메뉴 건너뛰기




Volumn 287, Issue 5454, 2000, Pages 873-880

Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles

Author keywords

[No Author keywords available]

Indexed keywords

MITOGEN ACTIVATED PROTEIN KINASE;

EID: 0034603061     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.287.5454.873     Document Type: Article
Times cited : (736)

References (85)
  • 1
    • 0028985079 scopus 로고
    • I. Herskowitz, Cell 80, 187 (1995); D. E. Levin and B. Errede, Curr. Opin. Cell Biol. 7, 197 (1995); H. D. Madhani and G. R. Fink, Trends Genet. 14, 151 (1998); H. J. Schaeffer and M. J. Weber, Mol. Cell. Biol. 19, 2435 (1999).
    • (1995) Cell , vol.80 , pp. 187
    • Herskowitz, I.1
  • 2
    • 0028920365 scopus 로고
    • I. Herskowitz, Cell 80, 187 (1995); D. E. Levin and B. Errede, Curr. Opin. Cell Biol. 7, 197 (1995); H. D. Madhani and G. R. Fink, Trends Genet. 14, 151 (1998); H. J. Schaeffer and M. J. Weber, Mol. Cell. Biol. 19, 2435 (1999).
    • (1995) Curr. Opin. Cell Biol. , vol.7 , pp. 197
    • Levin, D.E.1    Errede, B.2
  • 3
    • 0031977016 scopus 로고    scopus 로고
    • I. Herskowitz, Cell 80, 187 (1995); D. E. Levin and B. Errede, Curr. Opin. Cell Biol. 7, 197 (1995); H. D. Madhani and G. R. Fink, Trends Genet. 14, 151 (1998); H. J. Schaeffer and M. J. Weber, Mol. Cell. Biol. 19, 2435 (1999).
    • (1998) Trends Genet. , vol.14 , pp. 151
    • Madhani, H.D.1    Fink, G.R.2
  • 4
    • 0032935664 scopus 로고    scopus 로고
    • I. Herskowitz, Cell 80, 187 (1995); D. E. Levin and B. Errede, Curr. Opin. Cell Biol. 7, 197 (1995); H. D. Madhani and G. R. Fink, Trends Genet. 14, 151 (1998); H. J. Schaeffer and M. J. Weber, Mol. Cell. Biol. 19, 2435 (1999).
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 2435
    • Schaeffer, H.J.1    Weber, M.J.2
  • 5
    • 0029852580 scopus 로고    scopus 로고
    • J. DeRisi et al., Nature Genet. 14, 457 (1996); J. L. DeRisi, V. R. Iyer, P. O. Brown, Science 278, 680 (1997); D. A. Lashkari et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13057 (1997); L. Wodicka et al., Nature Biotechnol. 15, 1359 (1997); F. C. Holstege et al., Cell 95, 717 (1998); M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Proc. Natl. Acad. Sci. U.S.A. 95, 14863 (1998); S. Chu et al., Science 282, 699 (1998); D. Fambrough, K. McClure, A. Kazlauskas, E. S. Lander, Cell 97, 727 (1999); V. R. Iyer et al., Science 283, 83 (1999).
    • (1996) Nature Genet. , vol.14 , pp. 457
    • DeRisi, J.1
  • 6
    • 0030669030 scopus 로고    scopus 로고
    • J. DeRisi et al., Nature Genet. 14, 457 (1996); J. L. DeRisi, V. R. Iyer, P. O. Brown, Science 278, 680 (1997); D. A. Lashkari et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13057 (1997); L. Wodicka et al., Nature Biotechnol. 15, 1359 (1997); F. C. Holstege et al., Cell 95, 717 (1998); M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Proc. Natl. Acad. Sci. U.S.A. 95, 14863 (1998); S. Chu et al., Science 282, 699 (1998); D. Fambrough, K. McClure, A. Kazlauskas, E. S. Lander, Cell 97, 727 (1999); V. R. Iyer et al., Science 283, 83 (1999).
    • (1997) Science , vol.278 , pp. 680
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 7
    • 0030699475 scopus 로고    scopus 로고
    • J. DeRisi et al., Nature Genet. 14, 457 (1996); J. L. DeRisi, V. R. Iyer, P. O. Brown, Science 278, 680 (1997); D. A. Lashkari et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13057 (1997); L. Wodicka et al., Nature Biotechnol. 15, 1359 (1997); F. C. Holstege et al., Cell 95, 717 (1998); M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Proc. Natl. Acad. Sci. U.S.A. 95, 14863 (1998); S. Chu et al., Science 282, 699 (1998); D. Fambrough, K. McClure, A. Kazlauskas, E. S. Lander, Cell 97, 727 (1999); V. R. Iyer et al., Science 283, 83 (1999).
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 13057
    • Lashkari, D.A.1
  • 8
    • 0031453850 scopus 로고    scopus 로고
    • J. DeRisi et al., Nature Genet. 14, 457 (1996); J. L. DeRisi, V. R. Iyer, P. O. Brown, Science 278, 680 (1997); D. A. Lashkari et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13057 (1997); L. Wodicka et al., Nature Biotechnol. 15, 1359 (1997); F. C. Holstege et al., Cell 95, 717 (1998); M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Proc. Natl. Acad. Sci. U.S.A. 95, 14863 (1998); S. Chu et al., Science 282, 699 (1998); D. Fambrough, K. McClure, A. Kazlauskas, E. S. Lander, Cell 97, 727 (1999); V. R. Iyer et al., Science 283, 83 (1999).
    • (1997) Nature Biotechnol. , vol.15 , pp. 1359
    • Wodicka, L.1
  • 9
    • 0032567081 scopus 로고    scopus 로고
    • J. DeRisi et al., Nature Genet. 14, 457 (1996); J. L. DeRisi, V. R. Iyer, P. O. Brown, Science 278, 680 (1997); D. A. Lashkari et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13057 (1997); L. Wodicka et al., Nature Biotechnol. 15, 1359 (1997); F. C. Holstege et al., Cell 95, 717 (1998); M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Proc. Natl. Acad. Sci. U.S.A. 95, 14863 (1998); S. Chu et al., Science 282, 699 (1998); D. Fambrough, K. McClure, A. Kazlauskas, E. S. Lander, Cell 97, 727 (1999); V. R. Iyer et al., Science 283, 83 (1999).
    • (1998) Cell , vol.95 , pp. 717
    • Holstege, F.C.1
  • 10
    • 0032441150 scopus 로고    scopus 로고
    • J. DeRisi et al., Nature Genet. 14, 457 (1996); J. L. DeRisi, V. R. Iyer, P. O. Brown, Science 278, 680 (1997); D. A. Lashkari et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13057 (1997); L. Wodicka et al., Nature Biotechnol. 15, 1359 (1997); F. C. Holstege et al., Cell 95, 717 (1998); M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Proc. Natl. Acad. Sci. U.S.A. 95, 14863 (1998); S. Chu et al., Science 282, 699 (1998); D. Fambrough, K. McClure, A. Kazlauskas, E. S. Lander, Cell 97, 727 (1999); V. R. Iyer et al., Science 283, 83 (1999).
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 14863
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3    Botstein, D.4
  • 11
    • 0032561246 scopus 로고    scopus 로고
    • J. DeRisi et al., Nature Genet. 14, 457 (1996); J. L. DeRisi, V. R. Iyer, P. O. Brown, Science 278, 680 (1997); D. A. Lashkari et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13057 (1997); L. Wodicka et al., Nature Biotechnol. 15, 1359 (1997); F. C. Holstege et al., Cell 95, 717 (1998); M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Proc. Natl. Acad. Sci. U.S.A. 95, 14863 (1998); S. Chu et al., Science 282, 699 (1998); D. Fambrough, K. McClure, A. Kazlauskas, E. S. Lander, Cell 97, 727 (1999); V. R. Iyer et al., Science 283, 83 (1999).
    • (1998) Science , vol.282 , pp. 699
    • Chu, S.1
  • 12
    • 0033001953 scopus 로고    scopus 로고
    • J. DeRisi et al., Nature Genet. 14, 457 (1996); J. L. DeRisi, V. R. Iyer, P. O. Brown, Science 278, 680 (1997); D. A. Lashkari et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13057 (1997); L. Wodicka et al., Nature Biotechnol. 15, 1359 (1997); F. C. Holstege et al., Cell 95, 717 (1998); M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Proc. Natl. Acad. Sci. U.S.A. 95, 14863 (1998); S. Chu et al., Science 282, 699 (1998); D. Fambrough, K. McClure, A. Kazlauskas, E. S. Lander, Cell 97, 727 (1999); V. R. Iyer et al., Science 283, 83 (1999).
    • (1999) Cell , vol.97 , pp. 727
    • Fambrough, D.1    McClure, K.2    Kazlauskas, A.3    Lander, E.S.4
  • 13
    • 0032903908 scopus 로고    scopus 로고
    • J. DeRisi et al., Nature Genet. 14, 457 (1996); J. L. DeRisi, V. R. Iyer, P. O. Brown, Science 278, 680 (1997); D. A. Lashkari et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13057 (1997); L. Wodicka et al., Nature Biotechnol. 15, 1359 (1997); F. C. Holstege et al., Cell 95, 717 (1998); M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Proc. Natl. Acad. Sci. U.S.A. 95, 14863 (1998); S. Chu et al., Science 282, 699 (1998); D. Fambrough, K. McClure, A. Kazlauskas, E. S. Lander, Cell 97, 727 (1999); V. R. Iyer et al., Science 283, 83 (1999).
