메뉴 건너뛰기




Volumn 5, Issue 2, 2004, Pages 203-233

Proof of the ergodic hypothesis for typical hard ball systems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 2442538136     PISSN: 14240637     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00023-004-0166-8     Document Type: Article
Times cited : (32)

References (37)
  • 1
    • 0036435079 scopus 로고    scopus 로고
    • Multidimensional semidispersing billiards: Singularities and the fundamental theorem
    • [B-Ch-Sz-T(2002)] P. Bálint, N. Chernov, D. Szász, I.P. Tóth, Multidimensional semidispersing billiards: singularities and the fundamental theorem, Ann. Henri Poincaré 3, No. 3, 451-482 (2002).
    • (2002) Ann. Henri Poincaré , vol.3 , Issue.3 , pp. 451-482
    • Bálint, P.1    Chernov, N.2    Szász, D.3    Tóth, I.P.4
  • 2
    • 0032359972 scopus 로고    scopus 로고
    • Uniform estimates on the number of collisions in semi-dispersing billiards
    • [B-F-K(1998)] D. Burago, S. Ferleger, A. Kononenko, Uniform estimates on the number of collisions in semi-dispersing billiards, Annals of Mathematics 147, 695-708 (1998).
    • (1998) Annals of Mathematics , vol.147 , pp. 695-708
    • Burago, D.1    Ferleger, S.2    Kononenko, A.3
  • 4
    • 0039558773 scopus 로고
    • The fundamental theorem of the theory of scattering billiards
    • [B-S(1973)] L.A. Bunimovich, Ya.G. Sinai, The fundamental theorem of the theory of scattering billiards, Math. USSR-Sb. 19, 407-423 (1973).
    • (1973) Math. USSR-Sb. , vol.19 , pp. 407-423
    • Bunimovich, L.A.1    Sinai, Ya.G.2
  • 5
    • 0030541582 scopus 로고    scopus 로고
    • Nonuniformly hyperbolic K-systems are Bernoulli
    • [C-H(1996)] N.I. Chernov, C. Haskell, Nonuniformly hyperbolic K-systems are Bernoulli, Ergod. Th. & Dynam. Sys. 16, 19-44 (1996).
    • (1996) Ergod. Th. & Dynam. Sys. , vol.16 , pp. 19-44
    • Chernov, N.I.1    Haskell, C.2
  • 7
    • 0000398259 scopus 로고
    • On systems of locally interacting and repelling particles moving in space
    • [G(1981)] G. Galperin, On systems of locally interacting and repelling particles moving in space, Trudy MMO 43, 142-196 (1981).
    • (1981) Trudy MMO , vol.43 , pp. 142-196
    • Galperin, G.1
  • 9
    • 0003280184 scopus 로고
    • Invariant manifolds, entropy and billiards; Smooth maps with singularities
    • Springer
    • [K-S(1986)] A. Katok, J.-M. Strelcyn, Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Mathematics 1222, Springer (1986).
    • (1986) Lecture Notes in Mathematics , vol.1222
    • Katok, A.1    Strelcyn, J.-M.2
  • 11
    • 0000593586 scopus 로고
    • Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers in the 3-D torus
    • [K-S-Sz(1989)] A. Krámli, N. Simányi, D. Szász, Ergodic Properties of Semi-Dispersing Billiards I. Two Cylindric Scatterers in the 3-D Torus, Nonlinearity 2, 311-326 (1989).
    • (1989) Nonlinearity , vol.2 , pp. 311-326
    • Krámli, A.1    Simányi, N.2    Szász, D.3
  • 12
    • 0000059523 scopus 로고
    • A "transversal" fundamental theorem for semi-dispersing billiards
    • [K-S-Sz(1990)] A. Krámli, N. Simányi, D. Szász, A "Transversal" Fundamental Theorem for Semi-Dispersing Billiards, Commun. Math. Phys. 129, 535-560 (1990).
    • (1990) Commun. Math. Phys. , vol.129 , pp. 535-560
    • Krámli, A.1    Simányi, N.2    Szász, D.3
  • 14
    • 0001027451 scopus 로고
    • The K-property of four billiard balls
    • [K-S-Sz(1992)] A. Krámli, N. Simányi, D. Szász, The K-Property of Four Billiard Balls, Commun. Math. Phys. 144, 107-148 (1992).
