-
1
-
-
84939180950
-
SB-IGFET: An insulated gate field-effect transistor using Schottky barrier contacts as source and drain
-
M.P. Lepselter and S.M. Sze, "SB-IGFET: An insulated gate field-effect transistor using Schottky barrier contacts as source and drain," Proc. IEEE, vol. 56, pp. 1400-1402, 1968.
-
(1968)
Proc. IEEE
, vol.56
, pp. 1400-1402
-
-
Lepselter, M.P.1
Sze, S.M.2
-
2
-
-
36449006867
-
Silicon field-effect transistor based on quantum tunneling
-
J.R. Tucker, C. Wang, and P.S. Carney, "Silicon field-effect transistor based on quantum tunneling," Appl. Phys. Lett., vol. 65, pp. 618-620, 1994.
-
(1994)
Appl. Phys. Lett.
, vol.65
, pp. 618-620
-
-
Tucker, J.R.1
Wang, C.2
Carney, P.S.3
-
3
-
-
0034453418
-
Complementary silicide source-drain thin-body MOSFETs for 20 nm gate length regime
-
J. Kedzierski, P. Xuan, E.H. Anderson, J. Bokor, S.-J. King, and C. Hu, "Complementary silicide source-drain thin-body MOSFETs for 20 nm gate length regime," in IEDM Tech. Dig., 2000, pp. 57-60.
-
(2000)
IEDM Tech. Dig.
, pp. 57-60
-
-
Kedzierski, J.1
Xuan, P.2
Anderson, E.H.3
Bokor, J.4
King, S.-J.5
Hu, C.6
-
6
-
-
0035717886
-
Examination of design and manufacturing issue in 10 nm double gate MOSFET using nonequilibrium Green's function simulation
-
Z. Ren, R. Venugopal, S. Datta, and M. Lundstrom, "Examination of design and manufacturing issue in 10 nm double gate MOSFET using nonequilibrium Green's function simulation," in IEDM Tech. Dig., 2001, pp. 107-110.
-
(2001)
IEDM Tech. Dig.
, pp. 107-110
-
-
Ren, Z.1
Venugopal, R.2
Datta, S.3
Lundstrom, M.4
-
7
-
-
0033593712
-
Sub-40 nm PtSi Schottky source-drain metal-oxide-semiconductor field-effect transistors
-
C. Wang, J.P. Snyder, and J.R. Tucker, "Sub-40 nm PtSi Schottky source-drain metal-oxide-semiconductor field-effect transistors," Appl. Phys. Lett., vol. 74, pp. 1174-1176, 1999.
-
(1999)
Appl. Phys. Lett.
, vol.74
, pp. 1174-1176
-
-
Wang, C.1
Snyder, J.P.2
Tucker, J.R.3
-
8
-
-
0032257711
-
Comparison of raised and Schottky source-drain MOSFETs using a novel tunneling contact model
-
M. Ieong, P.M. Solomon, S.E. Laux, H.-S. P. Wong, and D. Chidambarrao, "Comparison of raised and Schottky source-drain MOSFETs using a novel tunneling contact model," in IEDM Tech. Dig., 1998, pp. 733-736.
-
(1998)
IEDM Tech. Dig.
, pp. 733-736
-
-
Ieong, M.1
Solomon, P.M.2
Laux, S.E.3
Wong, H.-S.P.4
Chidambarrao, D.5
-
9
-
-
0039967805
-
Two-dimensional numerical simulation of Schottky barrier MOSFET with channel length to 10 nm
-
Apr.
-
C.-K. Huang, W.E. Zhang, and C.H. Yang, "Two-dimensional numerical simulation of Schottky barrier MOSFET with channel length to 10 nm," IEEE Trans. Electron Devices, vol. 45, pp. 842-848, Apr. 1998.