    • (1999) Science , vol.283 , pp. 83
    • Iyer, V.R.1
  • 14
    • 0031742022 scopus 로고    scopus 로고
    • P. T. Spellman et al., Mol. Biol. Cell 9, 3273 (1998); R. J. Cho et al., Mol. Cell 2, 65 (1998).
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273
    • Spellman, P.T.1
  • 15
    • 0032112293 scopus 로고    scopus 로고
    • P. T. Spellman et al., Mol. Biol. Cell 9, 3273 (1998); R. J. Cho et al., Mol. Cell 2, 65 (1998).
    • (1998) Mol. Cell , vol.2 , pp. 65
    • Cho, R.J.1
  • 18
    • 0031058930 scopus 로고    scopus 로고
    • G. F. Sprague Jr. and J. W. Thorner, in The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae, vol. 2, Gene Expression (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1992), p. 657; E. Leberer, D. Y. Thomas, M. Whiteway, Curr. Opin. Genet. Dev. 7, 59 (1997).
    • (1997) Curr. Opin. Genet. Dev. , vol.7 , pp. 59
    • Leberer, E.1    Thomas, D.Y.2    Whiteway, M.3
  • 19
    • 0030026017 scopus 로고    scopus 로고
    • P. Zarzov, C. Mazzoni, C. Mann, EMBO J. 15, 83 (1996); B. M. Buehrer and B. Errede, Mol. Cell. Biol. 17, 6517 (1997).
    • (1996) EMBO J. , vol.15 , pp. 83
    • Zarzov, P.1    Mazzoni, C.2    Mann, C.3
  • 20
  • 22
    • 0031042444 scopus 로고    scopus 로고
    • H. D. Madhani and G. R. Fink, Science 275, 1314 (1997); H. D. Madhani, C. A. Styles, G. R. Fink, Cell 91, 673 (1997); R. L. Roberts and G. R. Fink, Proc. Natl. Acad. Sci. U.S.A. 95, 13783 (1998); H.-U. Mosch et al., Mol. Biol. Cell 10, 1325 (1999).
    • (1997) Science , vol.275 , pp. 1314
    • Madhani, H.D.1    Fink, G.R.2
  • 23
    • 0030731714 scopus 로고    scopus 로고
    • H. D. Madhani and G. R. Fink, Science 275, 1314 (1997); H. D. Madhani, C. A. Styles, G. R. Fink, Cell 91, 673 (1997); R. L. Roberts and G. R. Fink, Proc. Natl. Acad. Sci. U.S.A. 95, 13783 (1998); H.-U. Mosch et al., Mol. Biol. Cell 10, 1325 (1999).
    • (1997) Cell , vol.91 , pp. 673
    • Madhani, H.D.1    Styles, C.A.2    Fink, G.R.3
  • 24
    • 0032506120 scopus 로고    scopus 로고
    • H. D. Madhani and G. R. Fink, Science 275, 1314 (1997); H. D. Madhani, C. A. Styles, G. R. Fink, Cell 91, 673 (1997); R. L. Roberts and G. R. Fink, Proc. Natl. Acad. Sci. U.S.A. 95, 13783 (1998); H.-U. Mosch et al., Mol. Biol. Cell 10, 1325 (1999).
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 13783
    • Roberts, R.L.1    Fink, G.R.2
  • 25
    • 0038427234 scopus 로고    scopus 로고
    • H. D. Madhani and G. R. Fink, Science 275, 1314 (1997); H. D. Madhani, C. A. Styles, G. R. Fink, Cell 91, 673 (1997); R. L. Roberts and G. R. Fink, Proc. Natl. Acad. Sci. U.S.A. 95, 13783 (1998); H.-U. Mosch et al., Mol. Biol. Cell 10, 1325 (1999).
    • (1999) Mol. Biol. Cell , vol.10 , pp. 1325
    • Mosch, H.-U.1
  • 27
    • 0024391460 scopus 로고
    • 7 cells per milliliter) in rich medium (YPD) before they were split, and synthetic α-factor (Sigma-Aldrich) or water (for mock treatment) was added. Similar experiments involved treatments with synthetic a-factor in methanol [C. B. Xue, G. A. Caldwell, J. M. Becker, F. Naider, Biochem. Biophys. Res. Commun. 162, 253 (1989)]; for the mock treatment, an equal volume of methanol was added. For the fus3-K42R experiment (Fig. 5, experiment 31), R500 (fus3Δ) (28) cells carrying the plasmid pJB290 (29) were grown to midlogarithmic phase in synthetic complete (SC) medium lacking leucine and then resuspended in an equal volume of YPD for 90 min before addition of α-factor. For experiments in the absence of α-factor, cells were grown to midlogarithmic phase in SC medium before harvesting. For galactose induction experiments, wt Y1469 cells harboring different plasmids were grown to midlogarithmic phase in SC medium containing 2% raffinose and lacking the appropriate nutrients for plasmid selection. Galactose was added to a final concentration of 2% (3-hour treatment). For sorbitol induction experiments, R7326 (hog1Δ) cells were grown in YPD to midlogarithmic phase before an equal volume of either YPD or YPD containing 2 M sorbitol was added (2-hour treatment). RNA from the α-factor kinetics and titration experiments (Fig. 5, experiments 1 to 7, 9 to 13, and 26 to 28) was isolated as described (4). All other experiments involved pelleting cells and freezing them in liquid nitrogen. Cells were then incubated in hot phenol: chloroform (50:50, v/v) and breakage buffer (4) for 5 min before vortexing (20 s). After the phases were separated, the aqueous phase was reextracted and vortexed (10 s) with phenol:chloroform (50:50, v/v). The RNA was concentrated with a microconcentrator (Amicon, Beverly, MA). Isolation of polyadenylated RNA and production of fluorescently labeled cDNAs were done as described (4). For each experiment described in this study, the data presented represent averaged results from hybridization to at least two DNA microarrays with fluor reversal (4).
    • (1989) Biochem. Biophys. Res. Commun. , vol.162 , pp. 253
    • Xue, C.B.1    Caldwell, G.A.2    Becker, J.M.3    Naider, F.4
  • 28
    • 0343900493 scopus 로고    scopus 로고
    • note
    • The following supplementary materials can be found at the accompanying Web sites (www.rii.com and www.sciencemag.org/feature/data/1043534.sht): a description of the error model used to assign confidence levels to microarray measurements; data plots for additional experiments; spreadsheets containing data for all microarray experiments (including signal intensities, mean expression ratios, and P values for all genes); spreadsheets for the correlation plots in Figs. 2 and 3, which identify genes corresponding to colored stars; lacZ reporter analysis for promoters of pheromone- and Kss1p-regulated genes; and promoter analysis of the gene clusters in Fig. 5B.
  • 29
    • 0343900492 scopus 로고    scopus 로고
    • note
    • Correlation plots (Fig. 2, B to E and G to I; Fig. 3, A, C, and D) display the expression ratio for each gene in one experiment versus the expression ratio in another experiment. The degree of correlation between experiments is quantified by calculating the correlation coefficient p for the union of genes induced or repressed at a given confidence level in either experiment (4). For this study, p was calculated at a 99% confidence level; therefore, the expression ratio for a given gene was considered statistically significant if the gene had a < 1% chance of having an expression ratio departing from unity due to measurement errors alone. Coefficients for the correlation plots shown are given for genes that were significantly reduced or repressed in one or both experiments (sig) and for all genes (all): Fig. 2B, ρ = 0.98 (sig), 092 (all); Fig. 2C, ρ = -0.05 (sig), 0.0 (all); Fig. 2D, ρ = 0.01 (sig), 0.02 (all); Fig. 2E, ρ = 0.79 (sig), 0.68 (all); Fig. 2G, p = 0.69 (sig), 0.60 (all); Fig. 2H, ρ = 0.87 (sig), 0.78 (all); Fig. 2I, ρ = 0.76 (sig), 0.65 (all); Fig. 3A, ρ = 0.66 (sig), 0.54 (all); Fig. 3C, ρ = 0.66 (sig), 0.56 (all); Fig. 3D, ρ = 0.61 (sig), 0.40 (all).
  • 30
    • 0343900491 scopus 로고    scopus 로고
    • and the Saccharomyces Genome Database (http://genome-www. stanford.edu/Saccharomyces/)
    • To conserve space, we have referenced literature for yeast genes selectively. References for all the genes mentioned in this study can be found at The Proteome (http://www.proteome.com/) and the Saccharomyces Genome Database (http://genome-www. stanford.edu/Saccharomyces/).