    • (1992) Commun. Math. Phys. , vol.144 , pp. 107-148
    • Krámli, A.1    Simányi, N.2    Szász, D.3
  • 15
    • 0001043657 scopus 로고
    • Ergodicity in Hamiltonian systems
    • arXiv:math.DS/9210229
    • [L-W(1995)] C. Liverani, M. Wojtkowski, Ergodicity in Hamiltonian systems, Dynamics Reported 4, 130-202 (1995), arXiv:math.DS/9210229.
    • (1995) Dynamics Reported , vol.4 , pp. 130-202
    • Liverani, C.1    Wojtkowski, M.2
  • 17
    • 0032399806 scopus 로고    scopus 로고
    • On the Bernoulli nature of systems with some hyperbolic structure
    • [O-W(1998)] D. Ornstein, B. Weiss, On the Bernoulli Nature of Systems with Some Hyperbolic Structure, Ergod. Th. & Dynam. Sys. 18, 441-456 (1998).
    • (1998) Ergod. Th. & Dynam. Sys. , vol.18 , pp. 441-456
    • Ornstein, D.1    Weiss, B.2
  • 18
    • 84961291543 scopus 로고
    • Characteristic exponents and smooth ergodic theory
    • [P(1977)] Ya. Pesin, Characteristic Exponents and Smooth Ergodic Theory, Russian Math. surveys 32, 55-114 (1977).
    • (1977) Russian Math. Surveys , vol.32 , pp. 55-114
    • Pesin, Ya.1
  • 19
    • 51249180616 scopus 로고
    • Classifying the isometric extensions of a Bernoulli shift
    • [R(1978)] D.J. Rudolph, Classifying the isometric extensions of a Bernoulli shift, J. d'Anal. Math. 34, 36-50 (1978).
    • (1978) J. d'Anal. Math. , vol.34 , pp. 36-50
    • Rudolph, D.J.1
  • 20
    • 0000616278 scopus 로고
    • The K-property of N billiard balls I
    • [Sim(1992)-I] N. Simányi, The K-property of N billiard balls I, Invent. Math. 108, 521-548 (1992).
    • (1992) Invent. Math. , vol.108 , pp. 521-548
    • Simányi, N.1
  • 21
    • 0000944602 scopus 로고
    • The K-property of N billiard balls II
    • [Sim(1992)-II] N. Simányi, The K-property of N billiard balls II, Invent. Math. 110, 151-172 (1992).
    • (1992) Invent. Math. , vol.110 , pp. 151-172
    • Simányi, N.1
  • 22
    • 18744435593 scopus 로고    scopus 로고
    • Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems
    • [Sim(2003)] N. Simányi, Proof of the Boltzmann-Sinai Ergodic Hypothesis for Typical Hard Disk Systems, Inventiones Mathematicae 154 No. 1, 123-178 (2003).
    • (2003) Inventiones Mathematicae , vol.154 , Issue.1 , pp. 123-178
    • Simányi, N.1
  • 23
    • 0001200214 scopus 로고
    • On the foundation of the ergodic hypothesis for a dynamical system of statistical mechanics
    • [Sin(1963)] Ya.G. Sinai, On the Foundation of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics, Soviet Math. Dokl. 4, 1818-1822 (1963).
    • (1963) Soviet Math. Dokl. , vol.4 , pp. 1818-1822
    • Sinai, Ya.G.1
  • 24
    • 0040397974 scopus 로고
    • Dynamical systems with countably multiple Lebesgue spectrum II
    • [Sin(1968)] Ya.G. Sinai, Dynamical systems with countably multiple Lebesgue spectrum II, Amer. Math. Soc. Transl. 68 No. 2, 34-38 (1968).
    • (1968) Amer. Math. Soc. Transl. , vol.68 , Issue.2 , pp. 34-38
    • Sinai, Ya.G.1
  • 25
    • 84927896522 scopus 로고
    • Dynamical systems with elastic reflections
    • [Sin(1970)] Ya.G. Sinai, Dynamical Systems with Elastic Reflections, Russian Math. Surveys 25, 2, 137-189 (1970).
    • (1970) Russian Math. Surveys , vol.25 , Issue.2 , pp. 137-189
    • Sinai, Ya.G.1
  • 26
    • 0003828291 scopus 로고
    • Chapman and Hall, London
    • [St(1973)] I. Stewart, Galois Theory, Chapman and Hall, London (1973).
