-
1
-
-
0036435079
-
Multidimensional semidispersing billiards: Singularities and the fundamental theorem
-
[B-Ch-Sz-T(2002)] P. Bálint, N. Chernov, D. Szász, I.P. Tóth, Multidimensional semidispersing billiards: singularities and the fundamental theorem, Ann. Henri Poincaré 3, No. 3, 451-482 (2002).
-
(2002)
Ann. Henri Poincaré
, vol.3
, Issue.3
, pp. 451-482
-
-
Bálint, P.1
Chernov, N.2
Szász, D.3
Tóth, I.P.4
-
2
-
-
0032359972
-
Uniform estimates on the number of collisions in semi-dispersing billiards
-
[B-F-K(1998)] D. Burago, S. Ferleger, A. Kononenko, Uniform estimates on the number of collisions in semi-dispersing billiards, Annals of Mathematics 147, 695-708 (1998).
-
(1998)
Annals of Mathematics
, vol.147
, pp. 695-708
-
-
Burago, D.1
Ferleger, S.2
Kononenko, A.3
-
3
-
-
0039423777
-
Special systems of hard balls that are ergodic
-
[B-L-P-S(1992)] L. Bunimovich, C. Liverani, A. Pellegrinotti, Yu. Sukhov, Special Systems of Hard Balls that Are Ergodic, Commun. Math. Phys. 146, 357-396 (1992).
-
(1992)
Commun. Math. Phys.
, vol.146
, pp. 357-396
-
-
Bunimovich, L.1
Liverani, C.2
Pellegrinotti, A.3
Sukhov, Yu.4
-
4
-
-
0039558773
-
The fundamental theorem of the theory of scattering billiards
-
[B-S(1973)] L.A. Bunimovich, Ya.G. Sinai, The fundamental theorem of the theory of scattering billiards, Math. USSR-Sb. 19, 407-423 (1973).
-
(1973)
Math. USSR-Sb.
, vol.19
, pp. 407-423
-
-
Bunimovich, L.A.1
Sinai, Ya.G.2
-
5
-
-
0030541582
-
Nonuniformly hyperbolic K-systems are Bernoulli
-
[C-H(1996)] N.I. Chernov, C. Haskell, Nonuniformly hyperbolic K-systems are Bernoulli, Ergod. Th. & Dynam. Sys. 16, 19-44 (1996).
-
(1996)
Ergod. Th. & Dynam. Sys.
, vol.16
, pp. 19-44
-
-
Chernov, N.I.1
Haskell, C.2
-
7
-
-
0000398259
-
On systems of locally interacting and repelling particles moving in space
-
[G(1981)] G. Galperin, On systems of locally interacting and repelling particles moving in space, Trudy MMO 43, 142-196 (1981).
-
(1981)
Trudy MMO
, vol.43
, pp. 142-196
-
-
Galperin, G.1
-
9
-
-
0003280184
-
Invariant manifolds, entropy and billiards; Smooth maps with singularities
-
Springer
-
[K-S(1986)] A. Katok, J.-M. Strelcyn, Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Mathematics 1222, Springer (1986).
-
(1986)
Lecture Notes in Mathematics
, vol.1222
-
-
Katok, A.1
Strelcyn, J.-M.2
-
11
-
-
0000593586
-
Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers in the 3-D torus
-
[K-S-Sz(1989)] A. Krámli, N. Simányi, D. Szász, Ergodic Properties of Semi-Dispersing Billiards I. Two Cylindric Scatterers in the 3-D Torus, Nonlinearity 2, 311-326 (1989).
-
(1989)
Nonlinearity
, vol.2
, pp. 311-326
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
12
-
-
0000059523
-
A "transversal" fundamental theorem for semi-dispersing billiards
-
[K-S-Sz(1990)] A. Krámli, N. Simányi, D. Szász, A "Transversal" Fundamental Theorem for Semi-Dispersing Billiards, Commun. Math. Phys. 129, 535-560 (1990).
-
(1990)
Commun. Math. Phys.
, vol.129
, pp. 535-560
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
13
-
-
0002884213
-
The K-property of three billiard balls
-
[K-S-Sz(1991)] A. Krámli, N. Simányi, D. Szász, The K-Property of Three Billiard Balls, Annals of Mathematics 133, 37-72 (1991).
-
(1991)
Annals of Mathematics
, vol.133
, pp. 37-72
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
14
-
-
0001027451
-
The K-property of four billiard balls
-
[K-S-Sz(1992)] A. Krámli, N. Simányi, D. Szász, The K-Property of Four Billiard Balls, Commun. Math. Phys. 144, 107-148 (1992).