  • 31
    • 0032498622 scopus 로고    scopus 로고
    • A number of pheromone-induced genes have been identified in previous studies (5) [S. Erdman, L. Lin, M. Malczynski, M. Snyder, J. Cell Biol. 140, 461 (1998)]. Of the 14 genes induced more than 10-fold in Fig. 2A (wt cells exposed to 50 nM α-factor for 30 min), 6 were previously uncharacterized: YML047C, YLR445W, YIL037C, YPL192C, YNL279W, and YDR124W (excluding genes whose promoters contain Ty elements, which are induced by pheromone treatment). Of the 55 genes induced threefold or more, 27 have no known cellular function (11, 13). Of the 247 pheromone-repressed genes in Fig. 2A, 187 were previously identified as cell cycle regulated by DNA microarray experiments (3). Because the remaining 60 genes are subject to FAR1-dependent repression, they also may be cell cycle regulated.
    • (1998) J. Cell Biol. , vol.140 , pp. 461
    • Erdman, S.1    Lin, L.2    Malczynski, M.3    Snyder, M.4
  • 32
    • 0032949621 scopus 로고    scopus 로고
    • M. Karos and R. Fischer, Mol. Gen. Genet. 260, 510 (1999); P. Nair, B. Nelson, C. Roberts, C. Boone, unpublished observations.
    • (1999) Mol. Gen. Genet. , vol.260 , pp. 510
    • Karos, M.1    Fischer, R.2
  • 33
    • 0032949621 scopus 로고    scopus 로고
    • unpublished observations
    • M. Karos and R. Fischer, Mol. Gen. Genet. 260, 510 (1999); P. Nair, B. Nelson, C. Roberts, C. Boone, unpublished observations.
    • Nair, P.1    Nelson, B.2    Roberts, C.3    Boone, C.4
  • 34
    • 0026725796 scopus 로고
    • A. Gartner, K. Nasmyth, G. Ammerer, Genes Dev. 6, 1280 (1992); E. A. Elion, B. Satterberg, J. E. Kranz, Mol. Biol. Cell 4, 495 (1993); Z. Zhou et al., Mol. Cell. Biol. 13, 2069 (1993); L. J. W. M. Oehlen, J. D. McKinney, F. R. Cross, Mol. Cell. Biol. 16, 2830 (1996).
    • (1992) Genes Dev. , vol.6 , pp. 1280
    • Gartner, A.1    Nasmyth, K.2    Ammerer, G.3
  • 35
    • 0027253814 scopus 로고
    • A. Gartner, K. Nasmyth, G. Ammerer, Genes Dev. 6, 1280 (1992); E. A. Elion, B. Satterberg, J. E. Kranz, Mol. Biol. Cell 4, 495 (1993); Z. Zhou et al., Mol. Cell. Biol. 13, 2069 (1993); L. J. W. M. Oehlen, J. D. McKinney, F. R. Cross, Mol. Cell. Biol. 16, 2830 (1996).
    • (1993) Mol. Biol. Cell , vol.4 , pp. 495
    • Elion, E.A.1    Satterberg, B.2    Kranz, J.E.3
  • 36
    • 0027499591 scopus 로고
    • A. Gartner, K. Nasmyth, G. Ammerer, Genes Dev. 6, 1280 (1992); E. A. Elion, B. Satterberg, J. E. Kranz, Mol. Biol. Cell 4, 495 (1993); Z. Zhou et al., Mol. Cell. Biol. 13, 2069 (1993); L. J. W. M. Oehlen, J. D. McKinney, F. R. Cross, Mol. Cell. Biol. 16, 2830 (1996).
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 2069
    • Zhou, Z.1
  • 37
    • 0029982344 scopus 로고    scopus 로고
    • A. Gartner, K. Nasmyth, G. Ammerer, Genes Dev. 6, 1280 (1992); E. A. Elion, B. Satterberg, J. E. Kranz, Mol. Biol. Cell 4, 495 (1993); Z. Zhou et al., Mol. Cell. Biol. 13, 2069 (1993); L. J. W. M. Oehlen, J. D. McKinney, F. R. Cross, Mol. Cell. Biol. 16, 2830 (1996).
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 2830
    • Oehlen, L.J.W.M.1    McKinney, J.D.2    Cross, F.R.3
  • 38
    • 0343028882 scopus 로고    scopus 로고
    • data not shown
    • S. Ashkar et al., data not shown.
    • Ashkar, S.1
  • 39
    • 0025804181 scopus 로고
    • 1 cells for each time point were as follows: 52.9, 47.1, 0, and 47.1 for 0 min; 55.9, 36.8, 7.3, and 44.1 for 15 min; 47.1, 32, 20.9, and 52.9 for 30 min; 33.1, 39.8, 27.1, and 66.9 for 45 min; 3.7, 27.1, 69.1, and 96.2 for 60 min; 0.3, 8.6, 91.1, and 99.7 for 90 min; and 0, 1.6, 98.4, and 100 for 120 min. For the 120-min α-factor treatments, the percentages of shmoos were 98.4 and 32.7 for wt (Fig. 2G) and bni1Δ (Fig. 2H) cells, respectively.
    • (1991) Mol. Gen. Genet. , vol.227 , pp. 197
    • Hwang-Shum, J.J.1    Hagen, D.C.2    Jarvis, E.E.3    Westby, C.A.4    Sprague G.F., Jr.5
  • 40
    • 0025605219 scopus 로고
    • F. Chang and I. Herskowitz, Cell 63, 999 (1990); M. Peter et al., Cell 73, 747 (1993).
    • (1990) Cell , vol.63 , pp. 999
    • Chang, F.1    Herskowitz, I.2
  • 41
    • 0027191189 scopus 로고
    • F. Chang and I. Herskowitz, Cell 63, 999 (1990); M. Peter et al., Cell 73, 747 (1993).
    • (1993) Cell , vol.73 , pp. 747
    • Peter, M.1
  • 42
    • 0030932405 scopus 로고    scopus 로고
    • M. Evangelista et al., Science 276, 118 (1997); G. C. Chen, Y. J. Kim, C. S. Chan, Genes Dev. 11, 2958 (1997); J. L. Brown et al., Genes Dev. 11, 2972 (1997); T. Fujiwara et al., Mol. Biol. Cell 9, 1221 (1998).
    • (1997) Science , vol.276 , pp. 118
    • Evangelista, M.1
  • 43
    • 0030705142 scopus 로고    scopus 로고
    • M. Evangelista et al., Science 276, 118 (1997); G. C. Chen, Y. J. Kim, C. S. Chan, Genes Dev. 11, 2958 (1997); J. L. Brown et al., Genes Dev. 11, 2972 (1997); T. Fujiwara et al., Mol. Biol. Cell 9, 1221 (1998).
    • (1997) Genes Dev. , vol.11 , pp. 2958
    • Chen, G.C.1    Kim, Y.J.2    Chan, C.S.3
  • 44
    • 0030715361 scopus 로고    scopus 로고
    • M. Evangelista et al., Science 276, 118 (1997); G. C. Chen, Y. J. Kim, C. S. Chan, Genes Dev. 11, 2958 (1997); J. L. Brown et al., Genes Dev. 11, 2972 (1997); T. Fujiwara et al., Mol. Biol. Cell 9, 1221 (1998).
    • (1997) Genes Dev. , vol.11 , pp. 2972
    • Brown, J.L.1
  • 45
    • 0031665143 scopus 로고    scopus 로고
    • M. Evangelista et al., Science 276, 118 (1997); G. C. Chen, Y. J. Kim, C. S. Chan, Genes Dev. 11, 2958 (1997); J. L. Brown et al., Genes Dev. 11, 2972 (1997); T. Fujiwara et al., Mol. Biol. Cell 9, 1221 (1998).
    • (1998) Mol. Biol. Cell , vol.9 , pp. 1221
    • Fujiwara, T.1
  • 46
    • 0031128205 scopus 로고    scopus 로고
    • K. Tedford et al., Curr. Biol. 7, 228 (1997); J. G. Cook, L. Bardwell, S. J. Kron, J. Thorner, Genes Dev. 10, 2831 (1996); L. Bardwell et al., Proc. Natl. Acad. Sci. U.S.A. 95, 15400 (1998).
    • (1997) Curr. Biol. , vol.7 , pp. 228
    • Tedford, K.1
  • 47
    • 0029804618 scopus 로고    scopus 로고
    • K. Tedford et al., Curr. Biol. 7, 228 (1997); J. G. Cook, L. Bardwell, S. J. Kron, J. Thorner, Genes Dev. 10, 2831 (1996); L. Bardwell et al., Proc. Natl. Acad. Sci. U.S.A. 95, 15400 (1998).
    • (1996) Genes Dev. , vol.10 , pp. 2831
    • Cook, J.G.1    Bardwell, L.2    Kron, S.J.3    Thorner, J.4
  • 48
    • 0032446353 scopus 로고    scopus 로고
    • K. Tedford et al., Curr. Biol. 7, 228 (1997); J. G. Cook, L. Bardwell, S. J. Kron, J. Thorner, Genes Dev. 10, 2831 (1996); L. Bardwell et al., Proc. Natl. Acad. Sci. U.S.A. 95, 15400 (1998).
