-
1
-
-
0033420883
-
Chaotic and ergodic properties of cylindric billiards
-
[B]
-
[B] Bálint P 1999 Chaotic and ergodic properties of cylindric billiards Ergod. Theory Dynam. Sys. 19 1127-56
-
(1999)
Ergod. Theory Dynam. Sys.
, vol.19
, pp. 1127-1156
-
-
Bálint, P.1
-
2
-
-
0036435079
-
Multi-dimensional semi-dispersing billiards: Singularities and the fundamental theorem
-
[BCST]
-
[BCST] Bálint P, Chernov N, Szász D and Tóth I P 2002 Multi-dimensional semi-dispersing billiards: singularities and the fundamental theorem Ann. H Poincaré 3 451-82
-
(2002)
Ann. H Poincaré
, vol.3
, pp. 451-482
-
-
Bálint, P.1
Chernov, N.2
Szász, D.3
Tóth, I.P.4
-
3
-
-
0032359972
-
Uniform estimates on the number of collisions in semi-dispersing billiards
-
[BuFKo]
-
[BuFKo] Burago D, Ferleger S and Kononenko A 1998 Uniform estimates on the number of collisions in semi-dispersing billiards Ann. Math. 147 695-708
-
(1998)
Ann. Math.
, vol.147
, pp. 695-708
-
-
Burago, D.1
Ferleger, S.2
Kononenko, A.3
-
4
-
-
0030541582
-
Nonuniformly hyperbolic K-systems are Bernoulli
-
[CH]
-
[CH] Chernov N and Haskell C 1996 Nonuniformly hyperbolic K-systems are Bernoulli Ergod. Theory Dynam. Sys. 16 19-44
-
(1996)
Ergod. Theory Dynam. Sys.
, vol.16
, pp. 19-44
-
-
Chernov, N.1
Haskell, C.2
-
5
-
-
0000398259
-
On systems of locally interacting and repelling particles moving in space
-
[G1]
-
[G1] Galperin G 1981 On systems of locally interacting and repelling particles moving in space Trudy MMO 43 142-96
-
(1981)
Trudy MMO
, vol.43
, pp. 142-196
-
-
Galperin, G.1
-
6
-
-
21144463704
-
A concept of the mass center of a system of material points in the constant curvature spaces
-
[G2]
-
[G2] Galperin G 1993 A concept of the mass center of a system of material points in the constant curvature spaces Commun. Math. Phys. 154 63-84
-
(1993)
Commun. Math. Phys.
, vol.154
, pp. 63-84
-
-
Galperin, G.1
-
8
-
-
0000593586
-
Ergodic properties of semi-dispersing billiards: I. Two cylindric scatterers in the 3-D torus
-
[KSSz1]
-
[KSSz1] Krámli A, Simányi N and Szász D 1989 Ergodic properties of semi-dispersing billiards: I. Two cylindric scatterers in the 3-D torus Nonlinearity 2 311-26
-
(1989)
Nonlinearity
, vol.2
, pp. 311-326
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
9
-
-
0000059523
-
A 'transversal' fundamental theorem for semi-dispersive billiards
-
[KSSz2]
-
[KSSz2] Krámli A, Simányi N and Szász D 1990 A 'transversal' fundamental theorem for semi-dispersive billiards Commun. Math. Phys. 129 535-60
-
(1990)
Commun. Math. Phys.
, vol.129
, pp. 535-560
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
10
-
-
67649321654
-
Rational billiards and flat structures
-
[MT] Amsterdam: North-Holland
-
[MT] Masur H and Tabachnikov S 2002 Rational billiards and flat structures Handbook of Dynamical Systems vol 1A (Amsterdam: North-Holland) pp 1015-89
-
(2002)
Handbook of Dynamical Systems
, vol.1 A
, pp. 1015-1089
-
-
Masur, H.1
Tabachnikov, S.2
-
11
-
-
0032399806
-
On the Bernoulli nature of systems with some hyperbolic structure
-
[OW]
-
[OW] Ornstein D and Weiss B 1998 On the Bernoulli nature of systems with some hyperbolic structure Ergod. Theory Dynam. Sys. 18 441-56
-
(1998)
Ergod. Theory Dynam. Sys.
, vol.18
, pp. 441-456
-
-
Ornstein, D.1
Weiss, B.2
-
12
-
-
0000616278
-
The K-property of N billiards balls I
-
[S1]
-
[S1] Simányi N 1992 The K-property of N billiards balls I Invent. Math. 108 521-48 Simányi N 1992 The K-property of N billiards balls II Invent. Math. 110 151-72
-
(1992)
Invent. Math.
