-
1
-
-
0032359972
-
Uniform estimates on the number of collisions in semi-dispersive billiards
-
D. Burago, S. Ferleger and A. Kononenko. Uniform estimates on the number of collisions in semi-dispersive billiards. Ann. Math. 147 (1998), 695-708.
-
(1998)
Ann. Math.
, vol.147
, pp. 695-708
-
-
Burago, D.1
Ferleger, S.2
Kononenko, A.3
-
2
-
-
84956132011
-
Ergodic properties of certain systems of 2-D discs and 3-D balls
-
Ya. G. Sinai and N. Chernov. Ergodic properties of certain systems of 2-D discs and 3-D balls. Russian Math. Surveys 42(3) (1987), 181-207.
-
(1987)
Russian Math. Surveys
, vol.42
, Issue.3
, pp. 181-207
-
-
Sinai, Ya.G.1
Chernov, N.2
-
3
-
-
0030541582
-
Nonuniformly hyperbolic K-systems are Bernoulli
-
N. Chernov and C. Haskell. Nonuniformly hyperbolic K-systems are Bernoulli. Ergod. Th. & Dynam. Sys. 16 (1996), 19-44.
-
(1996)
Ergod. Th. & Dynam. Sys.
, vol.16
, pp. 19-44
-
-
Chernov, N.1
Haskell, C.2
-
4
-
-
0000398259
-
On systems of locally interacting and repelling particles moving in space
-
G. Galperin. On systems of locally interacting and repelling particles moving in space. Trudy MMO 43 (1981), 142-196.
-
(1981)
Trudy MMO
, vol.43
, pp. 142-196
-
-
Galperin, G.1
-
7
-
-
0000593586
-
Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers in the 3-D torus
-
A. Krámli, N. Simányi and D. Szász. Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers in the 3-D torus. Nonlinearity 2 (1989), 311-326.
-
(1989)
Nonlinearity
, vol.2
, pp. 311-326
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
8
-
-
0000059523
-
A 'transversal' fundamental theorem for semi-dispersive billiards
-
A. Krámli, N. Simányi and D. Szász. A 'transversal' fundamental theorem for semi-dispersive billiards. Comm. Math. Phys. 129 (1990), 535-560.
-
(1990)
Comm. Math. Phys.
, vol.129
, pp. 535-560
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
9
-
-
0002884213
-
The K-property of three billiard balls
-
A. Krámli, N. Simányi and D. Szász. The K-property of three billiard balls. Ann. Math. 133 (1991), 37-72.
-
(1991)
Ann. Math.
, vol.133
, pp. 37-72
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
11
-
-
0001043657
-
Ergodicity in Hamiltonian systems
-
C. Liverani and M. Wojtkowski. Ergodicity in Hamiltonian systems. Dynamics Reported 4 (New series), (1995), 130-202.
-
(1995)
Dynamics Reported
, vol.4
, Issue.NEW SERIES
, pp. 130-202
-
-
Liverani, C.1
Wojtkowski, M.2
-
12
-
-
0032399806
-
On the Bernoulli nature of systems with some hyperbolic structure
-
D. Ornstein and B. Weiss. On the Bernoulli nature of systems with some hyperbolic structure. Ergod. Th. & Dynam. Sys. 18 (1998), 441-456.
-
(1998)
Ergod. Th. & Dynam. Sys.
, vol.18
, pp. 441-456
-
-
Ornstein, D.1
Weiss, B.2
-
13
-
-
0000616278
-
The K-property of N billiards balls I
-
N. Simányi. The K-property of N billiards balls I. Invent. Math. 108 (1992), 521-548; The K-property of N billiards balls II. Invent. Math. 110 (1992), 151-172.
-
(1992)
Invent. Math.
, vol.108
, pp. 521-548
-
-
Simányi, N.1
-
14
-
-
0000944602
-
The K-property of N billiards balls II
-
N. Simányi. The K-property of N billiards balls I. Invent. Math. 108 (1992), 521-548; The K-property of N billiards balls II. Invent. Math. 110 (1992), 151-172.
-
(1992)
Invent. Math.
, vol.110
, pp. 151-172
-
-
-
15
-
-
85033966614
-
Complete hyperbolicity of cylindric billiards
-
Submitted to
-
N. Simányi. Complete hyperbolicity of cylindric billiards. Submitted to Ergod. Th. & Dynam. Sys..
-
Ergod. Th. & Dynam. Sys.
-
-
Simányi, N.1
-
16
-
-
85033941470
-
-
Oral communication
-
N. Simányi. Oral communication.
-
-
-
Simányi, N.1
-
17
-
-
21844504054
-
The K-property of 4-D billiards with non-orthogonal cylindric scatterers
-
N. Simányi and D. Szász. The K-property of 4-D billiards with non-orthogonal cylindric scatterers. J. Stat. Phys. 76(1/2) (1994), 587-604.
-
(1994)
J. Stat. Phys.
, vol.76
, Issue.1-2
, pp. 587-604
-
-
Simányi, N.1
Szász, D.2
-
18
-
-
21844510859
-
The K-property of Hamiltonian systems with restricted hard ball interactions
-
N. Simányi and D. Szász. The K-property of Hamiltonian systems with restricted hard ball interactions. Mathematical Research Letters 2(6) (1995), 751-770.
-
(1995)
Mathematical Research Letters
, vol.2
, Issue.6
, pp. 751-770
-
-
Simányi, N.1
Szász, D.2
-
19
-
-
0033241652
-
Hard ball systems are completely hyperbolic
-
N. Simányi and D. Szász. Hard ball systems are completely hyperbolic. Ann. Math. 149 (1999), 35-96.
-
(1999)
Ann. Math.
, vol.149
, pp. 35-96
-
-
Simányi, N.1
Szász, D.2
-
20
-
-
85033949492
-
Non-integrability of cylindric billiards and transitive Lie-group actions
-
to appear
-
N. Simányi and D. Szász. Non-integrability of cylindric billiards and transitive Lie-group actions. Ergod. Th. & Dynam. Sys. to appear
-
Ergod. Th. & Dynam. Sys.
-
-
Simányi, N.1
Szász, D.2
-
21
-
-
0002298909
-
Ergodicity of classical billiard balls
-
D. Szász. Ergodicity of classical billiard balls. Physica A 194 (1993), 86-92.
-
(1993)
Physica A
, vol.194
, pp. 86-92
-
-
Szász, D.1
-
22
-
-
21344475213
-
The K-property of 'orthogonal' cylindric billiards
-
D. Szász. The K-property of 'orthogonal' cylindric billiards. Comm. Math. Phys. 160 (1994), 581-597.
-
(1994)
Comm. Math. Phys.
, vol.160
, pp. 581-597
-
-
Szász, D.1
-
23
-
-
1542574947
-
Boltzmann's ergodic hypothesis, a conjecture for centuries?
-
D. Szász. Boltzmann's ergodic hypothesis, a conjecture for centuries? Studia Sci. Math. Hung. 31 (1996), 299-322.
-
(1996)
Studia Sci. Math. Hung.
, vol.31
, pp. 299-322
-
-
Szász, D.1
-
25
-
-
0002313847
-
On systems of particles with finite range and/or repulsive interactions
-
L. N. Vaserstein. On systems of particles with finite range and/or repulsive interactions. Comm. Math. Phys. 69 (1979), 31-56.
-
(1979)
Comm. Math. Phys.
, vol.69
, pp. 31-56
-
-
Vaserstein, L.N.1
|