메뉴 건너뛰기




Volumn 18, Issue 6, 1998, Pages 46-58

Monitoring and Control of Semiconductor Manufacturing Processes

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL POLISHING; CHEMICAL VAPOR DEPOSITION; COST EFFECTIVENESS; ETCHING; INTEGRATED CIRCUIT MANUFACTURE; LITHOGRAPHY; PROCESS CONTROL; VLSI CIRCUITS;

EID: 0032288356     PISSN: 1066033X     EISSN: None     Source Type: Journal    
DOI: 10.1109/37.736011     Document Type: Article
Times cited : (53)

References (65)
  • 1
    • 0343952601 scopus 로고    scopus 로고
    • The National Technology Roadmap for Semiconductors
    • Semiconductor Industry Association, The National Technology Roadmap for Semiconductors, 1997.
    • (1997) Semiconductor Industry Association
  • 2
    • 84887280274 scopus 로고
    • Run by Run Process Control: Combining SPC and Feedback Control
    • Feb.
    • E. Sachs, A. Hu, and A. Ingolfsson, “Run by Run Process Control: Combining SPC and Feedback Control,” IEEE Trans. Semicoxduct Mrtnufacr., vol. 8, no. 1, pp. 26-43, Feb. 1995.
    • (1995) IEEE Trans. Semicoxduct Mrtnufacr. , vol.8 , Issue.1 , pp. 26-43
    • Sachs, E.1    Hu, A.2    Ingolfsson, A.3
  • 3
    • 0029358798 scopus 로고
    • Prediction of Wafer State After Plasma Processing Using Real-Time Tool Data
    • Aug.
    • S.F. Lee and C.J. Spanos, “Prediction of Wafer State After Plasma Processing Using Real-Time Tool Data,” IEEE Trans. Semiconduct. Manufact., vol. 8, No.3, pp. 252-261, Aug. 1995.
    • (1995) IEEE Trans. Semiconduct. Manufact. , vol.8 , Issue.3 , pp. 252-261
    • Lee, S.F.1    Spanos, C.J.2
  • 4
    • 0028371836 scopus 로고
    • Statistical Feedback Control of a Plasma Etch Process
    • Feb.
    • P.K. Mozumder and G.G. Barna, “Statistical Feedback Control of a Plasma Etch Process,” IEEE Trans. Semiconduct. Manufact., vol. 7, No.1, pp. 1-11,Feb. 1994.
    • (1994) IEEE Trans. Semiconduct. Manufact. , vol.7 , Issue.1 , pp. 1-11
    • Mozumder, P.K.1    Barna, G.G.2
  • 5
    • 3843090829 scopus 로고    scopus 로고
    • Modeling of OES Data to Estimate Etch Rate for Etching Equipment
    • Equipment, and Materials Control in Integrated Circuit Manufacturing, III, SPIE vol. 3213, pp. 108-118
    • Y. Cheng, R. Markle, J. Qin, T.F. Edgar, M.J. Gatto, and C. Nauert, “Modeling of OES Data to Estimate Etch Rate for Etching Equipment,” (invited paper) Process, Equipment, and Materials Control in Integrated Circuit Manufacturing, III, SPIE vol. 3213, pp. 108-118, 1997.
    • (1997) (invited paper) Process
    • Cheng, Y.1    Markle, R.2    Qin, J.3    Edgar, T.F.4    Gatto, M.J.5    Nauert, C.6
  • 6
    • 0031079496 scopus 로고    scopus 로고
    • Integrated Real-Time and Run-to-Run Control of Etch Depth in Reactive Ion Etching
    • Feb.
    • M. Hankinson, T. Vincent, K.B. Irani, and P.P. Khargonekar, “Integrated Real-Time and Run-to-Run Control of Etch Depth in Reactive Ion Etching,” IEEE Trans. Semiconduct. Manufact., vol. 10, No.1, pp. 121-130, Feb. 1997.
