메뉴 건너뛰기




Volumn 17, Issue 6, 2004, Pages 2069-2090

Ergodicity of two hard balls in integrable polygons

Author keywords

[No Author keywords available]

Indexed keywords


EID: 9544234459     PISSN: 09517715     EISSN: None     Source Type: Journal    
DOI: 10.1088/0951-7715/17/6/005     Document Type: Article
Times cited : (4)

References (24)
  • 1
    • 0033420883 scopus 로고    scopus 로고
    • Chaotic and ergodic properties of cylindric billiards
    • [B]
    • [B] Bálint P 1999 Chaotic and ergodic properties of cylindric billiards Ergod. Theory Dynam. Sys. 19 1127-56
    • (1999) Ergod. Theory Dynam. Sys. , vol.19 , pp. 1127-1156
    • Bálint, P.1
  • 2
    • 0036435079 scopus 로고    scopus 로고
    • Multi-dimensional semi-dispersing billiards: Singularities and the fundamental theorem
    • [BCST]
    • [BCST] Bálint P, Chernov N, Szász D and Tóth I P 2002 Multi-dimensional semi-dispersing billiards: singularities and the fundamental theorem Ann. H Poincaré 3 451-82
    • (2002) Ann. H Poincaré , vol.3 , pp. 451-482
    • Bálint, P.1    Chernov, N.2    Szász, D.3    Tóth, I.P.4
  • 3
    • 0032359972 scopus 로고    scopus 로고
    • Uniform estimates on the number of collisions in semi-dispersing billiards
    • [BuFKo]
    • [BuFKo] Burago D, Ferleger S and Kononenko A 1998 Uniform estimates on the number of collisions in semi-dispersing billiards Ann. Math. 147 695-708
    • (1998) Ann. Math. , vol.147 , pp. 695-708
    • Burago, D.1    Ferleger, S.2    Kononenko, A.3
  • 4
    • 0030541582 scopus 로고    scopus 로고
    • Nonuniformly hyperbolic K-systems are Bernoulli
    • [CH]
    • [CH] Chernov N and Haskell C 1996 Nonuniformly hyperbolic K-systems are Bernoulli Ergod. Theory Dynam. Sys. 16 19-44
    • (1996) Ergod. Theory Dynam. Sys. , vol.16 , pp. 19-44
    • Chernov, N.1    Haskell, C.2
  • 5
    • 0000398259 scopus 로고
    • On systems of locally interacting and repelling particles moving in space
    • [G1]
    • [G1] Galperin G 1981 On systems of locally interacting and repelling particles moving in space Trudy MMO 43 142-96
    • (1981) Trudy MMO , vol.43 , pp. 142-196
    • Galperin, G.1
  • 6
    • 21144463704 scopus 로고
    • A concept of the mass center of a system of material points in the constant curvature spaces
    • [G2]
    • [G2] Galperin G 1993 A concept of the mass center of a system of material points in the constant curvature spaces Commun. Math. Phys. 154 63-84
    • (1993) Commun. Math. Phys. , vol.154 , pp. 63-84
    • Galperin, G.1
  • 8
    • 0000593586 scopus 로고
    • Ergodic properties of semi-dispersing billiards: I. Two cylindric scatterers in the 3-D torus
    • [KSSz1]
    • [KSSz1] Krámli A, Simányi N and Szász D 1989 Ergodic properties of semi-dispersing billiards: I. Two cylindric scatterers in the 3-D torus Nonlinearity 2 311-26
    • (1989) Nonlinearity , vol.2 , pp. 311-326
    • Krámli, A.1    Simányi, N.2    Szász, D.3
  • 9
    • 0000059523 scopus 로고
    • A 'transversal' fundamental theorem for semi-dispersive billiards
    • [KSSz2]
    • [KSSz2] Krámli A, Simányi N and Szász D 1990 A 'transversal' fundamental theorem for semi-dispersive billiards Commun. Math. Phys. 129 535-60
    • (1990) Commun. Math. Phys. , vol.129 , pp. 535-560
    • Krámli, A.1    Simányi, N.2    Szász, D.3
  • 10
    • 67649321654 scopus 로고    scopus 로고
    • Rational billiards and flat structures
    • [MT] Amsterdam: North-Holland
    • [MT] Masur H and Tabachnikov S 2002 Rational billiards and flat structures Handbook of Dynamical Systems vol 1A (Amsterdam: North-Holland) pp 1015-89
    • (2002) Handbook of Dynamical Systems , vol.1 A , pp. 1015-1089
    • Masur, H.1    Tabachnikov, S.2
  • 11
    • 0032399806 scopus 로고    scopus 로고
    • On the Bernoulli nature of systems with some hyperbolic structure
    • [OW]
    • [OW] Ornstein D and Weiss B 1998 On the Bernoulli nature of systems with some hyperbolic structure Ergod. Theory Dynam. Sys. 18 441-56
    • (1998) Ergod. Theory Dynam. Sys. , vol.18 , pp. 441-456
    • Ornstein, D.1    Weiss, B.2
  • 12
    • 0000616278 scopus 로고