-
(1992)
Commun. Math. Phys.
, vol.144
, pp. 107-148
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
15
-
-
0001043657
-
Ergodicity in Hamiltonian systems
-
arXiv:math.DS/9210229
-
[L-W(1995)] C. Liverani, M. Wojtkowski, Ergodicity in Hamiltonian systems, Dynamics Reported 4, 130-202 (1995), arXiv:math.DS/9210229.
-
(1995)
Dynamics Reported
, vol.4
, pp. 130-202
-
-
Liverani, C.1
Wojtkowski, M.2
-
17
-
-
0032399806
-
On the Bernoulli nature of systems with some hyperbolic structure
-
[O-W(1998)] D. Ornstein, B. Weiss, On the Bernoulli Nature of Systems with Some Hyperbolic Structure, Ergod. Th. & Dynam. Sys. 18, 441-456 (1998).
-
(1998)
Ergod. Th. & Dynam. Sys.
, vol.18
, pp. 441-456
-
-
Ornstein, D.1
Weiss, B.2
-
18
-
-
84961291543
-
Characteristic exponents and smooth ergodic theory
-
[P(1977)] Ya. Pesin, Characteristic Exponents and Smooth Ergodic Theory, Russian Math. surveys 32, 55-114 (1977).
-
(1977)
Russian Math. Surveys
, vol.32
, pp. 55-114
-
-
Pesin, Ya.1
-
19
-
-
51249180616
-
Classifying the isometric extensions of a Bernoulli shift
-
[R(1978)] D.J. Rudolph, Classifying the isometric extensions of a Bernoulli shift, J. d'Anal. Math. 34, 36-50 (1978).
-
(1978)
J. d'Anal. Math.
, vol.34
, pp. 36-50
-
-
Rudolph, D.J.1
-
20
-
-
0000616278
-
The K-property of N billiard balls I
-
[Sim(1992)-I] N. Simányi, The K-property of N billiard balls I, Invent. Math. 108, 521-548 (1992).
-
(1992)
Invent. Math.
, vol.108
, pp. 521-548
-
-
Simányi, N.1
-
21
-
-
0000944602
-
The K-property of N billiard balls II
-
[Sim(1992)-II] N. Simányi, The K-property of N billiard balls II, Invent. Math. 110, 151-172 (1992).
-
(1992)
Invent. Math.
, vol.110
, pp. 151-172
-
-
Simányi, N.1
-
22
-
-
18744435593
-
Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems
-
[Sim(2003)] N. Simányi, Proof of the Boltzmann-Sinai Ergodic Hypothesis for Typical Hard Disk Systems, Inventiones Mathematicae 154 No. 1, 123-178 (2003).
-
(2003)
Inventiones Mathematicae
, vol.154
, Issue.1
, pp. 123-178
-
-
Simányi, N.1
-
23
-
-
0001200214
-
On the foundation of the ergodic hypothesis for a dynamical system of statistical mechanics
-
[Sin(1963)] Ya.G. Sinai, On the Foundation of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics, Soviet Math. Dokl. 4, 1818-1822 (1963).
-
(1963)
Soviet Math. Dokl.
, vol.4
, pp. 1818-1822
-
-
Sinai, Ya.G.1
-
24
-
-
0040397974
-
Dynamical systems with countably multiple Lebesgue spectrum II
-
[Sin(1968)] Ya.G. Sinai, Dynamical systems with countably multiple Lebesgue spectrum II, Amer. Math. Soc. Transl. 68 No. 2, 34-38 (1968).
-
(1968)
Amer. Math. Soc. Transl.
, vol.68
, Issue.2
, pp. 34-38
-
-
Sinai, Ya.G.1
-
25
-
-
84927896522
-
Dynamical systems with elastic reflections
-
[Sin(1970)] Ya.G. Sinai, Dynamical Systems with Elastic Reflections, Russian Math. Surveys 25, 2, 137-189 (1970).
-
(1970)
Russian Math. Surveys
, vol.25
, Issue.2
, pp. 137-189
-
-
Sinai, Ya.G.1
-
26
-
-
0003828291
-
-
Chapman and Hall, London
-
[St(1973)] I. Stewart, Galois Theory, Chapman and Hall, London (1973).