    • (1997) IEEE Trans. Semiconduct. Manufact. , vol.10 , Issue.1 , pp. 121-130
    • Hankinson, M.1    Vincent, T.2    Irani, K.B.3    Khargonekar, P.P.4
  • 7
    • 0031079201 scopus 로고    scopus 로고
    • Spatial Characterization of Wafer StateUsing Principle Component Analysis of Optical Emission Spectra in Plasma Etch
    • Feb.
    • D.A.White, D. Boning, S.W. Butler, and G.G. Barna, “Spatial Characterization of Wafer StateUsing Principle Component Analysis of Optical Emission Spectra in Plasma Etch,” IEEE Trans. Semiconduc.t. Manufact.,vol. 10, No. 1, pp. 52-61, Feb. 1997.
    • (1997) IEEE Trans. Semiconduc.t. Manufact. , vol.10 , Issue.1 , pp. 52-61
    • White, D.A.1    Boning, D.2    Butler, S.W.3    Barna, G.G.4
  • 9
    • 0026222167 scopus 로고
    • Development of Techniques for Real-Time Monitoring and Control in Plasma Etching 11: Multivariable Control System Analysis of Manipulated, Measured, and Performance Variables
    • Mar.
    • S. Butler, K. McLaughlin, I. Trachteuberg, and T. Edgar, “Development of Techniques for Real-Time Monitoring and Control in Plasma Etching 11: Multivariable Control System Analysis of Manipulated, Measured, and Performance Variables,” J. Electrochem. Soc., vol. 138, No.3,pp. 2727-2735, Mar. 1991.
    • (1991) J. Electrochem. Soc. , vol.138 , Issue.3 , pp. 2727-2735
    • Butler, S.1    McLaughlin, K.2    Trachteuberg, I.3    Edgar, T.4
  • 10
    • 0028425441 scopus 로고
    • Supervisory Run-to-Run Control of Polysilicon Gate Etch Using Z J Z Situ Ellipsometry
    • May
    • S.W. Butler and J.A. Stefani, “Supervisory Run-to-Run Control of Polysilicon Gate Etch Using Z J Z Situ Ellipsometry,” IEEE Trans. Semiconduct. Munufact., vol. 7,No.2, pp. 193-201, May 1994.
    • (1994) IEEE Trans. Semiconduct. Munufact. , vol.7 , Issue.2 , pp. 193-201
    • Butler, S.W.1    Stefani, J.A.2
  • 12
    • 0030257504 scopus 로고    scopus 로고
    • Comparison of Model-Based and Conventional Control: A Summary of Experimental Results
    • Oct.
    • H. Subawalla, V.P. Paruchuri, A. Gupta, H.G. Pandit, and R.R. Rhinehart, “Comparison of Model-Based and Conventional Control: A Summary of Experimental Results,” Ind. Eng. Chem. Res., vol. 35, no.10, pp. 3547-3589, Oct. 1996.
    • (1996) Ind. Eng. Chem. Res. , vol.35 , Issue.10 , pp. 3547-3589
    • Subawalla, H.1    Paruchuri, V.P.2    Gupta, A.3    Pandit, H.G.4    Rhinehart, R.R.5
  • 13
    • 0031077370 scopus 로고    scopus 로고
    • An Extended Kalman Filtering-Based Method of Processing Reflectometry Data for Fast In-Situ Etch Rate Measurements
    • Feb.
    • T.L. Vincent, P.P. Khargonekar, and E.L. Terry, Jr., “An Extended Kalman Filtering-Based Method of Processing Reflectometry Data for Fast In-Situ Etch Rate Measurements,” IEEE Trans. Semiconduct. Manufact.,vol. 10,no. 1, pp. 42-51, Feb. 1997.
    • (1997) IEEE Trans. Semiconduct. Manufact. , vol.10 , Issue.1 , pp. 42-51
    • Vincent, T.L.1    Khargonekar, P.P.2    Terry, E.L.3
  • 14
    • 3843049421 scopus 로고
    • Plasma Etch Reactor Simulation for Optimization and Control
    • Texas Tech University
    • V. Singh,” Plasma Etch Reactor Simulation for Optimization and Control,” PhD Dissertation, Texas Tech University, 1994.
