-
2
-
-
0039558773
-
The fundamental theorem of the theory of scattering billiards
-
L. A. Bunimovich and Ya. G. Sinai. The fundamental theorem of the theory of scattering billiards. Math. USSR-Sb. 19 (1973), 407-423.
-
(1973)
Math. USSR-Sb.
, vol.19
, pp. 407-423
-
-
Bunimovich, L.A.1
Sinai, Ya.G.2
-
3
-
-
0030541582
-
Nonuniformly hyperbolic K-systems are Bernoulli
-
N. I. Chernov and C. Haskell. Nonuniformly hyperbolic K-systems are Bernoulli. Ergod. Th. & Dynam. Sys. 16 (1996), 19-14.
-
(1996)
Ergod. Th. & Dynam. Sys.
, vol.16
, pp. 19-114
-
-
Chernov, N.I.1
Haskell, C.2
-
6
-
-
0000398259
-
On systems of locally interacting and repelling particles moving in space
-
G. Galperin. On systems of locally interacting and repelling particles moving in space. Trudy MMO 43 (1981), 142-196.
-
(1981)
Trudy MMO
, vol.43
, pp. 142-196
-
-
Galperin, G.1
-
9
-
-
0000593586
-
Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers in the 3-D torus
-
A. Krámli, N. Simányi and D. Szász. Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers in the 3-D torus. Nonlinearity 2 (1989), 311-326.
-
(1989)
Nonlinearity
, vol.2
, pp. 311-326
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
10
-
-
0000059523
-
A 'transversal' fundamental theorem for semi-dispersing billiards
-
A. Krámli, N. Simányi and D. Szász. A 'transversal' fundamental theorem for semi-dispersing billiards. Commun. Math. Phys. 129 (1990), 535-560.
-
(1990)
Commun. Math. Phys.
, vol.129
, pp. 535-560
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
11
-
-
0002884213
-
The K-property of three billiard balls
-
A. Krámli, N. Simányi and D. Szász. The K-property of three billiard balls. Ann. Math. 133 (1991), 37-72.
-
(1991)
Ann. Math.
, vol.133
, pp. 37-72
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
14
-
-
0038922615
-
-
Engl. Transl. Princeton University Press, Princeton, NJ
-
N. S. Krylov. The processes of relaxation of statistical systems and the criterion of mechanical instability. Thesis, Moscow, 1942. Engl. Transl. Development of Krylov's Ideas. Princeton University Press, Princeton, NJ, 1977, pp. 193-238.
-
(1977)
Development of Krylov's Ideas
, pp. 193-238
-
-
-
16
-
-
0032399806
-
On the Bernoulli nature of systems with some hyperbolic structure
-
D. Ornstein and B. Weiss. On the Bernoulli nature of systems with some hyperbolic structure. Ergod. Th. & Dynam. Sys. 18 (1998), 441-456.
-
(1998)
Ergod. Th. & Dynam. Sys.
, vol.18
, pp. 441-456
-
-
Ornstein, D.1
Weiss, B.2
-
17
-
-
0000616278
-
The K-property of N billiard balls I
-
N. Simányi. The K-property of N billiard balls I. Invent. Math. 108 (1992), 521-548.
-
(1992)
Invent. Math.
, vol.108
, pp. 521-548
-
-
Simányi, N.1
-
18
-
-
0000944602
-
The K-property of N billiard balls II
-
N. Simányi. The K-property of N billiard balls II. Invent. Math. 110 (1992), 151-172.
-
(1992)
Invent. Math.
, vol.110
, pp. 151-172
-
-
Simányi, N.1
-
19
-
-
21844510859
-
The K-property of Hamiltonian systems with restricted hard ball interactions
-
N. Simányi and D. Szász. The K-property of Hamiltonian systems with restricted hard ball interactions. Math. Res. Lett. 2 (1995), 751-770.
-
(1995)
Math. Res. Lett.
, vol.2
, pp. 751-770
-
-
Simányi, N.1
Szász, D.2
-
20
-
-
0033241652
-
Hard ball systems are completely hyperbolic
-
N. Simányi and D. Szász. Hard ball systems are completely hyperbolic. Ann. Math. 149(1) (1999), 35-96.
-
(1999)
Ann. Math.
, vol.149
, Issue.1
, pp. 35-96
-
-
Simányi, N.1
Szász, D.2
-
21
-
-
0001200214
-
On the foundation of the ergodic hypothesis for a dynamical system of statistical mechanics
-
Ya. G. Sinai. On the foundation of the ergodic hypothesis for a dynamical system of statistical mechanics. Soviet Math. Dokl. 4 (1963), 1818-1822.
-
(1963)
Soviet Math. Dokl.
, vol.4
, pp. 1818-1822
-
-
Sinai, Ya.G.1
-
22
-
-
84927896522
-
Dynamical systems with elastic reflections
-
Ya. G. Sinai. Dynamical systems with elastic reflections. Russian Math. Surveys 25(2) (1970), 137-189.
-
(1970)
Russian Math. Surveys
, vol.25
, Issue.2
, pp. 137-189
-
-
Sinai, Ya.G.1
-
23
-
-
84956132011
-
Ergodic properties of certain systems of 2-D discs and 3-D balls
-
Ya. G. Sinai and N.I. Chernov. Ergodic properties of certain systems of 2-D discs and 3-D balls. Russian Math. Surveys 42(3) (1987), 181-207.
-
(1987)
Russian Math. Surveys
, vol.42
, Issue.3
, pp. 181-207
-
-
Sinai, Ya.G.1
Chernov, N.I.2
-
24
-
-
21344475213
-
The K-property of 'orthogonal' cylindric billiards
-
D. Szász. The K-property of 'orthogonal' cylindric billiards. Commun. Math. Phys. 160 (1994), 581-597.
-
(1994)
Commun. Math. Phys.
, vol.160
, pp. 581-597
-
-
Szász, D.1
-
25
-
-
1542574947
-
Boltzmann's ergodic hypothesis, a conjecture for centuries?
-
D. Szász. Boltzmann's ergodic hypothesis, a conjecture for centuries? Studia Sci. Math. Hung. 31 (1996), 299-322.
-
(1996)
Studia Sci. Math. Hung.
, vol.31
, pp. 299-322
-
-
Szász, D.1
-
26
-
-
0002313847
-
On systems of particles with finite range and/or repulsive interactions
-
L. N. Vaserstein. On systems of particles with finite range and/or repulsive interactions. Commun. Math. Phys. 69(1979), 31-56.
-
(1979)
Commun. Math. Phys.
, vol.69
, pp. 31-56
-
-
Vaserstein, L.N.1
-
27
-
-
84974509231
-
Entropy of the system of hard spheres
-
M. P. Wojtkowski. Entropy of the system of hard spheres. Ergod. Th. & Dynam. Sys. 8 (1988), 133-153.
-
(1988)
Ergod. Th. & Dynam. Sys.
, vol.8
, pp. 133-153
-
-
Wojtkowski, M.P.1
|