, vol.108
, pp. 521-548
-
-
Simányi, N.1
-
13
-
-
0000944602
-
The K-property of N billiards balls II
-
[S1] Simányi N 1992 The K-property of N billiards balls I Invent. Math. 108 521-48 Simányi N 1992 The K-property of N billiards balls II Invent. Math. 110 151-72
-
(1992)
Invent. Math.
, vol.110
, pp. 151-172
-
-
Simányi, N.1
-
14
-
-
0035981913
-
The complete hyperbolicity of cylindric billiards
-
[S2]
-
[S2] Simányi N 2002 The complete hyperbolicity of cylindric billiards Ergod. Theory Dynam. Sys. 22 281-302
-
(2002)
Ergod. Theory Dynam. Sys.
, vol.22
, pp. 281-302
-
-
Simányi, N.1
-
15
-
-
0033423072
-
Ergodicity of hard spheres in a box
-
[S3]
-
[S3] Simányi N 1999 Ergodicity of hard spheres in a box Ergod. Theory Dynam. Sys. 19 741-66
-
(1999)
Ergod. Theory Dynam. Sys.
, vol.19
, pp. 741-766
-
-
Simányi, N.1
-
16
-
-
18744435593
-
Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems
-
[S4]
-
[S4] Simányi N 2003 Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems Invent. Math. 154 123-78
-
(2003)
Invent. Math.
, vol.154
, pp. 123-178
-
-
Simányi, N.1
-
17
-
-
2442538136
-
Proof of the ergodic hypothesis for typical hard ball systems
-
[S5] Preprint math.DS/0210280
-
[S5] Simányi N 2004 Proof of the ergodic hypothesis for typical hard ball systems Ann. H Poincaré 5 203-33 (Preprint math.DS/0210280)
-
(2004)
Ann. H Poincaré
, vol.5
, pp. 203-233
-
-
Simányi, N.1
-
18
-
-
0034421404
-
Non-integrability of cylindric billiards and transitive Lie-group actions
-
[SSz]
-
[SSz] Simányi N and Szász D 2000 Non-integrability of cylindric billiards and transitive Lie-group actions Ergod. Theory Dynam. Sys. 20 593-610
-
(2000)
Ergod. Theory Dynam. Sys.
, vol.20
, pp. 593-610
-
-
Simányi, N.1
Szász, D.2
-
19
-
-
84956132011
-
Ergodic properties of certain systems of 2-D discs and 3-D balls
-
[SiC]
-
[SiC] Sinai Ya G and Chernov N I 1987 Ergodic properties of certain systems of 2-D discs and 3-D balls Russ. Math. Surv. 42 181-201
-
(1987)
Russ. Math. Surv.
, vol.42
, pp. 181-201
-
-
Sinai, Ya.G.1
Chernov, N.I.2
-
20
-
-
0002298909
-
Ergodicity of classical billiard balls
-
[Sz1]
-
[Sz1] Szász D 1993 Ergodicity of classical billiard balls Physica A 194 86-92
-
(1993)
Physica A
, vol.194
, pp. 86-92
-
-
Szász, D.1
-
21
-
-
21344475213
-
The K-property of 'orthogonal' cylindric billiards
-
[Sz2]
-
[Sz2] Szász D 1994 The K-property of 'orthogonal' cylindric billiards Commun. Math. Phys. 160 581-97
-
(1994)
Commun. Math. Phys.
, vol.160
, pp. 581-597
-
-
Szász, D.1
-
22
-
-
0040786339
-
Ball-avoiding theorems
-
[Sz3]
-
[Sz3] Szász D 2000 Ball-avoiding theorems Ergod. Theory Dynam. Sys. 20 1821-49
-
(2000)
Ergod. Theory Dynam. Sys.
, vol.20
, pp. 1821-1849
-
-
Szász, D.1
-
23
-
-
1542574947
-
Boltzmann's ergodic hypothesis, a conjecture for centuries?
-
[Sz4]
-
[Sz4] SzászD 1996 Boltzmann's ergodic hypothesis, a conjecture for centuries? Stud. Sci. Math. Hung. 31 299-322
-
(1996)
Stud. Sci. Math. Hung.
, vol.31
, pp. 299-322
-
-
Szász, D.1
-
24
-
-
0002313847
-
On systems of particles with finite range and/or repulsive interactions
-
[V]
-
[V] Vaserstein L 1979 On systems of particles with finite range and/or repulsive interactions Commun. Math. Phys. 69 31-56
-
(1979)
Commun. Math. Phys.
, vol.69
, pp. 31-56
-
-
Vaserstein, L.1
|