    • (1994) PhD Dissertation
    • Singh, V.1
  • 16
    • 0027592466 scopus 로고
    • Advantages of Plasma Etching Modeling Using Neural Networks over Statistical Techniques
    • May
    • C.D. Himmel, B. Kim, and G.S.May, “Advantages of Plasma Etching Modeling Using Neural Networks over Statistical Techniques,” IEEE Trans. Semiconduct. Manufact.,vol. 6, No.2, pp. 103-111, May 1993.
    • (1993) IEEE Trans. Semiconduct. Manufact. , vol.6 , Issue.2 , pp. 103-111
    • Himmel, C.D.1    Kim, B.2    May, G.S.3
  • 17
    • 0028480334 scopus 로고
    • Constructing a Reliable Neural Network Model for a Plasma Etching Process Using Limited Experimental Data
    • Aug.
    • Y.L. Huang, T.F. Edgar, D.M. Himmelblau, and I. Trachtenberg, “Constructing a Reliable Neural Network Model for a Plasma Etching Process Using Limited Experimental Data,” IEEE Trans. Semiconduct. Manufact.,vol. 7,no.3, pp, 333-344, Aug. 1994.
    • (1994) IEEE Trans. Semiconduct. Manufact. , vol.7 , Issue.3 , pp. 333-344
    • Huang, Y.L.1    Edgar, T.F.2    Himmelblau, D.M.3    Trachtenberg, I.4
  • 18
    • 0030686101 scopus 로고    scopus 로고
    • Control Relevant RIE Modeling by Neural Networks from Real-Time Production State Sensor Measurements
    • Albuquerque, June
    • J. Si and Y.-L.Tseng, “Control Relevant RIE Modeling by Neural Networks from Real-Time Production State Sensor Measurements,” Proc. Amer. Contr. Conf., pp. 1583-1587, Albuquerque, June 1997.
    • (1997) Proc. Amer. Contr. Conf. , pp. 1583-1587
    • Si, J.1    Tseng, Y.-L.2
  • 19
    • 0032075495 scopus 로고    scopus 로고
    • Adv,wced Neural Network Training Algorithm with Reduced Complexity Based on Jacobian Deficiency
    • May
    • G. Zhou and J. Si, “Adv,wced Neural Network Training Algorithm with Reduced Complexity Based on Jacobian Deficiency,” IEEE Trans. Neural Networks, vol. 9, no.3, pp. 448-453, May 1998.
    • (1998) IEEE Trans. Neural Networks , vol.9 , Issue.3 , pp. 448-453
    • Zhou, G.1    Si, J.2
  • 20
    • 0027693885 scopus 로고
    • Use of Neural Networks in Modeling Semi conductor Manufacturing Processes: An Example for Plasma tech Modeling
    • Nov.
    • E.A. Rietman and E.R. Lory, “Use of Neural Networks in Modeling Semi conductor Manufacturing Processes: An Example for Plasma tech Modeling,” IEEE Trans. Semiconduct. Manufact, vol. 6, N0.4, pp 143-347, Nov 1993.
    • (1993) IEEE Trans. Semiconduct. Manufact , vol.6 , Issue.4 , pp. 143-347
    • Rietman, E.A.1    Lory, E.R.2
  • 21
    • 0030086648 scopus 로고    scopus 로고
    • A Neural Network Model ofa Contact Plasma Etch Process for VLSI Production
    • Feb.
    • E.A.Rietman, “A Neural Network Model ofa Contact Plasma Etch Process for VLSI Production,” IEEE Trans. Semiconduct. Manufact., vol. 9, no.1, pp. 95-100, Feb. 1996.
    • (1996) IEEE Trans. Semiconduct. Manufact. , vol.9 , Issue.1 , pp. 95-100
    • Rietman, E.A.1
  • 22
    • 0001844207 scopus 로고
    • Time SeriesModeling of Reactive Ion Etching Using Neural Networks
    • Feb.
    • M.D. Baker, C.D. Himmel,and G.S. May, “Time SeriesModeling of Reactive Ion Etching Using Neural Networks,” IEEE Trans. Semiconduct. Manufact., vol. 8, no.1, pp. 62-71, Feb. 1995.
