-
1
-
-
0033420883
-
Chaotic and ergodic properties of cylindric billiards
-
Ba
-
[Ba] P. Bálint. Chaotic and ergodic properties of cylindric billiards. Ergod. Th. & Dynam. Sys. 19 (1999), 1127-1156.
-
(1999)
Ergod. Th. & Dynam. Sys.
, vol.19
, pp. 1127-1156
-
-
Bálint, P.1
-
2
-
-
29444443343
-
On the ergodic properties of nowhere dispersing billiards
-
Bu
-
[Bu] L.A. Bunimovich. On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys. 65 (1979), 295-312.
-
(1979)
Commun. Math. Phys.
, vol.65
, pp. 295-312
-
-
Bunimovich, L.A.1
-
3
-
-
0032359972
-
Uniform estimates on the number of collisions in semi-dispersing billiards
-
BFK
-
[BFK] D. Barago, S. Ferleger and A. Kononenko. Uniform estimates on the number of collisions in semi-dispersing billiards. Ann. Math. 147 (1998), 695-708.
-
(1998)
Ann. Math.
, vol.147
, pp. 695-708
-
-
Burago, D.1
Ferleger, S.2
Kononenko, A.3
-
4
-
-
0030541582
-
Nonuniformly hyperbolic K-systems are Bernoulli
-
CH
-
[CH] N.I. Chernov and C. Haskell. Nonuniformly hyperbolic K-systems are Bernoulli. Ergod. Th. & Dynam. Sys. 16 (1996), 19-44.
-
(1996)
Ergod. Th. & Dynam. Sys.
, vol.16
, pp. 19-44
-
-
Chernov, N.I.1
Haskell, C.2
-
5
-
-
0000398259
-
On systems of locally interacting and repelling particles moving in space
-
Ga
-
[Ga] G. Galperin. On systems of locally interacting and repelling particles moving in space. Trudy MMO 43 (1981), 142-196.
-
(1981)
Trudy MMO
, vol.43
, pp. 142-196
-
-
Galperin, G.1
-
6
-
-
0001585656
-
The dynamics of geodesic flows
-
Hed
-
[Hed] G.A. Hedlund. The dynamics of geodesic flows. Bull. Amer. Math. Soc. 45 (1939), 241-260.
-
(1939)
Bull. Amer. Math. Soc.
, vol.45
, pp. 241-260
-
-
Hedlund, G.A.1
-
8
-
-
0000683114
-
Statistik der geodetischen linien in mannigfaltigkeiten negativer krümmung
-
Ho
-
[Ho] E. Hopf. Statistik der geodetischen Linien in Mannigfaltigkeiten negativer Krümmung. Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939), 261-304.
-
(1939)
Ber. Verh. Sächs. Akad. Wiss. Leipzig
, vol.91
, pp. 261-304
-
-
Hopf, E.1
-
9
-
-
0003280184
-
Invariant manifolds, entropy and billiards; Smooth maps with singularities
-
KS. Springer
-
[KS] A. Katok and J.-M. Strelcyn. Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities (Lecture Notes in Mathematics, 1222). Springer, 1986.
-
(1986)
Lecture Notes in Mathematics
, vol.1222
-
-
Katok, A.1
Strelcyn, J.-M.2
-
10
-
-
0000593586
-
Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers ia the 3-D Torus
-
KSSz89
-
[KSSz89] A. Krámli, N. Simányi and D. Szász. Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers ia the 3-D Torus. Nonlinearity 2 (1989), 311-326.
-
(1989)
Nonlinearity
, vol.2
, pp. 311-326
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
11
-
-
0000059523
-
A 'transversal' fundamental theorem for semi-dispersing billiards
-
KSSz90
-
[KSSz90] A. Krámli, N. Simányi and D. Szász. A 'Transversal' fundamental theorem for semi-dispersing billiards. Commun. Math. Phys. 129 (1990), 535-560.
-
(1990)
Commun. Math. Phys.
, vol.129
, pp. 535-560
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
12
-
-
0002884213
-
The K-property of three billiard balls
-
KSSz91
-
[KSSz91] A. Krámli, N. Simányi and D. Szász. The K-property of three billiard balls. Ann. Math. 133 (1991 ), 37-72.
-
(1991)
Ann. Math.
, vol.133
, pp. 37-72
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
13
-
-
0001027451
-
The K-property of four billiard balls
-
KSSz92
-
[KSSz92] A. Krámli, N. Simányi and D. Szász. The K-property of four billiard balls. Commun. Math. Phys. 144 (1992), 107-148.
-
(1992)
Commun. Math. Phys.
, vol.144
, pp. 107-148
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
14
-
-
0032399806
-
On the Bernoulli nature of systems with some hyperbolic structure
-
OW
-
[OW] D. Ornstein and B. Weiss. On the Bernoulli nature of systems with some hyperbolic structure. Ergod. Th. & Dynam. Sys. 18 (1998), 441-456.
-
(1998)
Ergod. Th. & Dynam. Sys.
, vol.18
, pp. 441-456
-
-
Ornstein, D.1
Weiss, B.2
-
15
-
-
84961291543
-
Characteristic exponents and smooth ergodic theory
-
Pe
-
[Pe] Ya. Pesin. Characteristic exponents and smooth ergodic theory. Russian Math. Surveys 32 (1977), 55-114.
-
(1977)
Russian Math. Surveys
, vol.32
, pp. 55-114
-
-
Pesin, Ya.1
-
16
-
-
0000616278
-
The K-property of N billiard balls I
-
Sim92
-
[Sim92] N. Simányi. The K-property of N billiard balls I. Invent. Math. 108 (1992), 521-548; The K-property of N billiard balls II. Invent. Math. 110 (1992), 151-172.
