메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Revisiting batch normalization for practical domain adaptation

Author keywords

[No Author keywords available]

Indexed keywords

NETWORK LAYERS;

EID: 85144243620     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (180)

References (37)
  • 1
    • 84959254588 scopus 로고    scopus 로고
    • Landmarks-based kernelized subspace alignment for unsupervised domain adaptation
    • Rahaf Aljundi, Rémi Emonet, Damien Muselet, and Marc Sebban. Landmarks-based kernelized subspace alignment for unsupervised domain adaptation. In CVPR, 2015.
    • (2015) CVPR
    • Aljundi, R.1    Emonet, R.2    Muselet, D.3    Sebban, M.4
  • 2
    • 84898798212 scopus 로고    scopus 로고
    • Unsupervised domain adaptation by domain invariant projection
    • Mahsa Baktashmotlagh, Mehrtash Harandi, Brian Lovell, and Mathieu Salzmann. Unsupervised domain adaptation by domain invariant projection. In ICCV, pp. 769-776, 2013.
    • (2013) ICCV , pp. 769-776
    • Baktashmotlagh, M.1    Harandi, M.2    Lovell, B.3    Salzmann, M.4
  • 4
    • 85161970767 scopus 로고    scopus 로고
    • Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach
    • Alessandro Bergamo and Lorenzo Torresani. Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. In NIPS, pp. 181-189, 2010.
    • (2010) NIPS , pp. 181-189
    • Bergamo, A.1    Torresani, L.2
  • 8
    • 84904482223 scopus 로고    scopus 로고
    • DeCAF: A deep convolutional activation feature for generic visual recognition
    • Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. DeCAF: A deep convolutional activation feature for generic visual recognition. In ICML, pp. 647-655, 2014.
    • (2014) ICML , pp. 647-655
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3    Hoffman, J.4    Zhang, N.5    Tzeng, E.6    Darrell, T.7
  • 9
    • 0003352252 scopus 로고    scopus 로고
    • The art of computer programming
    • E Knuth Donald. The art of computer programming. Sorting and searching, 3:426-458, 1999.
    • (1999) Sorting and Searching , vol.3 , pp. 426-458
    • Knuth Donald, E.1
  • 10
    • 84898798531 scopus 로고    scopus 로고
    • Unsupervised visual domain adaptation using subspace alignment
    • Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In ICCV, pp. 2960-2967, 2013.
    • (2013) ICCV , pp. 2960-2967
    • Fernando, B.1    Habrard, A.2    Sebban, M.3    Tuytelaars, T.4
  • 11
    • 84969802531 scopus 로고    scopus 로고
    • Unsupervised domain adaptation by backpropagation
    • Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML, pp. 1180-1189, 2015.
    • (2015) ICML , pp. 1180-1189
    • Ganin, Y.1    Lempitsky, V.2
  • 13
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, pp. 2066-2073, 2012.
    • (2012) CVPR , pp. 2066-2073
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 14
    • 84897476317 scopus 로고    scopus 로고
    • Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation
    • Boqing Gong, Kristen Grauman, and Fei Sha. Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In ICML, pp. 222-230, 2013.
    • (2013) ICML , pp. 222-230
    • Gong, B.1    Grauman, K.2    Sha, F.3
  • 15
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for object recognition: An unsupervised approach. In ICCV, pp. 999-1006, 2011.
    • (2011) ICCV , pp. 999-1006
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 17
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 18
    • 84864031047 scopus 로고    scopus 로고
    • Correcting sample selection bias by unlabeled data
    • Jiayuan Huang, Arthur Gretton, Karsten M Borgwardt, Bernhard Schölkopf, and Alex J Smola. Correcting sample selection bias by unlabeled data. In NIPS, pp. 601-608, 2006.
    • (2006) NIPS , pp. 601-608
    • Huang, J.1    Gretton, A.2    Borgwardt, K.M.3    Schölkopf, B.4    Smola, A.J.5
  • 19
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, pp. 448-456, 2015.
    • (2015) ICML , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 21
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pp. 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 22
    • 84969549144 scopus 로고    scopus 로고
    • Learning transferable features with deep adaptation networks
    • Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with deep adaptation networks. In ICML, pp. 97-105, 2015.
    • (2015) ICML , pp. 97-105
    • Long, M.1    Cao, Y.2    Wang, J.3    Jordan, M.4
  • 23
    • 85018871069 scopus 로고    scopus 로고
    • Unsupervised domain adaptation with residual transfer networks
    • Mingsheng Long, Jianmin Wang, and Michael I Jordan. Unsupervised domain adaptation with residual transfer networks. In NIPS, 2016.
    • (2016) NIPS
    • Long, M.1    Wang, J.2    Jordan, M.I.3
  • 27
    • 78149318752 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new domains. In ECCV, pp. 213-226. 2010.
    • (2010) ECCV , pp. 213-226
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 28
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of statistical planning and inference, 90(2):227-244, 2000.
    • (2000) Journal of Statistical Planning and Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 30
    • 84990048974 scopus 로고    scopus 로고
    • Return of frustratingly easy domain adaptation
    • Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. AAAI, 2016.
    • (2016) AAAI
    • Sun, B.1    Feng, J.2    Saenko, K.3
  • 33
    • 80052908300 scopus 로고    scopus 로고
    • Unbiased look at dataset bias
    • Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR, pp. 1521-1528, 2011.
    • (2011) CVPR , pp. 1521-1528
    • Torralba, A.1    Efros, A.A.2
  • 35
    • 84973897613 scopus 로고    scopus 로고
    • Simultaneous deep transfer across domains and tasks
    • Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across domains and tasks. In ICCV, pp. 4068-4076, 2015.
    • (2015) ICCV , pp. 4068-4076
    • Tzeng, E.1    Hoffman, J.2    Darrell, T.3    Saenko, K.4
  • 37
    • 84937508363 scopus 로고    scopus 로고
    • How transferable are features in deep neural networks?
    • Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural networks? In NIPS, pp. 3320-3328, 2014.
    • (2014) NIPS , pp. 3320-3328
    • Yosinski, J.1    Clune, J.2    Bengio, Y.3    Lipson, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.