    • (1995) IEEE Trans. Semiconduct. Manufact. , vol.8 , Issue.1 , pp. 62-71
    • Baker, M.D.1    Himmel, C.D.2    May, G.S.3
  • 23
    • 3843093044 scopus 로고    scopus 로고
    • A Neural Optimal Etch Time Controller for Reactive Ion Etching
    • October
    • S. Limanond and J. Si, “A Neural Optimal Etch Time Controller for Reactive Ion Etching,” J. Vac.Sci. Tech.B., vol. 16, no.10, October 1998.
    • (1998) J. Vac.Sci. Tech.B. , vol.16 , Issue.10
    • Limanond, S.1    Si, J.2
  • 24
    • 0029192290 scopus 로고    scopus 로고
    • Real-Time Predictive Control of Semiconductor Manufacturing Processes Using Neural Networks
    • Seattle, June
    • C.D. Himmel, T.S. Kim, A. Krauss, E.W. Kamen, and G.S. May, “Real-Time Predictive Control of Semiconductor Manufacturing Processes Using Neural Networks,” Proc. Amer. Contr. Conf., pp. 1240-1244, Seattle, June 1996.
    • (1996) Proc. Amer. Contr. Conf. , pp. 1240-1244
    • Himmel, C.D.1    Kim, T.S.2    Krauss, A.3    Kamen, E.W.4    May, G.S.5
  • 25
    • 0031185548 scopus 로고    scopus 로고
    • Dynamic Neural Control for a Plaqma Etch Process
    • July
    • J.P. Card, D.L. Snidennan, and C. Klimasauskas, “Dynamic Neural Control for a Plaqma Etch Process,” IEEE Trans. Neural Networks, vol. 8, No.4, pp. 883-901, July 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.4 , pp. 883-901
    • Card, J.P.1    Snidennan, D.L.2    Klimasauskas, C.3
  • 27
    • 0031348485 scopus 로고    scopus 로고
    • Improving Diffusion Furnace Capability Using Model-Based Temperature Control in a Production Environment
    • San Francisco, Oct.
    • M. Yelverton, K. Stoddard, B. Cusson, and T. Timmons, “Improving Diffusion Furnace Capability Using Model-Based Temperature Control in a Production Environment,” 6th Int. Symp. Semicond. Manufact., San Francisco, Oct. 1997.
    • (1997) 6th Int. Symp. Semicond. Manufact.
    • Yelverton, M.1    Stoddard, K.2    Cusson, B.3    Timmons, T.4
  • 29
    • 0026963681 scopus 로고
    • Mathematical Modeling of a Single Wafer Rapid Thermal Reactor
    • S. Chatterjee, I. Trachtenberg, and T.F. Edgar, “Mathematical Modeling of a Single Wafer Rapid Thermal Reactor,” J.Electrochem. Soc. vol. 139, pp.36-82, 1993.
    • (1993) J.Electrochem. Soc. , vol.139 , pp. 36-82
    • Chatterjee, S.1    Trachtenberg, I.2    Edgar, T.F.3
  • 30
    • 0032002952 scopus 로고    scopus 로고
    • Model Reduction for Optimization of Rapid Thermal Chemical Vapor Deposition Systems
    • Feb.
    • A. Theodoropoulou,R. A. Adomaitis, and E. Zafiriou, “Model Reduction for Optimization of Rapid Thermal Chemical Vapor Deposition Systems,” IEEE Truns. Semiconduct. Manufact., vol. 11, no.1, pp, 85-98, Feb. 1998.
    • (1998) IEEE Truns. Semiconduct. Manufact. , vol.11 , Issue.1 , pp. 85-98
    • Theodoropoulou, A.1    Adomaitis, R.A.2    Zafiriou, E.3
  • 31
    • 0030416739 scopus 로고    scopus 로고
    • Optimal Control for Increasing Throughput in Low Pressure Chemical Vapor Deposition
    • Kobe, Japan, Dec.
    • L. Song, S. Shen, K.S. Tsakalis, P.E. Crouch, and T.S. Cale, “Optimal Control for Increasing Throughput in Low Pressure Chemical Vapor Deposition,” Proc.35thConf Decis. Contr.,pp.4831-4836,Kobe, Japan, Dec. 1996.
