-
1
-
-
0036435079
-
Multidimensional semidispersing billiards: Singularities and the fundamental theorem
-
[B-Ch-Sz-T(2002)]
-
[B-Ch-Sz-T(2002)] Bálint, P., Chernov, N., Szász, D., Tóth, I.P.: Multidimensional semidispersing billiards: singularities and the fundamental theorem. Ann. Inst. Henri Poincaré 3, 451-482 (2002)
-
(2002)
Ann. Inst. Henri Poincaré
, vol.3
, pp. 451-482
-
-
Bálint, P.1
Chernov, N.2
Szász, D.3
Tóth, I.P.4
-
2
-
-
0039423777
-
Special Systems of Hard Balls that Are Ergodic
-
[B-L-P-S(1992)]
-
[B-L-P-S(1992)] Bunimovich, L., Liverani, C., Pellegrinotti, A., Sukhov, Yu.: Special Systems of Hard Balls that Are Ergodic. Commun. Math. Phys. 146, 357-396 (1992)
-
(1992)
Commun. Math. Phys.
, vol.146
, pp. 357-396
-
-
Bunimovich, L.1
Liverani, C.2
Pellegrinotti, A.3
Sukhov, Yu.4
-
3
-
-
0039558773
-
The fundamental theorem of the theory of scattering billiards
-
[B-S(1973)]
-
[B-S(1973)] Bunimovich, L.A., Sinai, Ya. G.: The fundamental theorem of the theory of scattering billiards. Math. USSR-Sb. 19, 407-423 (1973)
-
(1973)
Math. USSR-Sb.
, vol.19
, pp. 407-423
-
-
Bunimovich, L.A.1
Sinai, Ya.G.2
-
4
-
-
0347416107
-
A geometric approach to semidispersing billiards
-
[B-F-K(1998)]
-
[B-F-K(1998)] Burago, D., Ferleger, S., Kononenko, A.: A geometric approach to semidispersing billiards. Ergodic Theory Dyn. Syst. 18, 303-319 (1998)
-
(1998)
Ergodic Theory Dyn. Syst.
, vol.18
, pp. 303-319
-
-
Burago, D.1
Ferleger, S.2
Kononenko, A.3
-
5
-
-
21344496897
-
Statistical Properties of the Periodic Lorentz Gas. Multidimensional Case
-
[Ch(1994)]
-
[Ch(1994)] Chemov, N.I.: Statistical Properties of the Periodic Lorentz Gas. Multidimensional Case. J. Stat. Phys. 74, 11-54 (1994)
-
(1994)
J. Stat. Phys.
, vol.74
, pp. 11-54
-
-
Chemov, N.I.1
-
6
-
-
0030541582
-
Non-uniformly hyperbolic K-systems are Bernoulli
-
[C-H(1996)]
-
[C-H(1996)] Chernov, N.I., Haskell, C.: Non-uniformly hyperbolic K-systems are Bernoulli. Ergodic Theory Dyn. Syst. 16, 19-44 (1996)
-
(1996)
Ergodic Theory Dyn. Syst.
, vol.16
, pp. 19-44
-
-
Chernov, N.I.1
Haskell, C.2
-
7
-
-
0003798198
-
-
[E(1977)] Warsaw: PWN Polish Scientific Publishers
-
[E(1977)] Engelking, R.: General Topology. Warsaw: PWN Polish Scientific Publishers 1978
-
(1978)
General Topology
-
-
Engelking, R.1
-
9
-
-
0000398259
-
On systems of locally interacting and repelling particles moving in space
-
[G(1981)]
-
[G(1981)] Galperin, G.: On systems of locally interacting and repelling particles moving in space. Tr. Mosk. Mat. O.-va. 43, 142-196 (1981)
-
(1981)
Tr. Mosk. Mat. O.-Va.
, vol.43
, pp. 142-196
-
-
Galperin, G.1
-
10
-
-
0000612131
-
Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems
-
[K-B(1994)]
-
[K-B(1994)] Katok, A., Burns, K.: Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems. Ergodic Theory Dyn. Syst. 14, 757-785 (1994)
-
(1994)
Ergodic Theory Dyn. Syst.