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 15400
    • Bardwell, L.1
  • 50
    • 0031908792 scopus 로고    scopus 로고
    • FLO11 expression plays an important role in the invasion stimulated by the filamentous pathway [W.-S. Lo and A. Dranginis, Mol. Biol. Cell 9, 161 (1998); S. Rupp et al., EMBO J. 16, 1257 (1999)]. Changes in FLO11 transcript levels were not detected in any experiments, likely because our experiments involved S288c (flo8) cells. We observed that α-factor induced invasion of MATa cells derived from the Σ1278b background, which contains wt alleles of FLO8 and FLO11. Σ1278b MATa flo11Δ cells were also competent for pheromone-induced invasion (17), confirming that this process does not require FLO11. Pheromone-induced invasion occurs on both rich and synthetic complete medium, which suggests that this process does not involve a nutritional input.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 161
    • Lo, W.-S.1    Dranginis, A.2
  • 51
    • 0033105258 scopus 로고    scopus 로고
    • FLO11 expression plays an important role in the invasion stimulated by the filamentous pathway [W.- S. Lo and A. Dranginis, Mol. Biol. Cell 9, 161 (1998); S. Rupp et al., EMBO J. 16, 1257 (1999)]. Changes in FLO11 transcript levels were not detected in any experiments, likely because our experiments involved S288c (flo8) cells. We observed that α-factor induced invasion of MATa cells derived from the Σ1278b background, which contains wt alleles of FLO8 and FLO11. Σ1278b MATa flo11Δ cells were also competent for pheromone-induced invasion (17), confirming that this process does not require FLO11. Pheromone-induced invasion occurs on both rich and synthetic complete medium, which suggests that this process does not involve a nutritional input.
    • (1999) EMBO J. , vol.16 , pp. 1257
    • Rupp, S.1
  • 52
    • 0032495489 scopus 로고    scopus 로고
    • A. Nern and R. A. Arkowitz, Nature 391, 195 (1998); A. C. Butty et al., Science 282, 1511 (1998).
    • (1998) Nature , vol.391 , pp. 195
    • Nern, A.1    Arkowitz, R.A.2
  • 53
    • 0032553474 scopus 로고    scopus 로고
    • A. Nern and R. A. Arkowitz, Nature 391, 195 (1998); A. C. Butty et al., Science 282, 1511 (1998).
    • (1998) Science , vol.282 , pp. 1511
    • Butty, A.C.1
  • 55
    • 85176685126 scopus 로고    scopus 로고
    • personal communication
    • R. Dorer, P. M. Pryciak, L. H. Hartwell, J. Cell Biol. 131, 845 (1995); S. Erdman and M. Snyder, personal communication.
    • Erdman, S.1    Snyder, M.2
  • 56
    • 0023836006 scopus 로고
    • S. Fields, D. T. Chaleff, G. F. Sprague Jr., Mol. Cell. Biol. 8, 551 (1988); M. Whiteway et al., Cell 56, 467 (1989); D. C. Hagen, G. McCaffrey, G. F. Sprague Jr., Mol. Cell. Biol. 11, 2952 (1991).
    • (1988) Mol. Cell. Biol. , vol.8 , pp. 551
    • Fields, S.1    Chaleff, D.T.2    Sprague G.F., Jr.3
  • 57
    • 0024966029 scopus 로고
    • S. Fields, D. T. Chaleff, G. F. Sprague Jr., Mol. Cell. Biol. 8, 551 (1988); M. Whiteway et al., Cell 56, 467 (1989); D. C. Hagen, G. McCaffrey, G. F. Sprague Jr., Mol. Cell. Biol. 11, 2952 (1991).
    • (1989) Cell , vol.56 , pp. 467
    • Whiteway, M.1
  • 58
    • 0025865002 scopus 로고
    • S. Fields, D. T. Chaleff, G. F. Sprague Jr., Mol. Cell. Biol. 8, 551 (1988); M. Whiteway et al., Cell 56, 467 (1989); D. C. Hagen, G. McCaffrey, G. F. Sprague Jr., Mol. Cell. Biol. 11, 2952 (1991).
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 2952
    • Hagen, D.C.1    McCaffrey, G.2    Sprague G.F., Jr.3
  • 59
    • 0032528136 scopus 로고    scopus 로고
    • Potential filamentation genes were induced in experiments 19, 22, 23, 31, 32, and 33, which includes the pheromone response profile of fus3Δ cells, the rst1Δ rst2Δ profile, and the high osmolarity cross talk of hog1Δ cells (9), and coordinately repressed in experiment 30, the pheromone response profile of rst1Δ rst2Δ cells. Genes encoding secreted proteins (PGU1 and PRY2), potential cell-surface proteins (YLR042c, YIL177c), proteins involved in glycosylation and chitin biosynthesis (KTR2, CHS7, and GFA1), and a regulatory protein implicated in invasive and filamentous growth (PHD1) were all induced by Kss1p signaling. PGU1 encodes a secreted form of a pectin-degrading enzyme, which might facilitate yeast invasion of fruits [P. Blanco, C. Sieiro, N. M. Reboredo, T. G. Villa, FEMS Microbiol. Lett. 164, 249 (1998); S. Gognies, A. Gainvors, M. Aigle, A. Belarbi, Yeast 15, 11 (1999)]. Consistent with our results, PGU1 has recently been shown to be induced by Ksslp signaling in Σ1278b cells [H. D. Madhani, T. Galitski, E. S. Lander, G. R. Fink, Proc. Natl. Acad. Sci. U.S.A. 96, 12530 (1999)]. It is also noteworthy that α-factor treatment of rst1Δ rst2Δ cells leads to further induction of several pheromone-responsive genes (11). Pheromone-induced gene expression in the absence of Rstlp and Rst2p indicates that Ste12p activation may be controlled by another negative regulatory mechanism, perhaps one involving Kss1p [J. G. Cook, L. Bardwell, J. Thorner, Nature 390, 85 (1997); L. Bardwell et al., Genes Dev. 12, 2887 (1998)]. Alternatively, Fus3p may phosphorylate and activate Ste12p directly [W. Hung, K. A. Olson, A. Breitkreutz, I. Sadowski, Eur. J. Biochem. 245, 241 (1997)].
    • (1998) FEMS Microbiol. Lett. , vol.164 , pp. 249
    • Blanco, P.1    Sieiro, C.2    Reboredo, N.M.3    Villa, T.G.4
  • 60
    • 0033555443 scopus 로고    scopus 로고
    • Potential filamentation genes were induced in experiments 19, 22, 23, 31, 32, and 33, which includes the pheromone response profile of fus3Δ cells, the rst1Δ rst2Δ profile, and the high osmolarity cross talk of hog1Δ cells (9), and coordinately repressed in experiment 30, the pheromone response profile of rst1Δ rst2Δ cells. Genes encoding secreted proteins (PGU1 and PRY2), potential cell-surface proteins (YLR042c, YIL177c), proteins involved in glycosylation and chitin biosynthesis (KTR2, CHS7, and GFA1), and a regulatory protein implicated in invasive and filamentous growth (PHD1) were all induced by Kss1p signaling. PGU1 encodes a secreted form of a pectin-degrading enzyme, which might facilitate yeast invasion of fruits [P. Blanco, C. Sieiro, N. M. Reboredo, T. G. Villa, FEMS Microbiol. Lett. 164, 249 (1998); S. Gognies, A. Gainvors, M. Aigle, A. Belarbi, Yeast 15, 11 (1999)]. Consistent with our results, PGU1 has recently been shown to be induced by Ksslp signaling in Σ1278b cells [H. D. Madhani, T. Galitski, E. S. Lander, G. R. Fink, Proc. Natl. Acad. Sci. U.S.A. 96, 12530 (1999)]. It is also noteworthy that α-factor treatment of rst1Δ rst2Δ cells leads to further induction of several pheromone-responsive genes (11). Pheromone-induced gene expression in the absence of Rstlp and Rst2p indicates that Ste12p activation may be controlled by another negative regulatory mechanism, perhaps one involving Kss1p [J. G. Cook, L. Bardwell, J. Thorner, Nature 390, 85 (1997); L. Bardwell et al., Genes Dev. 12, 2887 (1998)]. Alternatively, Fus3p may phosphorylate and activate Ste12p directly [W. Hung, K. A. Olson, A. Breitkreutz, I. Sadowski, Eur. J. Biochem. 245, 241 (1997)].