    • (1996) Proc.35thConf Decis. Contr. , pp. 4831-4836
    • Song, L.1    Shen, S.2    Tsakalis, K.S.3    Crouch, P.E.4    Cale, T.S.5
  • 32
    • 0031078819 scopus 로고    scopus 로고
    • A Framework for Robust Run by Run Control with Lot Delayed Measurements
    • Feb.
    • J.S. Baras and N. Pa'tel, “A Framework for Robust Run by Run Control with Lot Delayed Measurements,” IEEE Trans. Semiconduct. Manufact., vol. 10, no.1, pp. 75-83, Feb. 1997.
    • (1997) IEEE Trans. Semiconduct. Manufact. , vol.10 , Issue.1 , pp. 75-83
    • Baras, J.S.1    Pa'tel, N.2
  • 33
    • 0031146079 scopus 로고    scopus 로고
    • Semi-Empirical Neural Network Modeling of Metal-Organic Chemical Vapor Deposition
    • May
    • Z. Nami, O. Misman, A. Erbil, and G.S. May, “Semi-Empirical Neural Network Modeling of Metal-Organic Chemical Vapor Deposition,” IEEE Trans. Semiconduct. Manufact., vol. 10, no.2, pp. 288-294, May 1997.
    • (1997) IEEE Trans. Semiconduct. Manufact. , vol.10 , Issue.2 , pp. 288-294
    • Nami, Z.1    Misman, O.2    Erbil, A.3    May, G.S.4
  • 34
    • 0031146624 scopus 로고    scopus 로고
    • Using Neural Network Process Models to Perform PECVD Silicon Dioxide Recipe Synthesis via Genetic Algorithms
    • May
    • S. B. Han and G.S. May, “Using Neural Network Process Models to Perform PECVD Silicon Dioxide Recipe Synthesis via Genetic Algorithms,” IEEE Trans. Semiconduct. Manufact.,vol. 10,No.2,pp. 279-287, May 1997.
    • (1997) IEEE Trans. Semiconduct. Manufact. , vol.10 , Issue.2 , pp. 279-287
    • Han, S.B.1    May, G.S.2
  • 36
    • 0027607639 scopus 로고
    • Development of Positive Optical Photoresist: Adaptive Control
    • June
    • T.S. Carroll and W.F. Ramirez, “Development of Positive Optical Photoresist: Adaptive Control,” Chemical Engineering Science, vol. 48, no. 12,pp. 2239-2250, June 1993.
    • (1993) Chemical Engineering Science , vol.48 , Issue.12 , pp. 2239-2250
    • Carroll, T.S.1    Ramirez, W.F.2
  • 38
    • 0026383854 scopus 로고
    • Generalized Approach Toward Modeling Resist Performance
    • Dec.
    • D.H. Zigger and C. A. Mack, “Generalized Approach Toward Modeling Resist Performance,” A/ChE Journal, vol. 37, no.12, pp. 1863-1874, Dec. 1991.
    • (1991) A/ChE Journal , vol.37 , Issue.12 , pp. 1863-1874
    • Zigger, D.H.1    Mack, C.A.2
  • 41
    • 84949817063 scopus 로고    scopus 로고
    • Compensating for CMP Pad Wear Using Run by Run Feedback Control
    • Santa Clara, CA, June
    • T. Smith, D. Boning, J. Moyne, A. Hunvitz, and J. Curry, “Compensating for CMP Pad Wear Using Run by Run Feedback Control,” VMIC, Santa Clara, CA, June 1996.
    • (1996) VMIC
    • Smith, T.1    Boning, D.2    Moyne, J.3    Hunvitz, A.4    Curry, J.5
  • 42
    • 0031142823 scopus 로고    scopus 로고
    • Artificial Neural Network Exponentially Weighted Moving Average Controller for Semiconductor Processes
    • May/June
    • T.H. Smith and D.S. Boning, “Artificial Neural Network Exponentially Weighted Moving Average Controller for Semiconductor Processes,” J.Vac. Sei. Tech.A, vol. 15,No.3, pp. 1377-1384, May/June 1997.