, vol.14
, pp. 757-785
-
-
Katok, A.1
Burns, K.2
-
11
-
-
0003280184
-
Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities
-
[K-S(1986)] Springer
-
[K-S(1986)] Katok, A., Strelcyn, J.-M.: Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities. Lect. Notes Math. 1222. Springer 1986
-
(1986)
Lect. Notes Math.
, vol.1222
-
-
Katok, A.1
Strelcyn, J.-M.2
-
13
-
-
0000593586
-
Ergodic Properties of Semi-Dispersing Billiards I. Two Cylindric Scatterers in the 3-D Torus
-
[K-S-Sz(1989)]
-
[K-S-Sz(1989)] Krámli, A., Simányi, N., Szász, D.: Ergodic Properties of Semi-Dispersing Billiards I. Two Cylindric Scatterers in the 3-D Torus. Nonlinearity. 2, 311-326 (1989)
-
(1989)
Nonlinearity
, vol.2
, pp. 311-326
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
14
-
-
0000059523
-
A "Transversal" Fundamental Theorem for Semi-Dispersing Billiards
-
[K-S-Sz(1990)]
-
[K-S-Sz(1990)] Krámli, A., Simányi, N., Szász, D.: A "Transversal" Fundamental Theorem for Semi-Dispersing Billiards. Commun. Math. Phys. 129, 535-560 (1990)
-
(1990)
Commun. Math. Phys.
, vol.129
, pp. 535-560
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
15
-
-
0002884213
-
The K-Property of Three Billiard Balls
-
[K-S-Sz(1991)]
-
[K-S-Sz(1991)] Krámli, A., Simányi, N., Szász, D.: The K-Property of Three Billiard Balls. Ann. Math. 133, 37-72 (1991)
-
(1991)
Ann. Math.
, vol.133
, pp. 37-72
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
16
-
-
0001027451
-
The K-Property of Four Billiard Balls
-
[K-S-Sz(1992)]
-
[K-S-Sz(1992)] Krámli, A., Simányi, N., Szász, D.: The K-Property of Four Billiard Balls. Commun. Math. Phys, 144, 107-148 (1992)
-
(1992)
Commun. Math. Phys
, vol.144
, pp. 107-148
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
18
-
-
0001043657
-
Ergodicity in Hamiltonian systems
-
[L-W(1995)]
-
[L-W(1995)] Liverani, C., Wojtkowski, M.: Ergodicity in Hamiltonian systems. Dyn. Rep. 4, 130-202 (1995)
-
(1995)
Dyn. Rep.
, vol.4
, pp. 130-202
-
-
Liverani, C.1
Wojtkowski, M.2
-
19
-
-
0032399806
-
On the Bernoulli Nature of Systems with Some Hyperbolic Structure
-
[O-W(1998)]
-
[O-W(1998)] Ornstein, D., Weiss, B.: On the Bernoulli Nature of Systems with Some Hyperbolic Structure. Ergodic Theory Dyn. Syst. 18, 441-456 (1998)
-
(1998)
Ergodic Theory Dyn. Syst.
, vol.18
, pp. 441-456
-
-
Ornstein, D.1
Weiss, B.2
-
20
-
-
84961291543
-
Characteristic Exponents and Smooth Ergodic Theory
-
[P(1977)]
-
[P(1977)] Pesin, Ya.: Characteristic Exponents and Smooth Ergodic Theory. Russ. Math. Surv. 32, 55-114 (1977)
-
(1977)
Russ. Math. Surv.
, vol.32
, pp. 55-114
-
-
Pesin, Ya.1
-
21
-
-
51249180616
-
Classifying the isometric extensions of a Bernoulli shift
-
[R(1978)]
-
[R(1978)] Rudolph, D.J.: Classifying the isometric extensions of a Bernoulli shift. J. Anal. Math. 34, 36-50 (1978)
-
(1978)
J. Anal. Math.
, vol.34
, pp. 36-50
-
-
Rudolph, D.J.1
-
22
-
-
0000616278
-
The K-property of N billiard balls I
-
[Sim(1992-A)]
-
[Sim(1992-A)] Simányi, N.: The K-property of N billiard balls I. Invent. Math. 108, 521-548 (1992)
-
(1992)
Invent. Math.