-
(1998)
IEEE Trans. Electron Devices
, vol.45
, pp. 842-848
-
-
Huang, C.-K.1
Zhang, W.E.2
Yang, C.H.3
-
10
-
-
0033750787
-
Simulation of Schottky barrier MOSFETs with a coupled quantum injection/Monte Carlo technique
-
June
-
B. Winstead and U. Ravaioli, "Simulation of Schottky barrier MOSFETs with a coupled quantum injection/Monte Carlo technique," IEEE Trans. Electron Devices, vol. 47, pp. 1241-1246, June 2000.
-
(2000)
IEEE Trans. Electron Devices
, vol.47
, pp. 1241-1246
-
-
Winstead, B.1
Ravaioli, U.2
-
11
-
-
0034291813
-
Nanoscale device modeling: The Green's function method
-
S. Datta, "Nanoscale device modeling: The Green's function method," Superlatt. Microstruct., vol. 28, pp. 253-278, 2000.
-
(2000)
Superlatt. Microstruct.
, vol.28
, pp. 253-278
-
-
Datta, S.1
-
12
-
-
18644369368
-
'Simulating quantum transport in nanoscale MOSFETs' real versus mode-space approaches
-
to be published
-
R. Venugopal, Z. Ren, S. Datta, M.S. Lundstrom, and D. Jovanovic, "'Simulating quantum transport in nanoscale MOSFETs' Real versus mode-space approaches," J. Appl. Phys., 2002, to be published.
-
(2002)
J. Appl. Phys.
-
-
Venugopal, R.1
Ren, Z.2
Datta, S.3
Lundstrom, M.S.4
Jovanovic, D.5
-
13
-
-
0012118835
-
-
Ph.D. dissertation, Purdue University, West Lafayette, IN
-
Z. Ren, "Nanoscale MOSFETs: Physics, simulation, and design," Ph.D. dissertation, Purdue University, West Lafayette, IN, 2001.
-
(2001)
Nanoscale MOSFETs: Physics, simulation, and design
-
-
Ren, Z.1
-
15
-
-
0036253371
-
Essential physics of carrier transport in nanoscale MOSFETs
-
Jan.
-
M. Lundstrom and Z. Ren, "Essential physics of carrier transport in nanoscale MOSFETs," IEEE Trans. Electron Devices, vol. 49, pp. 133-141, Jan. 2002.
-
(2002)
IEEE Trans. Electron Devices
, vol.49
, pp. 133-141
-
-
Lundstrom, M.1
Ren, Z.2
-
16
-
-
5844355552
-
Role of virtual gap states and defects in metal-semiconductor contacts
-
W. Monch, "Role of virtual gap states and defects in metal-semiconductor contacts," Phys. Rev. Lett., vol. 58, pp. 1260-1263, 1987.
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 1260-1263
-
-
Monch, W.1
-
17
-
-
0012158463
-
Properties of ultrathin thermal nitrides in silicon Schottky barriers structures
-
M.A. Sobolewski and C.R. Helms, "Properties of ultrathin thermal nitrides in silicon Schottky barriers structures," Appl. Phys. Lett., vol. 54, pp. 638-640, 1989.
-
(1989)
Appl. Phys. Lett.
, vol.54
, pp. 638-640
-
-
Sobolewski, M.A.1
Helms, C.R.2
-
18
-
-
0041651180
-
Negative differential resistance in nanotube devices
-
F. Leonard and J. Tersoff, "Negative differential resistance in nanotube devices," Phys. Rev. Lett., vol. 85, pp. 4767-4770, 2000.
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 4767-4770
-
-
Leonard, F.1
Tersoff, J.2
-
19
-
-
0001642115
-
Enhancement of hot-electron generation rate in Schottky source metaloxide-semiconductor field-effect transistors
-
K. Uchida, K. Matsuzawa, J. Koga, S. Takagi, and A. Toriumi, "Enhancement of hot-electron generation rate in Schottky source metaloxide-semiconductor field-effect transistors," Appl. Phys. Lett., vol. 76, no. 26, pp. 3992-3994, 2000.
-
(2000)
Appl. Phys. Lett.
, vol.76
, Issue.26
, pp. 3992-3994
-
-
Uchida, K.1
Matsuzawa, K.2
Koga, J.3
Takagi, S.4
Toriumi, A.5
|