-
1
-
-
84963057256
-
Sets of fractional dimension, IV. On rational approximations to real numbers
-
A. S. Besicovitch. Sets of fractional dimension, IV. On rational approximations to real numbers. J. London Math. Soc. 9 (1934). 126-131.
-
(1934)
J. London Math. Soc.
, vol.9
, pp. 126-131
-
-
Besicovitch, A.S.1
-
2
-
-
0033480605
-
Statistical properties of piecewise smooth hyperbolic systems in high dimensions
-
N. I. Chernov. Statistical properties of piecewise smooth hyperbolic systems in high dimensions. Discrete Contin. Dynam. Systems 5 (1999), 425-448.
-
(1999)
Discrete Contin. Dynam. Systems
, vol.5
, pp. 425-448
-
-
Chernov, N.I.1
-
3
-
-
0030541582
-
Nonuniformly hyperbolic K-systems are Bernoulli
-
N. I. Chernov and C. Haskell. Nonuniformly hyperbolic K-systems are Bernoulli. Ergod. Th. & Dynam. Sys. 16 (1996). 19-44.
-
(1996)
Ergod. Th. & Dynam. Sys.
, vol.16
, pp. 19-44
-
-
Chernov, N.I.1
Haskell, C.2
-
5
-
-
0039268886
-
Bounded orbits of Anosov-flows
-
D. Dolgopyat, Bounded orbits of Anosov-flows. Duke Math. J. 87 (1997), 87-114.
-
(1997)
Duke Math. J.
, vol.87
, pp. 87-114
-
-
Dolgopyat, D.1
-
7
-
-
0041062378
-
Invariant Sets of hyperbolic toral automorphisms
-
J. Franks. Invariant Sets of hyperbolic toral automorphisms. Amer. J. Math. 99 (1977), 1089-1095.
-
(1977)
Amer. J. Math.
, vol.99
, pp. 1089-1095
-
-
Franks, J.1
-
8
-
-
6144292336
-
Chaotic scattering theory, thermodynamic formalism, and transport coefficients
-
P. Gaspard and J. R. Dorfman. Chaotic scattering theory, thermodynamic formalism, and transport coefficients Phys. Rev. E 52 (1995), 3525-3552.
-
(1995)
Phys. Rev. E
, vol.52
, pp. 3525-3552
-
-
Gaspard, P.1
Dorfman, J.R.2
-
9
-
-
0001437632
-
Transport properties, Lyapunov exponents, and entropy per unit time
-
P. Gaspard and G. Nicolis. Transport properties, Lyapunov exponents, and entropy per unit time Phys. Rev. Lett. 65 (1990), 1693-1696.
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 1693-1696
-
-
Gaspard, P.1
Nicolis, G.2
-
10
-
-
0039283546
-
Construction of invariant sets for Anosov diffeomorphisms
-
S. G. Hancock. Construction of invariant sets for Anosov diffeomorphisms. J. London Math. Soc. 18(2) (1978), 339-348.
-
(1978)
J. London Math. Soc.
, vol.18
, Issue.2
, pp. 339-348
-
-
Hancock, S.G.1
-
12
-
-
0000644990
-
Strange saddles and the dimensions of their invariant manifolds
-
G.-H. Hsu, E. Ott and C. Grebogi. Strange saddles and the dimensions of their invariant manifolds. Phys. Lett. A 127 (1988), 199-204.
-
(1988)
Phys. Lett. A
, vol.127
, pp. 199-204
-
-
Hsu, G.-H.1
Ott, E.2
Grebogi, C.3
-
14
-
-
0000065722
-
Diophantische approximationen und hausdorffsches mass
-
V. Jarnik. Diophantische approximationen und hausdorffsches mass. Math. Sb. 36 (1929), 371-382.
-
(1929)
Math. Sb.
, vol.36
, pp. 371-382
-
-
Jarnik, V.1
-
15
-
-
46549094713
-
Repellers, semi-attractors, and long-lived chaotic transients
-
H. Kantz and P. Grassberger. Repellers, semi-attractors, and long-lived chaotic transients. Physica D 17 (1985), 75-86.
-
(1985)
Physica D
, vol.17
, pp. 75-86
-
-
Kantz, H.1
Grassberger, P.2
-
17
-
-
0032380565
-
Nondense orbits of flows in homogeneous spaces
-
D. Y. Kleinbock. Nondense orbits of flows in homogeneous spaces. Ergod. Th. & Dynam. Sys. 18 (1998), 373-396.
-
(1998)
Ergod. Th. & Dynam. Sys.
, vol.18
, pp. 373-396
-
-
Kleinbock, D.Y.1
-
18
-
-
0011075447
-
Heat conduction in caricature models of the Lorentz gas
-
A. Krámli, N. Simányi and D. Szász. Heat conduction in caricature models of the Lorentz gas. J. Stat. Phys. 46 (1987), 303-318.
-
(1987)
J. Stat. Phys.
, vol.46
, pp. 303-318
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
19
-
-
0000593586
-
Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers in the 3-D torus
-
A. Krámli, N. Simányi and D. Szász. Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers in the 3-D torus. Nonlinearity 2 (1989), 311-326.