    • (1997) J.Vac. Sei. Tech.A , vol.15 , Issue.3 , pp. 1377-1384
    • Smith, T.H.1    Boning, D.S.2
  • 44
    • 0030165078 scopus 로고    scopus 로고
    • Modeling and Control of a Semiconductor Manufacturing Process with an Automata Network: An Example in Plasma Etch Processing
    • E.A. Rietman, S.H. Patel, and E.R. Lory, “Modeling and Control of a Semiconductor Manufacturing Process with an Automata Network: An Example in Plasma Etch Processing,” Computers Ops. Res., vol. 23, no.6, pp. 573-585, 1996.
    • (1996) Computers Ops. Res. , vol.23 , Issue.6 , pp. 573-585
    • Rietman, E.A.1    Patel, S.H.2    Lory, E.R.3
  • 45
    • 0031143606 scopus 로고    scopus 로고
    • Endpoint Prediction for Polysilicon Plasma Etch via Optical Emission Interferometry
    • May/June
    • K.S. Wong, D.S. Boning, H.H. Sawin, S.W. Butler, and E.M. Sachs, “Endpoint Prediction for Polysilicon Plasma Etch via Optical Emission Interferometry,” J. Vac.Sci. Tech. A, vol. 15,no.3, pp. 1403-1408, May/June 1997.
    • (1997) J. Vac.Sci. Tech. A , vol.15 , Issue.3 , pp. 1403-1408
    • Wong, K.S.1    Boning, D.S.2    Sawin, H.H.3    Butler, S.W.4    Sachs, E.M.5
  • 47
    • 0030692393 scopus 로고    scopus 로고
    • Modeling and Filtering of Optical Emission Spectroscopy Data for Plasma Etching Systems
    • Albuquerque, June
    • S.Rangan,C. Spanos,and K. Poolla,” Modeling and Filtering of Optical Emission Spectroscopy Data for Plasma Etching Systems,” Proc. Amer. Contr. Conf, pp. 627-628, Albuquerque, June 1997.
    • (1997) Proc. Amer. Contr. Conf , pp. 627-628
    • Rangan, S.1    Spanos, C.2    Poolla, K.3
  • 49
    • 0029358920 scopus 로고
    • A Production Demonstration of Wafer Plasma Gate Etch Control by Adaptive Real-Time Computation of the Over-Etch Time from In-Situ Process Signals
    • Aug.
    • E.A. Rietman and S.H. Patel, “A Production Demonstration of Wafer Plasma Gate Etch Control by Adaptive Real-Time Computation of the Over-Etch Time from In-Situ Process Signals,” IEEE Trans. Semiconduct. Manufact., vol. 8, no.3, pp. 304-308, Aug. 1995.
    • (1995) IEEE Trans. Semiconduct. Manufact. , vol.8 , Issue.3 , pp. 304-308
    • Rietman, E.A.1    Patel, S.H.2
  • 50
    • 0008719007 scopus 로고
    • Active Neural Network Control of Wafer Attributes in a Plasma Etch Process
    • July
    • E.A. Rietman, R.C. Frye, and E.R. Lory, “Active Neural Network Control of Wafer Attributes in a Plasma Etch Process,” J. Vac. Sci. Tech. B., vol. 11, no.4, pp. 1314-1316, July 1993.
    • (1993) J. Vac. Sci. Tech. B. , vol.11 , Issue.4 , pp. 1314-1316
    • Rietman, E.A.1    Frye, R.C.2    Lory, E.R.3
  • 51
    • 0029373851 scopus 로고
    • In-SituPrediction of Reactive Ion Etch Endpoint Using Neural Networks
    • M.D. Baker, C.D. Himmel, and G.S. May, “In-SituPrediction of Reactive Ion Etch Endpoint Using Neural Networks,” IEEE Trans. Compon.Pack. Manufact. A, vol. 18, no.?, pp. 478-483, 1995.