, vol.108
, pp. 521-548
-
-
Simányi, N.1
-
23
-
-
0000944602
-
The K-property of N billiard balls II. Computation of neutral linear spaces
-
[Sim(1992-B)]
-
[Sim(1992-B)] Simányi, N.: The K-property of N billiard balls II. Computation of neutral linear spaces. Invent. Math. 110, 151-172 (1992)
-
(1992)
Invent. Math.
, vol.110
, pp. 151-172
-
-
Simányi, N.1
-
24
-
-
0035981913
-
The Complete Hyperbolicity of Cylindric Billiards
-
[Sim(2002)]
-
[Sim(2002)] Simányi, N.: The Complete Hyperbolicity of Cylindric Billiards. Ergodic Theory Dyn. Syst. 22, 281-302 (2002)
-
(2002)
Ergodic Theory Dyn. Syst.
, vol.22
, pp. 281-302
-
-
Simányi, N.1
-
25
-
-
21844504054
-
The K-property of 4-D Billiards with Non-Orthogonal Cylindric Scatterers
-
[S-Sz(1994)]
-
[S-Sz(1994)] Simányi, N., Szász, D.: The K-property of 4-D Billiards with Non-Orthogonal Cylindric Scatterers. J. Stat. Phys. 76, 587-604 (1994)
-
(1994)
J. Stat. Phys.
, vol.76
, pp. 587-604
-
-
Simányi, N.1
Szász, D.2
-
26
-
-
21844510859
-
The K-property of Hamiltonian systems with restricted hard ball interactions
-
[S-Sz(1995)]
-
[S-Sz(1995)] Simányi, N., Szász, D.: The K-property of Hamiltonian systems with restricted hard ball interactions. Math. Res. Lett. 2, 751-770 (1995)
-
(1995)
Math. Res. Lett.
, vol.2
, pp. 751-770
-
-
Simányi, N.1
Szász, D.2
-
27
-
-
0033241652
-
Hard Ball Systems Are Completely Hyperbolic
-
[S-Sz(1999)]
-
[S-Sz(1999)] Simányi, N., Szász, D.: Hard Ball Systems Are Completely Hyperbolic. Ann. Math. 149, 35-96 (1999)
-
(1999)
Ann. Math.
, vol.149
, pp. 35-96
-
-
Simányi, N.1
Szász, D.2
-
28
-
-
0034421404
-
Non-integrability of Cylindric Billiards and Transitive Lie Group Actions
-
[S-Sz(2000)]
-
[S-Sz(2000)] Simányi, N., Szász, D.: Non-integrability of Cylindric Billiards and Transitive Lie Group Actions. Ergodic Theory Dyn. Syst. 20, 593-610 (2000)
-
(2000)
Ergodic Theory Dyn. Syst.
, vol.20
, pp. 593-610
-
-
Simányi, N.1
Szász, D.2
-
29
-
-
84974381151
-
Two-particle billiard system with arbitrary mass ratio
-
[S-W(1989)]
-
[S-W(1989)] Simányi, N., Wojtkowski, M.P.: Two-particle billiard system with arbitrary mass ratio. Ergodic Theory Dyn. Syst. 9, 165-171 (1989)
-
(1989)
Ergodic Theory Dyn. Syst.
, vol.9
, pp. 165-171
-
-
Simányi, N.1
Wojtkowski, M.P.2
-
30
-
-
0001200214
-
On the Foundation of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics
-
[Sin(1963)]
-
[Sin(1963)] Sinai, Ya.G.: On the Foundation of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics. Soviet Math. Dokl. 4, 1818-1822 (1963)
-
(1963)
Soviet Math. Dokl.
, vol.4
, pp. 1818-1822
-
-
Sinai, Ya.G.1
-
31
-
-
0040397974
-
Dynamical systems with countably multiple Lebesgue spectrum II
-
[Sin(1968)]
-
[Sin(1968)] Sinai, Ya.G.: Dynamical systems with countably multiple Lebesgue spectrum II. Am. Math. Soc. Transl. 68, 34-38 (1968)
-
(1968)
Am. Math. Soc. Transl.
, vol.68
, pp. 34-38
-
-
Sinai, Ya.G.1
-
32
-
-
84927896522
-
Dynamical Systems with Elastic Reflections
-
[Sin(1970)]
-
[Sin(1970)] Sinai, Ya.G.: Dynamical Systems with Elastic Reflections. Russ. Math. Surv. 25, 137-189 (1970)
-
(1970)
Russ. Math. Surv.
