메뉴 건너뛰기




Volumn 19, Issue 5, 1999, Pages 1127-1156

Chaotic and ergodic properties of cylindric billiards

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0033420883     PISSN: 01433857     EISSN: None     Source Type: Journal    
DOI: 10.1017/S0143385799162370     Document Type: Article
Times cited : (3)

References (25)
  • 1
    • 0032359972 scopus 로고    scopus 로고
    • Uniform estimates on the number of collisions in semi-dispersive billiards
    • D. Burago, S. Ferleger and A. Kononenko. Uniform estimates on the number of collisions in semi-dispersive billiards. Ann. Math. 147 (1998), 695-708.
    • (1998) Ann. Math. , vol.147 , pp. 695-708
    • Burago, D.1    Ferleger, S.2    Kononenko, A.3
  • 2
    • 84956132011 scopus 로고
    • Ergodic properties of certain systems of 2-D discs and 3-D balls
    • Ya. G. Sinai and N. Chernov. Ergodic properties of certain systems of 2-D discs and 3-D balls. Russian Math. Surveys 42(3) (1987), 181-207.
    • (1987) Russian Math. Surveys , vol.42 , Issue.3 , pp. 181-207
    • Sinai, Ya.G.1    Chernov, N.2
  • 3
    • 0030541582 scopus 로고    scopus 로고
    • Nonuniformly hyperbolic K-systems are Bernoulli
    • N. Chernov and C. Haskell. Nonuniformly hyperbolic K-systems are Bernoulli. Ergod. Th. & Dynam. Sys. 16 (1996), 19-44.
    • (1996) Ergod. Th. & Dynam. Sys. , vol.16 , pp. 19-44
    • Chernov, N.1    Haskell, C.2
  • 4
    • 0000398259 scopus 로고
    • On systems of locally interacting and repelling particles moving in space
    • G. Galperin. On systems of locally interacting and repelling particles moving in space. Trudy MMO 43 (1981), 142-196.
    • (1981) Trudy MMO , vol.43 , pp. 142-196
    • Galperin, G.1
  • 7
    • 0000593586 scopus 로고
    • Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers in the 3-D torus
    • A. Krámli, N. Simányi and D. Szász. Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers in the 3-D torus. Nonlinearity 2 (1989), 311-326.
    • (1989) Nonlinearity , vol.2 , pp. 311-326
    • Krámli, A.1    Simányi, N.2    Szász, D.3
  • 8
    • 0000059523 scopus 로고
    • A 'transversal' fundamental theorem for semi-dispersive billiards
    • A. Krámli, N. Simányi and D. Szász. A 'transversal' fundamental theorem for semi-dispersive billiards. Comm. Math. Phys. 129 (1990), 535-560.
    • (1990) Comm. Math. Phys. , vol.129 , pp. 535-560
    • Krámli, A.1    Simányi, N.2    Szász, D.3
  • 9
    • 0002884213 scopus 로고
    • The K-property of three billiard balls
    • A. Krámli, N. Simányi and D. Szász. The K-property of three billiard balls. Ann. Math. 133 (1991), 37-72.
    • (1991) Ann. Math. , vol.133 , pp. 37-72
    • Krámli, A.1    Simányi, N.2    Szász, D.3
  • 11
    • 0001043657 scopus 로고
    • Ergodicity in Hamiltonian systems
    • C. Liverani and M. Wojtkowski. Ergodicity in Hamiltonian systems. Dynamics Reported 4 (New series), (1995), 130-202.
    • (1995) Dynamics Reported , vol.4 , Issue.NEW SERIES , pp. 130-202
    • Liverani, C.1    Wojtkowski, M.2
  • 12
    • 0032399806 scopus 로고    scopus 로고
    • On the Bernoulli nature of systems with some hyperbolic structure
    • D. Ornstein and B. Weiss. On the Bernoulli nature of systems with some hyperbolic structure. Ergod. Th. & Dynam. Sys. 18 (1998), 441-456.
    • (1998) Ergod. Th. & Dynam. Sys. , vol.18 , pp. 441-456
    • Ornstein, D.1    Weiss, B.2
  • 13
    • 0000616278 scopus 로고
    • The K-property of N billiards balls I