-
(1989)
Nonlinearity
, vol.2
, pp. 311-326
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
20
-
-
0000059523
-
A 'transversal' fundamental theorem for semi-dispersing billiards
-
A. Krámli, N. Simányi and D. Szász. A 'transversal' fundamental theorem for semi-dispersing billiards. Commun. Math. Phys. 129 (1990), 535-560.
-
(1990)
Commun. Math. Phys.
, vol.129
, pp. 535-560
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
21
-
-
0002884213
-
The K-property of three billiard balls
-
A. Krámli, N. Simányi and D. Szász. The K-property of three billiard balls. Ann. Math. 133 (1991), 37-72.
-
(1991)
Ann. Math.
, vol.133
, pp. 37-72
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
23
-
-
0000102232
-
Transport properties of the Lorentz gas: Fourier's law
-
J. L. Lebowitz and H. Spohn. Transport properties of the Lorentz gas: Fourier's law. J. Stat. Phys. 19 (1978), 633-654.
-
(1978)
J. Stat. Phys.
, vol.19
, pp. 633-654
-
-
Lebowitz, J.L.1
Spohn, H.2
-
24
-
-
84956211612
-
Fractal set of recurrent orbits in billiards
-
O. Legrand and D. Sornette. Fractal set of recurrent orbits in billiards. Europhys. Lett. 11 (1990), 583-588.
-
(1990)
Europhys. Lett.
, vol.11
, pp. 583-588
-
-
Legrand, O.1
Sornette, D.2
-
25
-
-
0001043657
-
Ergodicity in Hamiltonian systems
-
C. Liverani and M. Wojtkowski. Ergodicity in Hamiltonian systems. Dynam. Rep. 4 (1995), 130-202.
-
(1995)
Dynam. Rep.
, vol.4
, pp. 130-202
-
-
Liverani, C.1
Wojtkowski, M.2
-
26
-
-
0009419384
-
Invariant sets for Anosov diffeomorphisms
-
R. Mañé. Invariant sets for Anosov diffeomorphisms. Invent. Math. 46 (1978), 147-152.
-
(1978)
Invent. Math.
, vol.46
, pp. 147-152
-
-
Mañé, R.1
-
27
-
-
0040359769
-
Dynamical and ergodic properties of subgroup actions on homogeneous spaces with applications to number theory
-
G. A. Margulis. Dynamical and ergodic properties of subgroup actions on homogeneous spaces with applications to number theory. Proc. ICM, Kyoto, Japan 1 (1990), 193-215
-
(1990)
Proc. ICM, Kyoto, Japan
, vol.1
, pp. 193-215
-
-
Margulis, G.A.1
-
28
-
-
84967773772
-
Area and Hausdorff dimension of Julia sets of entire functions
-
C. McMullen. Area and Hausdorff dimension of Julia sets of entire functions. Trans. Amer. Math. Soc. 300 (1987), 329-342.
-
(1987)
Trans. Amer. Math. Soc.
, vol.300
, pp. 329-342
-
-
McMullen, C.1
-
30
-
-
0032399806
-
On the Bernoulli nature of systems with some hyperbolic structure
-
D. Ornstein and B. Weiss. On the Bernoulli nature of systems with some hyperbolic structure. Ergod. Th. & Dynam. Sys. 18 (1998), 441-456.
-
(1998)
Ergod. Th. & Dynam. Sys.
, vol.18
, pp. 441-456
-
-
Ornstein, D.1
Weiss, B.2
-
31
-
-
84967713041
-
Expanding maps on sets which are almost invariant: Decay and chaos
-
G. Pianigiani and J. Yorke. Expanding maps on sets which are almost invariant: decay and chaos. Trans. Amer. Math. Soc. 252 (1979), 351-366.
-
(1979)
Trans. Amer. Math. Soc.
, vol.252
, pp. 351-366
-
-
Pianigiani, G.1
Yorke, J.2
-
32
-
-
0041062371
-
Construction of invariant subsets for Anosov diffeomorphisms and hyperbolic attractors
-
F. Przytycki. Construction of invariant subsets for Anosov diffeomorphisms and hyperbolic attractors. Studia Math. 93 (1980), 199-213.
-
(1980)
Studia Math.
, vol.93
, pp. 199-213
-
-
Przytycki, F.1
-
33
-
-
0033246861
-
Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics
-
D. Ruelle. Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Statist. Phys. 95 (1999), 393-468.
-
(1999)
J. Statist. Phys.
, vol.95
, pp. 393-468
-
-
Ruelle, D.1
-
34
-
-
0000616278
-
The K-property of N billiard balls I
-
N. Simányi. The K-property of N billiard balls I. Invent. Math. 108 (1992), 521-548. N. Simányi. The K-property of N billiard balls II. Invent. Math. 110 (1992), 151-172.
-
(1992)
Invent. Math.
, vol.108
, pp. 521-548
-
-
Simányi, N.1
-
35
-
-
0000944602
-
The K-property of N billiard balls II
-
N. Simányi. The K-property of N billiard balls I. Invent. Math. 108 (1992), 521-548. N. Simányi. The K-property of N billiard balls II. Invent. Math. 110 (1992), 151-172.