    • (1995) IEEE Trans. Compon.Pack. Manufact. A , vol.18 , pp. 478-483
    • Baker, M.D.1    Himmel, C.D.2    May, G.S.3
  • 53
    • 0030150976 scopus 로고    scopus 로고
    • Control of Photoresist Properties: A Kalman Filter Based Approach
    • May
    • E. Palmer, W. Ren, C.J. Spanos, and K. Poolla, “Control of Photoresist Properties: A Kalman Filter Based Approach,” IEEE Trans. Semiconduct. Manufact., vol. 9, no. 2,pp, 208-214, May 1996.
    • (1996) IEEE Trans. Semiconduct. Manufact. , vol.9 , Issue.2 , pp. 208-214
    • Palmer, E.1    Ren, W.2    Spanos, C.J.3    Poolla, K.4
  • 54
    • 0029227192 scopus 로고
    • Optimization of CD Control in DUV Positive Resists: Influence of Photoresist Viscoelastic Properties on PEB Conditions
    • Feb.
    • F. Vinet,N. Buffet, P. Fanton, L. Pain, and P.J. Paniez, “Optimization of CD Control in DUV Positive Resists: Influence of Photoresist Viscoelastic Properties on PEB Conditions,” Advances in Resist Technology and Processing XII, SPIE vol. 2438, pp. 202-210, Feb. 1995.
    • (1995) Advances in Resist Technology and Processing XII, SPIE , vol.2438 , pp. 202-210
    • Vinet, F.1    Buffet, N.2    Fanton, P.3    Pain, L.4    Paniez, P.J.5
  • 55
    • 0024880831 scopus 로고
    • Multilayer Feedforward Networks are Universal Approximators
    • K.M. Hornik, M. Stinchcombe,and H. White, “Multilayer Feedforward Networks are Universal Approximators,” Neural Networks. vol. 2, no.5, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.M.1    Stinchcombe, M.2    White, H.3
  • 56
    • 21844490199 scopus 로고
    • Adaptive Extensions to a Multibranch Run-To-Run Controller for Plasma Etching
    • May/June
    • J.R. Moyne, N. Chaudhry, and R. Telfeyan, “Adaptive Extensions to a Multibranch Run-To-Run Controller for Plasma Etching,” J. Vac. Sci. Tech. A, vol. 13,no.13, pp. 1786-1791, May/June 1995.
    • (1995) J. Vac. Sci. Tech. A , vol.13 , Issue.13 , pp. 1786-1791
    • Moyne, J.R.1    Chaudhry, N.2    Telfeyan, R.3
  • 58
    • 3843107194 scopus 로고
    • KIRC-A Machine Learning Tool for Process Control
    • Atlanta, GA, Sept.
    • M. Hankinson and K.B. Irani, “KIRC-A Machine Learning Tool for Process Control,” in Ext.Abst. TECHCON'93,pp. 25-27, Atlanta, GA, Sept. 1993.
    • (1993) Ext.Abst. TECHCON'93 , pp. 25-27
    • Hankinson, M.1    Irani, K.B.2
  • 59
    • 85008007899 scopus 로고
    • Version 4.1, Ultramax Corporation
    • ULTRAMAX, Version 4.1, Ultramax Corporation, 1990.
    • (1990) ULTRAMAX
  • 64
    • 0024924363 scopus 로고
    • Integrator Windup and How to Avoid It
    • Pittsburgh
    • K.J. Astrom and L. Rundqwist, “Integrator Windup and How to Avoid It,” Proc. Amer. Contr. Conf.,pp. 1693-1698, Pittsburgh, 1989.
    • (1989) Proc. Amer. Contr. Conf. , pp. 1693-1698
    • Astrom, K.J.1    Rundqwist, L.2
  • 65
    • 0030387724 scopus 로고    scopus 로고
    • PID Controller Tuning by Frequency Loop-Shaping
    • Kobe, Japan, Dec.
    • E. Grassi and K. Tsakalis, “PID Controller Tuning by Frequency Loop-Shaping,” Proc. 35th Conf Dec. Contr., Kobe, Japan, Dec. 1996.
    • (1996) Proc. 35th Conf Dec. Contr.
    • Grassi, E.1    Tsakalis, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.