-
(1992)
Invent. Math.
, vol.108
, pp. 521-548
-
-
Simányi, N.1
-
17
-
-
0000944602
-
The K-property of N billiard balls II
-
[Sim92] N. Simányi. The K-property of N billiard balls I. Invent. Math. 108 (1992), 521-548; The K-property of N billiard balls II. Invent. Math. 110 (1992), 151-172.
-
(1992)
Invent. Math.
, vol.110
, pp. 151-172
-
-
-
18
-
-
0033423072
-
Ergodicity of hard spheres in a box
-
Sim99
-
[Sim99] N. Simányi. Ergodicity of hard spheres in a box. Ergod. Th. & Dynam. Sys. 19 (1999), 741-766.
-
(1999)
Ergod. Th. & Dynam. Sys.
, vol.19
, pp. 741-766
-
-
Simányi, N.1
-
19
-
-
21844504054
-
The K-property of 4-D billiards with non-orthogonal cylindric scatterers
-
SSz94
-
[SSz94] N. Simányi and D. Szász. The K-property of 4-D billiards with non-orthogonal cylindric scatterers. J. Stat. Phys. 76(1/2) (1994), 587-604.
-
(1994)
J. Stat. Phys.
, vol.76
, Issue.1-2
, pp. 587-604
-
-
Simányi, N.1
Szász, D.2
-
20
-
-
0033241652
-
Hard ball systems are completely hyperbolic
-
SSz99
-
[SSz99] N. Simányi and D. Szász. Hard ball systems are completely hyperbolic. Ann. Math. 149 (1999), 35-96.
-
(1999)
Ann. Math.
, vol.149
, pp. 35-96
-
-
Simányi, N.1
Szász, D.2
-
21
-
-
0034421404
-
Non-integrability of cylindric billiards and transitive lie group actions
-
SSz00
-
[SSz00] N. Simányi and D. Szász. Non-integrability of cylindric billiards and transitive lie group actions, Ergod. Th. & Dynam. Sys. 20 (2000), 593-610.
-
(2000)
Ergod. Th. & Dynam. Sys.
, vol.20
, pp. 593-610
-
-
Simányi, N.1
Szász, D.2
-
22
-
-
0001200214
-
On the foundation of the ergodic hypothesis for a dynamical system of statistical mechanics
-
Sin63
-
[Sin63] Ya.G. Sinai. On the foundation of the ergodic hypothesis for a dynamical system of statistical mechanics. Sov. Math. Dokl. 4 (1963), 1818-1822.
-
(1963)
Sov. Math. Dokl.
, vol.4
, pp. 1818-1822
-
-
Sinai, Ya.G.1
-
23
-
-
84927896522
-
Dynamical systems with elastic reflections
-
Sin70
-
[Sin70] Ya.G. Sinai. Dynamical systems with elastic reflections. Russian Math. Surveys 25(2) (1970), 137-189.
-
(1970)
Russian Math. Surveys
, vol.25
, Issue.2
, pp. 137-189
-
-
Sinai, Ya.G.1
-
24
-
-
84956132011
-
Ergodic properties of certain systems of 2-D discs and 3-D balls
-
SCh
-
[SCh] Ya.G. Sinai and N.I. Chernov. Ergodic properties of certain systems of 2-D discs and 3-D balls. Russian Math. Surveys 42(3) (1987), 181-207.
-
(1987)
Russian Math. Surveys
, vol.42
, Issue.3
, pp. 181-207
-
-
Sinai, Ya.G.1
Chernov, N.I.2
-
25
-
-
0002298909
-
Ergodicity of classical billiard balls
-
Sz93
-
[Sz93] D. Szász. Ergodicity of classical billiard balls. Physica A 194 (1993), 86-92.
-
(1993)
Physica A
, vol.194
, pp. 86-92
-
-
Szász, D.1
-
26
-
-
21344475213
-
The K-property of 'orthogonal' cylindric billiards
-
Sz94
-
[Sz94] D. Szász. The K-property of 'orthogonal' cylindric billiards. Commun. Math. Phys. 160 (1994), 581-597.
-
(1994)
Commun. Math. Phys.
, vol.160
, pp. 581-597
-
-
Szász, D.1
-
27
-
-
0002313847
-
On systems of particles with finite range and/or repulsive interactions
-
Va
-
[Va] L.N. Vaserstein. On systems of particles with finite range and/or repulsive interactions. Commun. Math. Phys. 69 (1979), 31-56.
-
(1979)
Commun. Math. Phys.
, vol.69
, pp. 31-56
-
-
Vaserstein, L.N.1
-
28
-
-
0000176923
-
Invariant families of cones and Lyapunov exponents
-
Wo85
-
[Wo85] M. Wojtkowski. Invariant families of cones and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 5 (1985), 145-161.
-
(1985)
Ergod. Th. & Dynam. Sys.
, vol.5
, pp. 145-161
-
-
Wojtkowski, M.1
-
29
-
-
0000928980
-
Principles for the design of billiards with nonvanishing Lyapunov exponents
-
Wo86
-
[Wo86] M. Wojtkowski. Principles for the design of billiards with nonvanishing Lyapunov exponents. Commun. Math. Phys. 105 (1986), 391-414.
-
(1986)
Commun. Math. Phys.
, vol.105
, pp. 391-414
-
-
Wojtkowski, M.1
|