-
(1973)
Galois Theory
-
-
Stewart, I.1
-
27
-
-
84956132011
-
Ergodic properties of certain systems of 2-D discs and 3-D balls
-
[S-Ch(1987)] Ya.G. Sinai, N.I. Chernov, Ergodic properties of certain systems of 2-D discs and 3-D balls, Russian Math. Surveys 42 No. 3, 181-207 (1987).
-
(1987)
Russian Math. Surveys
, vol.42
, Issue.3
, pp. 181-207
-
-
Sinai, Ya.G.1
Chernov, N.I.2
-
28
-
-
21844510859
-
The K-property of Hamiltonian systems with restricted hard ball interactions
-
[S-Sz(1995)] N. Simányi, D. Szász, The K-property of Hamiltonian systems with restricted hard ball interactions, Mathematical Research Letters 2 No. 6, 751-770 (1995).
-
(1995)
Mathematical Research Letters
, vol.2
, Issue.6
, pp. 751-770
-
-
Simányi, N.1
Szász, D.2
-
29
-
-
0033241652
-
Hard ball systems are completely hyperbolic
-
[S-Sz(1999)] N. Simányi, D. Szász, Hard ball systems are completely hyperbolic, Annals of Mathematics 149, 35-96 (1999).
-
(1999)
Annals of Mathematics
, vol.149
, pp. 35-96
-
-
Simányi, N.1
Szász, D.2
-
30
-
-
0034421404
-
Non-integrability of cylindric billiards and transitive lie group actions
-
[S-Sz(2000)] N. Simányi, D. Szász, Non-integrability of Cylindric Billiards and Transitive Lie Group Actions, Ergod. Th. & Dynam. Sys. 20, 593-610 (2000).
-
(2000)
Ergod. Th. & Dynam. Sys.
, vol.20
, pp. 593-610
-
-
Simányi, N.1
Szász, D.2
-
31
-
-
84974381151
-
Two-particle billiard system with arbitrary mass ratio
-
[S-W(1989)] N. Simányi, M. Wojtkowski, Two-particle billiard system with arbitrary mass ratio, Ergod. Th. & Dynam. Sys. 9, 165-171 (1989).
-
(1989)
Ergod. Th. & Dynam. Sys.
, vol.9
, pp. 165-171
-
-
Simányi, N.1
Wojtkowski, M.2
-
32
-
-
21344475213
-
The K-property of 'orthogonal' cylindric billiards
-
[Sz(1994)] D. Szász, The K-property of 'Orthogonal' Cylindric Billiards, Commun. Math. Phys. 160, 581-597 (1994).
-
(1994)
Commun. Math. Phys.
, vol.160
, pp. 581-597
-
-
Szász, D.1
-
33
-
-
1542574947
-
Boltzmann's ergodic hypothesis, a conjecture for centuries
-
[Sz(1996)] D. Szász, Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries, Studia Sci. Math. Hung 31, 299-322 (1996).
-
(1996)
Studia Sci. Math. Hung
, vol.31
, pp. 299-322
-
-
Szász, D.1
-
34
-
-
0002313847
-
On systems of particles with finite range and/or repulsive interactions
-
[V(1979)] L.N. Vaserstein, On Systems of Particles with Finite Range and/or Repulsive Interactions, Commun. Math. Phys. 69, 31-56 (1979).
-
(1979)
Commun. Math. Phys.
, vol.69
, pp. 31-56
-
-
Vaserstein, L.N.1
-
35
-
-
0003956960
-
-
Frederick Ungar Publ. Co.
-
[VDW(1970)] B.L. van der Waerden, Algebra I, Frederick Ungar Publ. Co. (1970).
-
(1970)
Algebra I
-
-
Van Der Waerden, B.L.1
-
36
-
-
84974509231
-
Measure theoretic entropy of the system of hard spheres
-
[W(1988)] M. Wojtkowski, Measure theoretic entropy of the system of hard spheres, Ergod. Th. & Dynam. Sys. 8, 133-153 (1988).
-
(1988)
Ergod. Th. & Dynam. Sys.
, vol.8
, pp. 133-153
-
-
Wojtkowski, M.1
-
37
-
-
0001676415
-
Linearly stable orbits in 3-dimensional billiards
-
[W(1990)] M. Wojtkowski, Linearly stable orbits in 3-dimensional billiards, Commun. Math. Phys. 129 No. 2, 319-327 (1990).
-
(1990)
Commun. Math. Phys.
, vol.129
, Issue.2
, pp. 319-327
-
-
Wojtkowski, M.1
|