    • The K-property of N billiards balls I
    • [S1]
    • [S1] Simányi N 1992 The K-property of N billiards balls I Invent. Math. 108 521-48 Simányi N 1992 The K-property of N billiards balls II Invent. Math. 110 151-72
    • (1992) Invent. Math. , vol.108 , pp. 521-548
    • Simányi, N.1
  • 13
    • 0000944602 scopus 로고
    • The K-property of N billiards balls II
    • [S1] Simányi N 1992 The K-property of N billiards balls I Invent. Math. 108 521-48 Simányi N 1992 The K-property of N billiards balls II Invent. Math. 110 151-72
    • (1992) Invent. Math. , vol.110 , pp. 151-172
    • Simányi, N.1
  • 14
    • 0035981913 scopus 로고    scopus 로고
    • The complete hyperbolicity of cylindric billiards
    • [S2]
    • [S2] Simányi N 2002 The complete hyperbolicity of cylindric billiards Ergod. Theory Dynam. Sys. 22 281-302
    • (2002) Ergod. Theory Dynam. Sys. , vol.22 , pp. 281-302
    • Simányi, N.1
  • 15
    • 0033423072 scopus 로고    scopus 로고
    • Ergodicity of hard spheres in a box
    • [S3]
    • [S3] Simányi N 1999 Ergodicity of hard spheres in a box Ergod. Theory Dynam. Sys. 19 741-66
    • (1999) Ergod. Theory Dynam. Sys. , vol.19 , pp. 741-766
    • Simányi, N.1
  • 16
    • 18744435593 scopus 로고    scopus 로고
    • Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems
    • [S4]
    • [S4] Simányi N 2003 Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems Invent. Math. 154 123-78
    • (2003) Invent. Math. , vol.154 , pp. 123-178
    • Simányi, N.1
  • 17
    • 2442538136 scopus 로고    scopus 로고
    • Proof of the ergodic hypothesis for typical hard ball systems
    • [S5] Preprint math.DS/0210280
    • [S5] Simányi N 2004 Proof of the ergodic hypothesis for typical hard ball systems Ann. H Poincaré 5 203-33 (Preprint math.DS/0210280)
    • (2004) Ann. H Poincaré , vol.5 , pp. 203-233
    • Simányi, N.1
  • 18
    • 0034421404 scopus 로고    scopus 로고
    • Non-integrability of cylindric billiards and transitive Lie-group actions
    • [SSz]
    • [SSz] Simányi N and Szász D 2000 Non-integrability of cylindric billiards and transitive Lie-group actions Ergod. Theory Dynam. Sys. 20 593-610
    • (2000) Ergod. Theory Dynam. Sys. , vol.20 , pp. 593-610
    • Simányi, N.1    Szász, D.2
  • 19
    • 84956132011 scopus 로고
    • Ergodic properties of certain systems of 2-D discs and 3-D balls
    • [SiC]
    • [SiC] Sinai Ya G and Chernov N I 1987 Ergodic properties of certain systems of 2-D discs and 3-D balls Russ. Math. Surv. 42 181-201
    • (1987) Russ. Math. Surv. , vol.42 , pp. 181-201
    • Sinai, Ya.G.1    Chernov, N.I.2
  • 20
    • 0002298909 scopus 로고
    • Ergodicity of classical billiard balls
    • [Sz1]
    • [Sz1] Szász D 1993 Ergodicity of classical billiard balls Physica A 194 86-92
    • (1993) Physica A , vol.194 , pp. 86-92
    • Szász, D.1
  • 21
    • 21344475213 scopus 로고
    • The K-property of 'orthogonal' cylindric billiards
    • [Sz2]
    • [Sz2] Szász D 1994 The K-property of 'orthogonal' cylindric billiards Commun. Math. Phys. 160 581-97
    • (1994) Commun. Math. Phys. , vol.160 , pp. 581-597
    • Szász, D.1
  • 22
    • 0040786339 scopus 로고    scopus 로고
    • Ball-avoiding theorems
    • [Sz3]
    • [Sz3] Szász D 2000 Ball-avoiding theorems Ergod. Theory Dynam. Sys. 20 1821-49
    • (2000) Ergod. Theory Dynam. Sys. , vol.20 , pp. 1821-1849
    • Szász, D.1
  • 23
    • 1542574947 scopus 로고    scopus 로고
    • Boltzmann's ergodic hypothesis, a conjecture for centuries?
    • [Sz4]
    • [Sz4] SzászD 1996 Boltzmann's ergodic hypothesis, a conjecture for centuries? Stud. Sci. Math. Hung. 31 299-322
    • (1996) Stud. Sci. Math. Hung. , vol.31 , pp. 299-322
    • Szász, D.1
  • 24
    • 0002313847 scopus 로고
    • On systems of particles with finite range and/or repulsive interactions
    • [V]
    • [V] Vaserstein L 1979 On systems of particles with finite range and/or repulsive interactions Commun. Math. Phys. 69 31-56
    • (1979) Commun. Math. Phys. , vol.69 , pp. 31-56
    • Vaserstein, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.