    • (1973) Galois Theory
    • Stewart, I.1
  • 27
    • 84956132011 scopus 로고
    • Ergodic properties of certain systems of 2-D discs and 3-D balls
    • [S-Ch(1987)] Ya.G. Sinai, N.I. Chernov, Ergodic properties of certain systems of 2-D discs and 3-D balls, Russian Math. Surveys 42 No. 3, 181-207 (1987).
    • (1987) Russian Math. Surveys , vol.42 , Issue.3 , pp. 181-207
    • Sinai, Ya.G.1    Chernov, N.I.2
  • 28
    • 21844510859 scopus 로고
    • The K-property of Hamiltonian systems with restricted hard ball interactions
    • [S-Sz(1995)] N. Simányi, D. Szász, The K-property of Hamiltonian systems with restricted hard ball interactions, Mathematical Research Letters 2 No. 6, 751-770 (1995).
    • (1995) Mathematical Research Letters , vol.2 , Issue.6 , pp. 751-770
    • Simányi, N.1    Szász, D.2
  • 29
    • 0033241652 scopus 로고    scopus 로고
    • Hard ball systems are completely hyperbolic
    • [S-Sz(1999)] N. Simányi, D. Szász, Hard ball systems are completely hyperbolic, Annals of Mathematics 149, 35-96 (1999).
    • (1999) Annals of Mathematics , vol.149 , pp. 35-96
    • Simányi, N.1    Szász, D.2
  • 30
    • 0034421404 scopus 로고    scopus 로고
    • Non-integrability of cylindric billiards and transitive lie group actions
    • [S-Sz(2000)] N. Simányi, D. Szász, Non-integrability of Cylindric Billiards and Transitive Lie Group Actions, Ergod. Th. & Dynam. Sys. 20, 593-610 (2000).
    • (2000) Ergod. Th. & Dynam. Sys. , vol.20 , pp. 593-610
    • Simányi, N.1    Szász, D.2
  • 31
    • 84974381151 scopus 로고
    • Two-particle billiard system with arbitrary mass ratio
    • [S-W(1989)] N. Simányi, M. Wojtkowski, Two-particle billiard system with arbitrary mass ratio, Ergod. Th. & Dynam. Sys. 9, 165-171 (1989).
    • (1989) Ergod. Th. & Dynam. Sys. , vol.9 , pp. 165-171
    • Simányi, N.1    Wojtkowski, M.2
  • 32
    • 21344475213 scopus 로고
    • The K-property of 'orthogonal' cylindric billiards
    • [Sz(1994)] D. Szász, The K-property of 'Orthogonal' Cylindric Billiards, Commun. Math. Phys. 160, 581-597 (1994).
    • (1994) Commun. Math. Phys. , vol.160 , pp. 581-597
    • Szász, D.1
  • 33
    • 1542574947 scopus 로고    scopus 로고
    • Boltzmann's ergodic hypothesis, a conjecture for centuries
    • [Sz(1996)] D. Szász, Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries, Studia Sci. Math. Hung 31, 299-322 (1996).
    • (1996) Studia Sci. Math. Hung , vol.31 , pp. 299-322
    • Szász, D.1
  • 34
    • 0002313847 scopus 로고
    • On systems of particles with finite range and/or repulsive interactions
    • [V(1979)] L.N. Vaserstein, On Systems of Particles with Finite Range and/or Repulsive Interactions, Commun. Math. Phys. 69, 31-56 (1979).
    • (1979) Commun. Math. Phys. , vol.69 , pp. 31-56
    • Vaserstein, L.N.1
  • 35
  • 36
    • 84974509231 scopus 로고
    • Measure theoretic entropy of the system of hard spheres
    • [W(1988)] M. Wojtkowski, Measure theoretic entropy of the system of hard spheres, Ergod. Th. & Dynam. Sys. 8, 133-153 (1988).
    • (1988) Ergod. Th. & Dynam. Sys. , vol.8 , pp. 133-153
    • Wojtkowski, M.1
  • 37
    • 0001676415 scopus 로고
    • Linearly stable orbits in 3-dimensional billiards
    • [W(1990)] M. Wojtkowski, Linearly stable orbits in 3-dimensional billiards, Commun. Math. Phys. 129 No. 2, 319-327 (1990).
    • (1990) Commun. Math. Phys. , vol.129 , Issue.2 , pp. 319-327
    • Wojtkowski, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.