    • (1999) Yeast , vol.15 , pp. 11
    • Gognies, S.1    Gainvors, A.2    Aigle, M.3    Belarbi, A.4
  • 61
    • 0033607161 scopus 로고    scopus 로고
    • Potential filamentation genes were induced in experiments 19, 22, 23, 31, 32, and 33, which includes the pheromone response profile of fus3Δ cells, the rst1Δ rst2Δ profile, and the high osmolarity cross talk of hog1Δ cells (9), and coordinately repressed in experiment 30, the pheromone response profile of rst1Δ rst2Δ cells. Genes encoding secreted proteins (PGU1 and PRY2), potential cell-surface proteins (YLR042c, YIL177c), proteins involved in glycosylation and chitin biosynthesis (KTR2, CHS7, and GFA1), and a regulatory protein implicated in invasive and filamentous growth (PHD1) were all induced by Kss1p signaling. PGU1 encodes a secreted form of a pectin-degrading enzyme, which might facilitate yeast invasion of fruits [P. Blanco, C. Sieiro, N. M. Reboredo, T. G. Villa, FEMS Microbiol. Lett. 164, 249 (1998); S. Gognies, A. Gainvors, M. Aigle, A. Belarbi, Yeast 15, 11 (1999)]. Consistent with our results, PGU1 has recently been shown to be induced by Ksslp signaling in Σ1278b cells [H. D. Madhani, T. Galitski, E. S. Lander, G. R. Fink, Proc. Natl. Acad. Sci. U.S.A. 96, 12530 (1999)]. It is also noteworthy that α-factor treatment of rst1Δ rst2Δ cells leads to further induction of several pheromone-responsive genes (11). Pheromone-induced gene expression in the absence of Rstlp and Rst2p indicates that Ste12p activation may be controlled by another negative regulatory mechanism, perhaps one involving Kss1p [J. G. Cook, L. Bardwell, J. Thorner, Nature 390, 85 (1997); L. Bardwell et al., Genes Dev. 12, 2887 (1998)]. Alternatively, Fus3p may phosphorylate and activate Ste12p directly [W. Hung, K. A. Olson, A. Breitkreutz, I. Sadowski, Eur. J. Biochem. 245, 241 (1997)].
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 12530
    • Madhani, H.D.1    Galitski, T.2    Lander, E.S.3    Fink, G.R.4
  • 62
    • 0030688862 scopus 로고    scopus 로고
    • Potential filamentation genes were induced in experiments 19, 22, 23, 31, 32, and 33, which includes the pheromone response profile of fus3Δ cells, the rst1Δ rst2Δ profile, and the high osmolarity cross talk of hog1Δ cells (9), and coordinately repressed in experiment 30, the pheromone response profile of rst1Δ rst2Δ cells. Genes encoding secreted proteins (PGU1 and PRY2), potential cell-surface proteins (YLR042c, YIL177c), proteins involved in glycosylation and chitin biosynthesis (KTR2, CHS7, and GFA1), and a regulatory protein implicated in invasive and filamentous growth (PHD1) were all induced by Kss1p signaling. PGU1 encodes a secreted form of a pectin-degrading enzyme, which might facilitate yeast invasion of fruits [P. Blanco, C. Sieiro, N. M. Reboredo, T. G. Villa, FEMS Microbiol. Lett. 164, 249 (1998); S. Gognies, A. Gainvors, M. Aigle, A. Belarbi, Yeast 15, 11 (1999)]. Consistent with our results, PGU1 has recently been shown to be induced by Ksslp signaling in Σ1278b cells [H. D. Madhani, T. Galitski, E. S. Lander, G. R. Fink, Proc. Natl. Acad. Sci. U.S.A. 96, 12530 (1999)]. It is also noteworthy that α-factor treatment of rst1Δ rst2Δ cells leads to further induction of several pheromone-responsive genes (11). Pheromone-induced gene expression in the absence of Rstlp and Rst2p indicates that Ste12p activation may be controlled by another negative regulatory mechanism, perhaps one involving Kss1p [J. G. Cook, L. Bardwell, J. Thorner, Nature 390, 85 (1997); L. Bardwell et al., Genes Dev. 12, 2887 (1998)]. Alternatively, Fus3p may phosphorylate and activate Ste12p directly [W. Hung, K. A. Olson, A. Breitkreutz, I. Sadowski, Eur. J. Biochem. 245, 241 (1997)].
    • (1997) Nature , vol.390 , pp. 85
    • Cook, J.G.1    Bardwell, L.2    Thorner, J.3
  • 63
    • 0032530850 scopus 로고    scopus 로고
    • Potential filamentation genes were induced in experiments 19, 22, 23, 31, 32, and 33, which includes the pheromone response profile of fus3Δ cells, the rst1Δ rst2Δ profile, and the high osmolarity cross talk of hog1Δ cells (9), and coordinately repressed in experiment 30, the pheromone response profile of rst1Δ rst2Δ cells. Genes encoding secreted proteins (PGU1 and PRY2), potential cell-surface proteins (YLR042c, YIL177c), proteins involved in glycosylation and chitin biosynthesis (KTR2, CHS7, and GFA1), and a regulatory protein implicated in invasive and filamentous growth (PHD1) were all induced by Kss1p signaling. PGU1 encodes a secreted form of a pectin-degrading enzyme, which might facilitate yeast invasion of fruits [P. Blanco, C. Sieiro, N. M. Reboredo, T. G. Villa, FEMS Microbiol. Lett. 164, 249 (1998); S. Gognies, A. Gainvors, M. Aigle, A. Belarbi, Yeast 15, 11 (1999)]. Consistent with our results, PGU1 has recently been shown to be induced by Ksslp signaling in Σ1278b cells [H. D. Madhani, T. Galitski, E. S. Lander, G. R. Fink, Proc. Natl. Acad. Sci. U.S.A. 96, 12530 (1999)]. It is also noteworthy that α-factor treatment of rst1Δ rst2Δ cells leads to further induction of several pheromone-responsive genes (11). Pheromone-induced gene expression in the absence of Rstlp and Rst2p indicates that Ste12p activation may be controlled by another negative regulatory mechanism, perhaps one involving Kss1p [J. G. Cook, L. Bardwell, J. Thorner, Nature 390, 85 (1997); L. Bardwell et al., Genes Dev. 12, 2887 (1998)]. Alternatively, Fus3p may phosphorylate and activate Ste12p directly [W. Hung, K. A. Olson, A. Breitkreutz, I. Sadowski, Eur. J. Biochem. 245, 241 (1997)].
    • (1998) Genes Dev. , vol.12 , pp. 2887
    • Bardwell, L.1
  • 64
    • 0030950138 scopus 로고    scopus 로고
    • Potential filamentation genes were induced in experiments 19, 22, 23, 31, 32, and 33, which includes the pheromone response profile of fus3Δ cells, the rst1Δ rst2Δ profile, and the high osmolarity cross talk of hog1Δ cells (9), and coordinately repressed in experiment 30, the pheromone response profile of rst1Δ rst2Δ cells. Genes encoding secreted proteins (PGU1 and PRY2), potential cell-surface proteins (YLR042c, YIL177c), proteins involved in glycosylation and chitin biosynthesis (KTR2, CHS7, and GFA1), and a regulatory protein implicated in invasive and filamentous growth (PHD1) were all induced by Kss1p signaling. PGU1 encodes a secreted form of a pectin-degrading enzyme, which might facilitate yeast invasion of fruits [P. Blanco, C. Sieiro, N. M. Reboredo, T. G. Villa, FEMS Microbiol. Lett. 164, 249 (1998); S. Gognies, A. Gainvors, M. Aigle, A. Belarbi, Yeast 15, 11 (1999)]. Consistent with our results, PGU1 has recently been shown to be induced by Ksslp signaling in Σ1278b cells [H. D. Madhani, T. Galitski, E. S. Lander, G. R. Fink, Proc. Natl. Acad. Sci. U.S.A. 96, 12530 (1999)]. It is also noteworthy that α-factor treatment of rst1Δ rst2Δ cells leads to further induction of several pheromone-responsive genes (11). Pheromone-induced gene expression in the absence of Rstlp and Rst2p indicates that Ste12p activation may be controlled by another negative regulatory mechanism, perhaps one involving Kss1p [J. G. Cook, L. Bardwell, J. Thorner, Nature 390, 85 (1997); L. Bardwell et al., Genes Dev. 12, 2887 (1998)]. Alternatively, Fus3p may phosphorylate and activate Ste12p directly [W. Hung, K. A. Olson, A. Breitkreutz, I. Sadowski, Eur. J. Biochem. 245, 241 (1997)].
    • (1997) Eur. J. Biochem. , vol.245 , pp. 241
    • Hung, W.1    Olson, K.A.2    Breitkreutz, A.3    Sadowski, I.4
  • 65
    • 0032579440 scopus 로고    scopus 로고
    • All yeast strains were based on the 5288c genetic background and were derived from BY4741 (MATa ura3Δ0 leu2Δ0 his3Δ1 met15Δ0) or BY4742 (MATα ura3Δ0 leu2Δ0 his3Δ1 lys2Δ0) [C. B. Brachmann et al., Yeast 14, 115 (1998)]. The bar1Δ (R276) and hog1Δ (R7326) deletions were constructed by gene replacement in BY4741 with the KanMX cassette [A. Wach, A. Brachat, R. Pohlmann, P. Philippsen, Yeast 10, 1793 (1994)]. R426, the control strain for mutant experiments, was created by integration of URA3 at the ura3Δ0 locus in R276. Genes were deleted from derivatives of R276 and replaced with URA3 sequences [J. S. Jones and L. Prakash, Yeast 6, 363 (1990)], creating the following strains: ste2Δ (R1269), ste4Δ (R410), ste5Δ (R413), ste7Δ (R415), ste11Δ (R416), ste12Δ (R418), ste18Δ (R419), ste20Δ (R421), fus3Δ (R500), kss1Δ (Y1399), bni1Δ (R994), sst2Δ (R1331), far1Δ (R496), and tec1Δ (Y1543). Y1787 (fus3Δ tec1Δ) was created by replacing the FUS3 gene of Y1543 with LEU2 sequences. Y1460 (MATa fus3Δ kss1Δ lys2Δ0) was isolated by sporulation of the diploid formed by crossing R500 and Y1438 (MATα kss1Δ::URA3 bar1Δ::KanMX his3Δ200 leu2Δ0 met15Δ0 lys2Δ0). Y1612 (MATa rst1Δ rst2Δ lys2Δ0) was isolated by sporulation of a diploid formed by crossing Y1458 (MATa rst1Δ::URA3 rst2Δ:.KanMX his3Δ200 leu2Δ0 lys2Δ0) and Y1400 (MATα rst1Δ::URA3 bar1Δ::KanMX his3Δ200). Y1469 (MATa bar1Δ::KanMX trp1-63 his3Δ200 leu2Δ0 ura3Δ0 met15Δ0) was isolated from sporulation of the diploid formed by crossing R276 and R154 (MATα lys2α0 ura3α0 trp1-63).