, vol.25
, pp. 137-189
-
-
Sinai, Ya.G.1
-
33
-
-
0003359318
-
Development of Krylov's ideas
-
[Sin(1979)] Afterword to N.S. Krylov's, see reference [K(1979)]. Princeton, N.J.: Princeton University Press
-
[Sin(1979)] Sinai, Ya.G.: Development of Krylov's ideas. Afterword to N.S. Krylov's "Works on the foundations of statistical physics", see reference [K(1979)]. Princeton, N.J.: Princeton University Press 1979
-
(1979)
Works on the Foundations of Statistical Physics
-
-
Sinai, Ya.G.1
-
34
-
-
0041133502
-
Entropy of a gas of hard spheres with respect to the group of space-time shifts
-
[S-Ch(1982)]
-
[S-Ch(1982)] Sinai,Ya.G., Chernov, N.I.: Entropy of a gas of hard spheres with respect to the group of space-time shifts. Tr. Semin. Im. I. G. Petrovskogo 8, 218-238 (1982)
-
(1982)
Tr. Semin. Im. I. G. Petrovskogo
, vol.8
, pp. 218-238
-
-
Sinai, Ya.G.1
Chernov, N.I.2
-
35
-
-
84956132011
-
Ergodic properties of certain systems of 2-D discs and 3-D balls
-
[S-Ch(1987)]
-
[S-Ch(1987)] Sinai, Ya.G., Chernov, N.I.: Ergodic properties of certain systems of 2-D discs and 3-D balls. Russ. Math. Surv. 42, 181-207 (1987)
-
(1987)
Russ. Math. Surv.
, vol.42
, pp. 181-207
-
-
Sinai, Ya.G.1
Chernov, N.I.2
-
36
-
-
0002298909
-
Ergodicity of classical billiard balls
-
[Sz(1993)]
-
[Sz(1993)] Szász, D.: Ergodicity of classical billiard balls, Physica A194, 86-92 (1993)
-
(1993)
Physica A
, vol.194
, pp. 86-92
-
-
Szász, D.1
-
37
-
-
21344475213
-
The K-property of 'Orthogonal' Cylindric Billiards
-
[Sz(1994)]
-
[Sz(1994)] Szász, D.: The K-property of 'Orthogonal' Cylindric Billiards. Commun. Math. Phys. 160, 581-597 (1994)
-
(1994)
Commun. Math. Phys.
, vol.160
, pp. 581-597
-
-
Szász, D.1
-
38
-
-
1542574947
-
Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries?
-
[Sz(1996)]
-
[Sz(1996)] Szász, D.: Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries? Stud. Sci. Math. Hung. 31, 299-322 (1996)
-
(1996)
Stud. Sci. Math. Hung.
, vol.31
, pp. 299-322
-
-
Szász, D.1
-
39
-
-
0002313847
-
On Systems of Particles with Finite Range and/or Repulsive Interactions
-
[V(1979)]
-
[V(1979)] Vaserstein, L.N.: On Systems of Particles with Finite Range and/or Repulsive Interactions. Commun. Math. Phys. 69, 31-56 (1979)
-
(1979)
Commun. Math. Phys.
, vol.69
, pp. 31-56
-
-
Vaserstein, L.N.1
-
40
-
-
84974509231
-
Measure theoretic entropy of the system of hard spheres
-
[W(1988)]
-
[W(1988)] Wojtkowski, M.: Measure theoretic entropy of the system of hard spheres. Ergodic Theory Dyn, Syst. 8, 133-153 (1988)
-
(1988)
Ergodic Theory Dyn, Syst.
, vol.8
, pp. 133-153
-
-
Wojtkowski, M.1
-
41
-
-
0001676415
-
Linearly stable orbits in 3-dimensional billiards
-
[W(1990)]
-
[W(1990)] Wojtkowski, M.: Linearly stable orbits in 3-dimensional billiards. Commun. Math. Phys. 129, 319-327 (1990)
-
(1990)
Commun. Math. Phys.
, vol.129
, pp. 319-327
-
-
Wojtkowski, M.1
|