-
1
-
-
84855625981
-
Geometry of multi-dimensional dispersing billiards
-
B-Ch-Sz-T(2000)
-
[B-Ch-Sz-T(2000)] P. Bálint, N. Chernov, D. Szász and P. Tóth, Geometry of Multi-dimensional Dispersing Billiards, to appear in Astérisque (2000).
-
(2000)
Astérisque
-
-
Bálint, P.1
Chernov, N.2
Szász, D.3
Tóth, P.4
-
3
-
-
0032186754
-
How high dimensional stadia look like
-
B-R(1998)
-
[B-R(1998)] L.A. Bunimovich and J. Reháček, How high dimensional stadia look like, Commun. Math. Phys. 197, 277-301 (1998).
-
(1998)
Commun. Math. Phys.
, vol.197
, pp. 277-301
-
-
Bunimovich, L.A.1
Reháček, J.2
-
7
-
-
0011571592
-
What can we learn from Lorentz models?
-
[H(1974)] Transport Phenomena, Springer
-
[H(1974)] E.H. Hague, What can we learn from Lorentz models?, Transport Phenomena, Lecture Notes in Physics, Springer 31, 377 (1974).
-
(1974)
Lecture Notes in Physics
, vol.31
, pp. 377
-
-
Hague, E.H.1
-
8
-
-
0000059523
-
A "transversal" fundamental theorem for semi-dispersing billiards
-
K-S-Sz(1990)
-
[K-S-Sz(1990)] A. Krámli, N. Simányi and D. Szász, A "Transversal" Fundamental Theorem for Semi-Dispersing Billiards, Comm. Math. Phys. 129, 535-560 (1990).
-
(1990)
Comm. Math. Phys.
, vol.129
, pp. 535-560
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
10
-
-
84966260816
-
On the betti number of real varieties
-
M(1964)
-
[M(1964)] J. Milnor, On the Betti number of real varieties, Proc. Amer. Math. Soc. 15, 275-280 (1964).
-
(1964)
Proc. Amer. Math. Soc.
, vol.15
, pp. 275-280
-
-
Milnor, J.1
-
13
-
-
0035981913
-
The complete hyperbolicity of cylindric billiards
-
[Sim(2002)] arXiv:math.DS/9906139
-
[Sim(2002)] N. Simányi, The Complete Hyperbolicity of Cylindric Billiards, Ergodic Theory and Dynamical Systems 22, 281-302 (2002), arXiv:math.DS/9906139.
-
(2002)
Ergodic Theory and Dynamical Systems
, vol.22
, pp. 281-302
-
-
Simányi, N.1
-
14
-
-
0033241652
-
Hard ball systems are completely hyperbolic
-
S-Sz(1999)
-
[S-Sz(1999)] N. Simányi and D. Szász, Hard Ball Systems are Completely Hyperbolic, Annals of Mathematics, 149, 35-96 (1999).
-
(1999)
Annals of Mathematics
, vol.149
, pp. 35-96
-
-
Simányi, N.1
Szász, D.2
-
15
-
-
84927896522
-
Dynamical systems with elastic reflections
-
S(1970)
-
[S(1970)] Ya.G. Sinai, Dynamical Systems with Elastic Reflections, Russian Mathematical Surveys, (2) 25, 137-189 (1970).
-
(1970)
Russian Mathematical Surveys
, vol.25
, Issue.2
, pp. 137-189
-
-
Sinai, Ya.G.1
-
16
-
-
84956132011
-
Ergodic properties of certain systems of 2-D discs and 3-D balls
-
S-Ch(1987)
-
[S-Ch(1987)] Ya.G. Sinai and N. Chernov, Ergodic Properties of Certain Systems of 2-D Discs and 3-D Balls, Russain Mathematical Surveys (3) 42, 181-201 (1987).
-
(1987)
Russain Mathematical Surveys
, vol.42
, Issue.3
, pp. 181-201
-
-
Sinai, Ya.G.1
Chernov, N.2
-
17
-
-
21344475213
-
The K-property of "orthogonal" cylindric billiards
-
Sz(1994)
-
[Sz(1994)] D. Szász, The K-Property of "Orthogonal" Cylindric Billiards, Commun. Math. Phys. 160, 581-597 (1994).
-
(1994)
Commun. Math. Phys.
, vol.160
, pp. 581-597
-
-
Szász, D.1
-
18
-
-
0003366252
-
Hard Ball systems and the Lorentz gas
-
[Sz(2000)] Springer
-
[Sz(2000)] D. Szász (ed.), Hard Ball Systems and the Lorentz Gas, Encyclopedia of Mathematical Sciences 101, Springer (2000).
-
(2000)
Encyclopedia of Mathematical Sciences
, vol.101
-
-
Szász, D.1
-
19
-
-
0003828291
-
-
[St(1973)] Chapman and Hill, London
-
[St(1973)] I. Stewart, Galois Theory, Chapman and Hill, London, 1973.
-
(1973)
Galois Theory
-
-
Stewart, I.1
|