    • (1998) Yeast , vol.14 , pp. 115
    • Brachmann, C.B.1
  • 66
    • 0028676232 scopus 로고
    • All yeast strains were based on the 5288c genetic background and were derived from BY4741 (MATa ura3Δ0 leu2Δ0 his3Δ1 met15Δ0) or BY4742 (MATα ura3Δ0 leu2Δ0 his3Δ1 lys2Δ0) [C. B. Brachmann et al., Yeast 14, 115 (1998)]. The bar1Δ (R276) and hog1Δ (R7326) deletions were constructed by gene replacement in BY4741 with the KanMX cassette [A. Wach, A. Brachat, R. Pohlmann, P. Philippsen, Yeast 10, 1793 (1994)]. R426, the control strain for mutant experiments, was created by integration of URA3 at the ura3Δ0 locus in R276. Genes were deleted from derivatives of R276 and replaced with URA3 sequences [J. S. Jones and L. Prakash, Yeast 6, 363 (1990)], creating the following strains: ste2Δ (R1269), ste4Δ (R410), ste5Δ (R413), ste7Δ (R415), ste11Δ (R416), ste12Δ (R418), ste18Δ (R419), ste20Δ (R421), fus3Δ (R500), kss1Δ (Y1399), bni1Δ (R994), sst2Δ (R1331), far1Δ (R496), and tec1Δ (Y1543). Y1787 (fus3Δ tec1Δ) was created by replacing the FUS3 gene of Y1543 with LEU2 sequences. Y1460 (MATa fus3Δ kss1Δ lys2Δ0) was isolated by sporulation of the diploid formed by crossing R500 and Y1438 (MATα kss1Δ::URA3 bar1Δ::KanMX his3Δ200 leu2Δ0 met15Δ0 lys2Δ0). Y1612 (MATa rst1Δ rst2Δ lys2Δ0) was isolated by sporulation of a diploid formed by crossing Y1458 (MATa rst1Δ::URA3 rst2Δ:.KanMX his3Δ200 leu2Δ0 lys2Δ0) and Y1400 (MATα rst1Δ::URA3 bar1Δ::KanMX his3Δ200). Y1469 (MATa bar1Δ::KanMX trp1-63 his3Δ200 leu2Δ0 ura3Δ0 met15Δ0) was isolated from sporulation of the diploid formed by crossing R276 and R154 (MATα lys2α0 ura3α0 trp1-63).
    • (1994) Yeast , vol.10 , pp. 1793
    • Wach, A.1    Brachat, A.2    Pohlmann, R.3    Philippsen, P.4
  • 67
    • 0025483120 scopus 로고
    • All yeast strains were based on the 5288c genetic background and were derived from BY4741 (MATa ura3Δ0 leu2Δ0 his3Δ1 met15Δ0) or BY4742 (MATα ura3Δ0 leu2Δ0 his3Δ1 lys2Δ0) [C. B. Brachmann et al., Yeast 14, 115 (1998)]. The bar1Δ (R276) and hog1Δ (R7326) deletions were constructed by gene replacement in BY4741 with the KanMX cassette [A. Wach, A. Brachat, R. Pohlmann, P. Philippsen, Yeast 10, 1793 (1994)]. R426, the control strain for mutant experiments, was created by integration of URA3 at the ura3Δ0 locus in R276. Genes were deleted from derivatives of R276 and replaced with URA3 sequences [J. S. Jones and L. Prakash, Yeast 6, 363 (1990)], creating the following strains: ste2Δ (R1269), ste4Δ (R410), ste5Δ (R413), ste7Δ (R415), ste11Δ (R416), ste12Δ (R418), ste18Δ (R419), ste20Δ (R421), fus3Δ (R500), kss1Δ (Y1399), bni1Δ (R994), sst2Δ (R1331), far1Δ (R496), and tec1Δ (Y1543). Y1787 (fus3Δ tec1Δ) was created by replacing the FUS3 gene of Y1543 with LEU2 sequences. Y1460 (MATa fus3Δ kss1Δ lys2Δ0) was isolated by sporulation of the diploid formed by crossing R500 and Y1438 (MATα kss1Δ::URA3 bar1Δ::KanMX his3Δ200 leu2Δ0 met15Δ0 lys2Δ0). Y1612 (MATa rst1Δ rst2Δ lys2Δ0) was isolated by sporulation of a diploid formed by crossing Y1458 (MATa rst1Δ::URA3 rst2Δ:.KanMX his3Δ200 leu2Δ0 lys2Δ0) and Y1400 (MATα rst1Δ::URA3 bar1Δ::KanMX his3Δ200). Y1469 (MATa bar1Δ::KanMX trp1-63 his3Δ200 leu2Δ0 ura3Δ0 met15Δ0) was isolated from sporulation of the diploid formed by crossing R276 and R154 (MATα lys2α0 ura3α0 trp1-63).
    • (1990) Yeast , vol.6 , pp. 363
    • Jones, J.S.1    Prakash, L.2
  • 68
    • 0024669291 scopus 로고
    • Plasmids described previously include the following: pRS314 (CEN TRP1), pRS315 (CEN LEU2), and pR5316 (CEN URA3) [R. S. Sikorski and P. Hieter, Genetics 122, 19 (1989)]; YCplac111 (CEN LEU2) and YC- plac22 (CEN TRP1) [R. D. Gietz and A. Sugino, Gene 74, 527 (1988)]; pDL242 carries the CAL1/10 promoter (pr) regulating PKC1-R398A [M. Watanabe, C. Y. Chen, D. E. Levin, J. Biol. Chem. 269, 16829 (1994)]; pL914 carries GAL1/10pr-RHO1-Q68H [H. Qadota et al., Science 272, 279 (1996)]; p2107 carries GAL1/10pr-STE4 in vector pRS315; pGFP-CS5- CTM carries the GAL1/10pr-GFP-STES-CTM [P. M. Pryciak and F. A. Huntress, Genes Dev. 12, 2684 (1998)]; p2087, CEN TRP1 plasmid, carries GAL1/ 10pr-STE11-4; pNC252, CEN URA3 plasmid, carries GAL1/10pr-STE12. p3S6 carries GAL1/10pr-BNI1ΔN (20) in vector pRS316; pJB290 (CEN LEU2) carries a FUS3 kinase dead aliele, fus3-K42R (8); and p3019 (CEN LEU2) carries FG:TY1-lacZ (8). V85, a YC- plac111-based plasmid containing the lacZ gene, was used for reporter construction. Promoter sequences were amplified by polymerase chain reaction (PCR) from W303-1A (MATa ura3-1 leu2-3, 112 his3-11, 15 trp1-1 ade2-1 can1-100) genomic DNA. The 3′ downstream primer included the start codon of the gene designed for an in-frame fusion with lacZ. The 5′ upstream primer determined the size of the promoter-containing PCR product: YLR042C, 600 base pairs (bp); PGU1, 743 bp; FUS3, 690 bp; KSS1, 791 bp; FUS1, 834 bp; FIG1, 800 bp; SVS1, 793 bp; YPL192C, 800 bp.
