y.4
  • 72
    • 0037421632 scopus 로고    scopus 로고
    • Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists
    • Murthy M., Garza D., Scheller R.H., Schwarz T.L. Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron. 37:2003;433-447.
    • (2003) Neuron , vol.37 , pp. 433-447
    • Murthy, M.1    Garza, D.2    Scheller, R.H.3    Schwarz, T.L.4
  • 73
    • 0037431329 scopus 로고    scopus 로고
    • The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin
    • Inoue M., Chang L., Hwang J., Chiang S.H., Saltiel A.R. The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature. 422:2003;629-633.
    • (2003) Nature , vol.422 , pp. 629-633
    • Inoue, M.1    Chang, L.2    Hwang, J.3    Chiang, S.H.4    Saltiel, A.R.5
  • 74
    • 0038329315 scopus 로고    scopus 로고
    • Syntaxin 2 and endobrevin are required for the terminal step of cytokinesis in mammalian cells
    • Low S.H., Li X., Miura M., Kudo N., Quinones B., Weimbs T. Syntaxin 2 and endobrevin are required for the terminal step of cytokinesis in mammalian cells. Dev Cell. 4:2003;753-759.
    • (2003) Dev Cell , vol.4 , pp. 753-759
    • Low, S.H.1    Li, X.2    Miura, M.3    Kudo, N.4    Quinones, B.5    Weimbs, T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.