    • N. Simányi. The K-property of N billiards balls I. Invent. Math. 108 (1992), 521-548; The K-property of N billiards balls II. Invent. Math. 110 (1992), 151-172.
    • (1992) Invent. Math. , vol.108 , pp. 521-548
    • Simányi, N.1
  • 14
    • 0000944602 scopus 로고
    • The K-property of N billiards balls II
    • N. Simányi. The K-property of N billiards balls I. Invent. Math. 108 (1992), 521-548; The K-property of N billiards balls II. Invent. Math. 110 (1992), 151-172.
    • (1992) Invent. Math. , vol.110 , pp. 151-172
  • 15
    • 85033966614 scopus 로고    scopus 로고
    • Complete hyperbolicity of cylindric billiards
    • Submitted to
    • N. Simányi. Complete hyperbolicity of cylindric billiards. Submitted to Ergod. Th. & Dynam. Sys..
    • Ergod. Th. & Dynam. Sys.
    • Simányi, N.1
  • 16
    • 85033941470 scopus 로고    scopus 로고
    • Oral communication
    • N. Simányi. Oral communication.
    • Simányi, N.1
  • 17
    • 21844504054 scopus 로고
    • The K-property of 4-D billiards with non-orthogonal cylindric scatterers
    • N. Simányi and D. Szász. The K-property of 4-D billiards with non-orthogonal cylindric scatterers. J. Stat. Phys. 76(1/2) (1994), 587-604.
    • (1994) J. Stat. Phys. , vol.76 , Issue.1-2 , pp. 587-604
    • Simányi, N.1    Szász, D.2
  • 18
    • 21844510859 scopus 로고
    • The K-property of Hamiltonian systems with restricted hard ball interactions
    • N. Simányi and D. Szász. The K-property of Hamiltonian systems with restricted hard ball interactions. Mathematical Research Letters 2(6) (1995), 751-770.
    • (1995) Mathematical Research Letters , vol.2 , Issue.6 , pp. 751-770
    • Simányi, N.1    Szász, D.2
  • 19
    • 0033241652 scopus 로고    scopus 로고
    • Hard ball systems are completely hyperbolic
    • N. Simányi and D. Szász. Hard ball systems are completely hyperbolic. Ann. Math. 149 (1999), 35-96.
    • (1999) Ann. Math. , vol.149 , pp. 35-96
    • Simányi, N.1    Szász, D.2
  • 20
    • 85033949492 scopus 로고    scopus 로고
    • Non-integrability of cylindric billiards and transitive Lie-group actions
    • to appear
    • N. Simányi and D. Szász. Non-integrability of cylindric billiards and transitive Lie-group actions. Ergod. Th. & Dynam. Sys. to appear
    • Ergod. Th. & Dynam. Sys.
    • Simányi, N.1    Szász, D.2
  • 21
    • 0002298909 scopus 로고
    • Ergodicity of classical billiard balls
    • D. Szász. Ergodicity of classical billiard balls. Physica A 194 (1993), 86-92.
    • (1993) Physica A , vol.194 , pp. 86-92
    • Szász, D.1
  • 22
    • 21344475213 scopus 로고
    • The K-property of 'orthogonal' cylindric billiards
    • D. Szász. The K-property of 'orthogonal' cylindric billiards. Comm. Math. Phys. 160 (1994), 581-597.
    • (1994) Comm. Math. Phys. , vol.160 , pp. 581-597
    • Szász, D.1
  • 23
    • 1542574947 scopus 로고    scopus 로고
    • Boltzmann's ergodic hypothesis, a conjecture for centuries?
    • D. Szász. Boltzmann's ergodic hypothesis, a conjecture for centuries? Studia Sci. Math. Hung. 31 (1996), 299-322.
    • (1996) Studia Sci. Math. Hung. , vol.31 , pp. 299-322
    • Szász, D.1
  • 25
    • 0002313847 scopus 로고
    • On systems of particles with finite range and/or repulsive interactions
    • L. N. Vaserstein. On systems of particles with finite range and/or repulsive interactions. Comm. Math. Phys. 69 (1979), 31-56.
    • (1979) Comm. Math. Phys. , vol.69 , pp. 31-56
    • Vaserstein, L.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.