    • (1989) Genetics , vol.122 , pp. 19
    • Sikorski, R.S.1    Hieter, P.2
  • 69
    • 0024266139 scopus 로고
    • Plasmids described previously include the following: pRS314 (CEN TRP1), pRS315 (CEN LEU2), and pR5316 (CEN URA3) [R. S. Sikorski and P. Hieter, Genetics 122, 19 (1989)]; YCplac111 (CEN LEU2) and YC-plac22 (CEN TRP1) [R. D. Gietz and A. Sugino, Gene 74, 527 (1988)]; pDL242 carries the CAL1/10 promoter (pr) regulating PKC1-R398A [M. Watanabe, C. Y. Chen, D. E. Levin, J. Biol. Chem. 269, 16829 (1994)]; pL914 carries GAL1/10pr-RHO1-Q68H [H. Qadota et al., Science 272, 279 (1996)]; p2107 carries GAL1/10pr-STE4 in vector pRS315; pGFP-CS5- CTM carries the GAL1/10pr-GFP-STES-CTM [P. M. Pryciak and F. A. Huntress, Genes Dev. 12, 2684 (1998)]; p2087, CEN TRP1 plasmid, carries GAL1/ 10pr-STE11-4; pNC252, CEN URA3 plasmid, carries GAL1/10pr-STE12. p3S6 carries GAL1/10pr-BNI1ΔN (20) in vector pRS316; pJB290 (CEN LEU2) carries a FUS3 kinase dead aliele, fus3-K42R (8); and p3019 (CEN LEU2) carries FG:TY1-lacZ (8). V85, a YC- plac111-based plasmid containing the lacZ gene, was used for reporter construction. Promoter sequences were amplified by polymerase chain reaction (PCR) from W303-1A (MATa ura3-1 leu2-3, 112 his3-11, 15 trp1-1 ade2-1 can1-100) genomic DNA. The 3′ downstream primer included the start codon of the gene designed for an in-frame fusion with lacZ. The 5′ upstream primer determined the size of the promoter-containing PCR product: YLR042C, 600 base pairs (bp); PGU1, 743 bp; FUS3, 690 bp; KSS1, 791 bp; FUS1, 834 bp; FIG1, 800 bp; SVS1, 793 bp; YPL192C, 800 bp.
    • (1988) Gene , vol.74 , pp. 527
    • Gietz, R.D.1    Sugino, A.2
  • 70
    • 0028309762 scopus 로고
    • Plasmids described previously include the following: pRS314 (CEN TRP1), pRS315 (CEN LEU2), and pR5316 (CEN URA3) [R. S. Sikorski and P. Hieter, Genetics 122, 19 (1989)]; YCplac111 (CEN LEU2) and YC- plac22 (CEN TRP1) [R. D. Gietz and A. Sugino, Gene 74, 527 (1988)]; pDL242 carries the CAL1/10 promoter (pr) regulating PKC1-R398A [M. Watanabe, C. Y. Chen, D. E. Levin, J. Biol. Chem. 269, 16829 (1994)]; pL914 carries GAL1/10pr-RHO1-Q68H [H. Qadota et al., Science 272, 279 (1996)]; p2107 carries GAL1/10pr-STE4 in vector pRS315; pGFP-CS5- CTM carries the GAL1/10pr-GFP-STES-CTM [P. M. Pryciak and F. A. Huntress, Genes Dev. 12, 2684 (1998)]; p2087, CEN TRP1 plasmid, carries GAL1/ 10pr-STE11-4; pNC252, CEN URA3 plasmid, carries GAL1/10pr-STE12. p3S6 carries GAL1/10pr-BNI1ΔN (20) in vector pRS316; pJB290 (CEN LEU2) carries a FUS3 kinase dead aliele, fus3-K42R (8); and p3019 (CEN LEU2) carries FG:TY1-lacZ (8). V85, a YC- plac111-based plasmid containing the lacZ gene, was used for reporter construction. Promoter sequences were amplified by polymerase chain reaction (PCR) from W303-1A (MATa ura3-1 leu2-3, 112 his3-11, 15 trp1-1 ade2-1 can1-100) genomic DNA. The 3′ downstream primer included the start codon of the gene designed for an in-frame fusion with lacZ. The 5′ upstream primer determined the size of the promoter-containing PCR product: YLR042C, 600 base pairs (bp); PGU1, 743 bp; FUS3, 690 bp; KSS1, 791 bp; FUS1, 834 bp; FIG1, 800 bp; SVS1, 793 bp; YPL192C, 800 bp.
    • (1994) J. Biol. Chem. , vol.269 , pp. 16829
    • Watanabe, M.1    Chen, C.Y.2    Levin, D.E.3
  • 71
    • 0029892037 scopus 로고    scopus 로고
    • Plasmids described previously include the following: pRS314 (CEN TRP1), pRS315 (CEN LEU2), and pR5316 (CEN URA3) [R. S. Sikorski and P. Hieter, Genetics 122, 19 (1989)]; YCplac111 (CEN LEU2) and YC- plac22 (CEN TRP1) [R. D. Gietz and A. Sugino, Gene 74, 527 (1988)]; pDL242 carries the CAL1/10 promoter (pr) regulating PKC1-R398A [M. Watanabe, C. Y. Chen, D. E. Levin, J. Biol. Chem. 269, 16829 (1994)]; pL914 carries GAL1/10pr-RHO1-Q68H [H. Qadota et al., Science 272, 279 (1996)]; p2107 carries GAL1/10pr-STE4 in vector pRS315; pGFP-CS5- CTM carries the GAL1/10pr-GFP-STES-CTM [P. M. Pryciak and F. A. Huntress, Genes Dev. 12, 2684 (1998)]; p2087, CEN TRP1 plasmid, carries GAL1/ 10pr-STE11-4; pNC252, CEN URA3 plasmid, carries GAL1/10pr-STE12. p3S6 carries GAL1/10pr-BNI1ΔN (20) in vector pRS316; pJB290 (CEN LEU2) carries a FUS3 kinase dead aliele, fus3-K42R (8); and p3019 (CEN LEU2) carries FG:TY1-lacZ (8). V85, a YC- plac111-based plasmid containing the lacZ gene, was used for reporter construction. Promoter sequences were amplified by polymerase chain reaction (PCR) from W303-1A (MATa ura3-1 leu2-3, 112 his3-11, 15 trp1-1 ade2-1 can1-100) genomic DNA. The 3′ downstream primer included the start codon of the gene designed for an in-frame fusion with lacZ. The 5′ upstream primer determined the size of the promoter-containing PCR product: YLR042C, 600 base pairs (bp); PGU1, 743 bp; FUS3, 690 bp; KSS1, 791 bp; FUS1, 834 bp; FIG1, 800 bp; SVS1, 793 bp; YPL192C, 800 bp.
    • (1996) Science , vol.272 , pp. 279
    • Qadota, H.1
  • 72
    • 0032168881 scopus 로고    scopus 로고
    • Plasmids described previously include the following: pRS314 (CEN TRP1), pRS315 (CEN LEU2), and pR5316 (CEN URA3) [R. S. Sikorski and P. Hieter, Genetics 122, 19 (1989)]; YCplac111 (CEN LEU2) and YC- plac22 (CEN TRP1) [R. D. Gietz and A. Sugino, Gene 74, 527 (1988)]; pDL242 carries the CAL1/10 promoter (pr) regulating PKC1-R398A [M. Watanabe, C. Y. Chen, D. E. Levin, J. Biol. Chem. 269, 16829 (1994)]; pL914 carries GAL1/10pr-RHO1-Q68H [H. Qadota et al., Science 272, 279 (1996)]; p2107 carries GAL1/10pr-STE4 in vector pRS315; pGFP-CS5-CTM carries the GAL1/10pr-GFP-STES-CTM [P. M. Pryciak and F. A. Huntress, Genes Dev. 12, 2684 (1998)]; p2087, CEN TRP1 plasmid, carries GAL1/ 10pr-STE11-4; pNC252, CEN URA3 plasmid, carries GAL1/10pr-STE12. p3S6 carries GAL1/10pr-BNI1ΔN (20) in vector pRS316; pJB290 (CEN LEU2) carries a FUS3 kinase dead aliele, fus3-K42R (8); and p3019 (CEN LEU2) carries FG:TY1-lacZ (8). V85, a YC-plac111-based plasmid containing the lacZ gene, was used for reporter construction. Promoter sequences were amplified by polymerase chain reaction (PCR) from W303-1A (MATa ura3-1 leu2-3, 112 his3-11, 15 trp1-1 ade2-1 can1-100) genomic DNA. The 3′ downstream primer included the start codon of the gene designed for an in-frame fusion with lacZ. The 5′ upstream primer determined the size of the promoter-containing PCR product: YLR042C, 600 base pairs (bp); PGU1, 743 bp; FUS3, 690 bp; KSS1, 791 bp; FUS1, 834 bp; FIG1, 800 bp; SVS1, 793 bp; YPL192C, 800 bp.
    • (1998) Genes Dev. , vol.12 , pp. 2684
    • Pryciak, P.M.1    Huntress, F.A.2
  • 73
    • 0030789480 scopus 로고    scopus 로고
    • J. V. Gray et al., EMBO J. 16, 4924 (1997); J. Verna et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13804 (1997); T. Ketela, R. Green, H. Bussey, J. Bacteriol. 181, 3330 (1999); M. Rajavel et al., Mol. Cell. Biol. 19, 3969 (1999); K. S. Lee et al., Mol. Cell. Biol. 13, 3067 (1993); Y. Watanabe, K. Irie, K. Matsumoto, Mol. Cell. Biol. 15, 5740 (1995); Y. Watanabe et al., Mol. Cell. Biol. 17, 2615 (1997); K. Madden et al., Science 275, 1781 (1997).