-
(1992)
Invent. Math.
, vol.110
, pp. 151-172
-
-
Simányi, N.1
-
36
-
-
0033423072
-
Ergodicity of hard spheres in a box
-
N. Simányi. Ergodicity of hard spheres in a box. Ergod. Th. & Dynam. Sys. 19 (1999), 741-766.
-
(1999)
Ergod. Th. & Dynam. Sys.
, vol.19
, pp. 741-766
-
-
Simányi, N.1
-
37
-
-
84956132011
-
Ergodic properties of certain systems of 2-D discs and 3-D balls
-
Ya. G. Sinai and N. I. Chernov. Ergodic properties of certain systems of 2-D discs and 3-D balls. Russian Math. Surveys 42(3) (1987), 181-207.
-
(1987)
Russian Math. Surveys
, vol.42
, Issue.3
, pp. 181-207
-
-
Sinai, Ya.G.1
Chernov, N.I.2
-
38
-
-
21844504054
-
The K-property of 4-D billiards with non-orthogonal cylindric scatterers
-
N. Simányi and D. Szász. The K-property of 4-D billiards with non-orthogonal cylindric scatterers. J. Stat. Phys. 76(1/2) (1994), 587-604.
-
(1994)
J. Stat. Phys.
, vol.76
, Issue.1-2
, pp. 587-604
-
-
Simányi, N.1
Szász, D.2
-
39
-
-
21844510859
-
The K-property of Hamiltonian systems with restricted hard ball interactions
-
N. Simányi and D. Szász. The K-property of Hamiltonian systems with restricted hard ball interactions. Math. Res. Lett. 2(6) (1995), 751-770.
-
(1995)
Math. Res. Lett.
, vol.2
, Issue.6
, pp. 751-770
-
-
Simányi, N.1
Szász, D.2
-
40
-
-
0034421404
-
Non-integrability of cylindric billiards and transitive Lie group actions
-
N. Simányi and D. Szász. Non-integrability of cylindric billiards and transitive Lie group actions. Ergod. Th. & Dynam. Sys. 20 (2000), 593-610.
-
(2000)
Ergod. Th. & Dynam. Sys.
, vol.20
, pp. 593-610
-
-
Simányi, N.1
Szász, D.2
-
41
-
-
0033241652
-
Hard ball systems are completely hyperbolic
-
N. Simányi and D. Szász. Hard ball systems are completely hyperbolic. Ann. Math. 149 (1999), 1-62.
-
(1999)
Ann. Math.
, vol.149
, pp. 1-62
-
-
Simányi, N.1
Szász, D.2
-
42
-
-
21344475213
-
The K-property of 'orthogonal' cylindric billiards
-
D. Szász. The K-property of 'orthogonal' cylindric billiards. Commun. Math. Phys. 160 (1994), 581-597.
-
(1994)
Commun. Math. Phys.
, vol.160
, pp. 581-597
-
-
Szász, D.1
-
43
-
-
1542574947
-
Boltzmann's ergodic hypothesis, a conjecture for centuries?
-
D. Szász. Boltzmann's ergodic hypothesis, a conjecture for centuries? Studia Sci. Math. Hung. 31 (1996), 299-322.
-
(1996)
Studia Sci. Math. Hung.
, vol.31
, pp. 299-322
-
-
Szász, D.1
-
45
-
-
0038740368
-
Transient chaos: The origin of transport in driven systems
-
T. Tel, J. Vollmer and W. Breymann. Transient chaos: the origin of transport in driven systems. Europhys. Lett. 35 (1996), 659-664.
-
(1996)
Europhys. Lett.
, vol.35
, pp. 659-664
-
-
Tel, T.1
Vollmer, J.2
Breymann, W.3
-
46
-
-
0040314810
-
The Hausdorff dimension of the set of points with non-dense orbit under a hyperbolic map
-
M. Urbánski. The Hausdorff dimension of the set of points with non-dense orbit under a hyperbolic map. Nonlinearity 4 (1991), 385-397.
-
(1991)
Nonlinearity
, vol.4
, pp. 385-397
-
-
Urbánski, M.1
-
47
-
-
0000176923
-
Invariant families of cones and Lyapunov exponents
-
M. Wojtkowski. Invariant families of cones and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 5 (1985), 145-161.
-
(1985)
Ergod. Th. & Dynam. Sys.
, vol.5
, pp. 145-161
-
-
Wojtkowski, M.1
-
48
-
-
84956256298
-
Dimension, entropy and Lyapunov exponents
-
L. S. Young. Dimension, entropy and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 2 (1982), 109-124.
-
(1982)
Ergod. Th. & Dynam. Sys.
, vol.2
, pp. 109-124
-
-
Young, L.S.1
-
49
-
-
0032348050
-
Statistical properties of dynamical systems with some hyperbolicity
-
L. S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147 (1998), 585-650.
-
(1998)
Ann. Math.
, vol.147
, pp. 585-650
-
-
Young, L.S.1
|