    • (1997) EMBO J. , vol.16 , pp. 4924
    • Gray, J.V.1
  • 74
    • 0031442669 scopus 로고    scopus 로고
    • J. V. Gray et al., EMBO J. 16, 4924 (1997); J. Verna et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13804 (1997); T. Ketela, R. Green, H. Bussey, J. Bacteriol. 181, 3330 (1999); M. Rajavel et al., Mol. Cell. Biol. 19, 3969 (1999); K. S. Lee et al., Mol. Cell. Biol. 13, 3067 (1993); Y. Watanabe, K. Irie, K. Matsumoto, Mol. Cell. Biol. 15, 5740 (1995); Y. Watanabe et al., Mol. Cell. Biol. 17, 2615 (1997); K. Madden et al., Science 275, 1781 (1997).
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 13804
    • Verna, J.1
  • 75
    • 0033000927 scopus 로고    scopus 로고
    • J. V. Gray et al., EMBO J. 16, 4924 (1997); J. Verna et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13804 (1997); T. Ketela, R. Green, H. Bussey, J. Bacteriol. 181, 3330 (1999); M. Rajavel et al., Mol. Cell. Biol. 19, 3969 (1999); K. S. Lee et al., Mol. Cell. Biol. 13, 3067 (1993); Y. Watanabe, K. Irie, K. Matsumoto, Mol. Cell. Biol. 15, 5740 (1995); Y. Watanabe et al., Mol. Cell. Biol. 17, 2615 (1997); K. Madden et al., Science 275, 1781 (1997).
    • (1999) J. Bacteriol. , vol.181 , pp. 3330
    • Ketela, T.1    Green, R.2    Bussey, H.3
  • 76
    • 0032974582 scopus 로고    scopus 로고
    • J. V. Gray et al., EMBO J. 16, 4924 (1997); J. Verna et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13804 (1997); T. Ketela, R. Green, H. Bussey, J. Bacteriol. 181, 3330 (1999); M. Rajavel et al., Mol. Cell. Biol. 19, 3969 (1999); K. S. Lee et al., Mol. Cell. Biol. 13, 3067 (1993); Y. Watanabe, K. Irie, K. Matsumoto, Mol. Cell. Biol. 15, 5740 (1995); Y. Watanabe et al., Mol. Cell. Biol. 17, 2615 (1997); K. Madden et al., Science 275, 1781 (1997).
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 3969
    • Rajavel, M.1
  • 77
    • 0027266933 scopus 로고
    • J. V. Gray et al., EMBO J. 16, 4924 (1997); J. Verna et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13804 (1997); T. Ketela, R. Green, H. Bussey, J. Bacteriol. 181, 3330 (1999); M. Rajavel et al., Mol. Cell. Biol. 19, 3969 (1999); K. S. Lee et al., Mol. Cell. Biol. 13, 3067 (1993); Y. Watanabe, K. Irie, K. Matsumoto, Mol. Cell. Biol. 15, 5740 (1995); Y. Watanabe et al., Mol. Cell. Biol. 17, 2615 (1997); K. Madden et al., Science 275, 1781 (1997).
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 3067
    • Lee, K.S.1
  • 78
    • 0029092609 scopus 로고
    • J. V. Gray et al., EMBO J. 16, 4924 (1997); J. Verna et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13804 (1997); T. Ketela, R. Green, H. Bussey, J. Bacteriol. 181, 3330 (1999); M. Rajavel et al., Mol. Cell. Biol. 19, 3969 (1999); K. S. Lee et al., Mol. Cell. Biol. 13, 3067 (1993); Y. Watanabe, K. Irie, K. Matsumoto, Mol. Cell. Biol. 15, 5740 (1995); Y. Watanabe et al., Mol. Cell. Biol. 17, 2615 (1997); K. Madden et al., Science 275, 1781 (1997).
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 5740
    • Watanabe, Y.1    Irie, K.2    Matsumoto, K.3
  • 79
    • 0030957532 scopus 로고    scopus 로고
    • J. V. Gray et al., EMBO J. 16, 4924 (1997); J. Verna et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13804 (1997); T. Ketela, R. Green, H. Bussey, J. Bacteriol. 181, 3330 (1999); M. Rajavel et al., Mol. Cell. Biol. 19, 3969 (1999); K. S. Lee et al., Mol. Cell. Biol. 13, 3067 (1993); Y. Watanabe, K. Irie, K. Matsumoto, Mol. Cell. Biol. 15, 5740 (1995); Y. Watanabe et al., Mol. Cell. Biol. 17, 2615 (1997); K. Madden et al., Science 275, 1781 (1997).
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 2615
    • Watanabe, Y.1
  • 80
    • 0031004235 scopus 로고    scopus 로고
    • J. V. Gray et al., EMBO J. 16, 4924 (1997); J. Verna et al., Proc. Natl. Acad. Sci. U.S.A. 94, 13804 (1997); T. Ketela, R. Green, H. Bussey, J. Bacteriol. 181, 3330 (1999); M. Rajavel et al., Mol. Cell. Biol. 19, 3969 (1999); K. S. Lee et al., Mol. Cell. Biol. 13, 3067 (1993); Y. Watanabe, K. Irie, K. Matsumoto, Mol. Cell. Biol. 15, 5740 (1995); Y. Watanabe et al., Mol. Cell. Biol. 17, 2615 (1997); K. Madden et al., Science 275, 1781 (1997).
    • (1997) Science , vol.275 , pp. 1781
    • Madden, K.1
  • 82
    • 0032518996 scopus 로고    scopus 로고
    • M. H. Kuo, E. T. Nadeau, E. J. Grayhack, Mol. Cell. Biol. 17, 819 (1997); W. Corner et al., Genes Dev. 12, 586 (1998).
    • (1998) Genes Dev. , vol.12 , pp. 586
    • Corner, W.1
  • 84
    • 0004185151 scopus 로고
    • Wiley, New York
    • 10(expression ratio) as color, where red is up-regulation, green is down-regulation, and black represents no change, as illustrated in the color bar of Fig. 5A (gray denotes no reliable data). Each row in the display represents an experiment condition pair, and each column corresponds to a gene. Rows and columns are displayed in the order given by the clustering output trees in the two dimensions. The clustering operation and this rearrangement are independent and noninterfering between the two dimensions. Not all genes are retained in the clustering analysis, only those that had a minimum amplitude of response of threefold at a 99% confidence level (4, 11) in at least two experiments. This focuses attention on the most informative genes, but it does not bias the clustering result toward any a priori assumptions about the mechanism. The growth conditions, strains, and plasmids for the experiments included in Fig. 5 were as described in (10, 28, 29). The 46 experiments whose response profiles were clustered in Fig. 5 include those described in Figs. 2 and 3 as well as the experiments described below. Experiments 1 to 5, 9, 10, 26, and 27 involved various concentrations of α-factor, each for a 30-min treatment of R276 (wt) cells. Experiments 2, 5, 6, 7, 11 to 13, and 28 correspond to a kinetic analysis of α-factor response for R276 (wt) cells (Fig. 2F). Experiments 2 and 5 involved identical α-factor treatments for R276 (wt) cells, which provided the data for the "wt ± 50 nM αF, 30 min" experiment shown in the correlation plots of Figs. 2 and 3. Experiments 14, 15, and 16 (Fig. 2H) correspond to the α-factor response of bni1Δ cells. Experiments 17, 18, 24, 25, and 35 to 37 involved galactose induction of STE4, STE5-CTM (GFP-STE5-CTM), STE12, STE11-4, BNI1ΔN, PKC1-R398A, and RHO1-Q68H (Fig. 21) in Y1469 (wt) cells, respectively. Experiments corresponding to comparisons of R276 (wt) cells versus mutant cells are as follows: sst2Δ, 21; rst1Δ rst2Δ, 22; fus3Δ, 32; bni1Δ, 34; fus3Δ kss1Δ, 38; ste7Δ, 39; ste12Δ, 40; ste18Δ, 41; ste4Δ, 42; ste5Δ, 43; ste11Δ, 44. Experiments corresponding to treatments of mutants with 50 nM α-factor for 30 min are as follows: kss1Δ, 8; fus3Δ, 19; far1Δ, 20; ste20Δ, 29; rst1Δ rst2Δ, 30; fus3-K42R, 31. Direct comparisons of wt versus mutant strains, both of which were treated with 50 nM α-factor, identified genes induced or repressed specifically in the mutant strain, as follows: R276 (wt) versus fus3Δ (30 min), 33; R276 (wt) versus tec1Δ (30 min), 45; R276 (wt) versus tec1Δ (120 min), 46. Experiment 23 involved treating hog1Δ cells with 1 M sorbitol for 2 hours.
    • (1975) Clustering Algorithms
    • Hartigan, J.A.1
  • 85
    • 0342594336 scopus 로고    scopus 로고
    • note
    • Supported by Rosetta lnpharmatics, and grants to C.B. from the Natural Sciences and Engineering Research Council of Canada and the National Cancer Institute of Canada. We thank G. Fink, L. Hartwell, I. Herskowitz, H. Madhani, P. Pryciak, and S. O'Rourke for plasmids and yeast strains; F. Naider for synthetic a-factor; T. R. Ward and S. Whelen for yeast strains; K. Kennedy and A. Tong for assistance with β-galactosidase experiments and figures; and M. Ashby, A. Breitkreutz, H. Bussey, N. Davis, L. Harrington, L. Hartwell, P. Pryciak, J. Rine, T. Roemer, and P. Young for comments on the manuscript.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.