-
1
-
-
84959254588
-
Landmarks-based kernelized subspace alignment for unsupervised domain adaptation
-
Rahaf Aljundi, Rémi Emonet, Damien Muselet, and Marc Sebban. Landmarks-based kernelized subspace alignment for unsupervised domain adaptation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Aljundi, R.1
Emonet, R.2
Muselet, D.3
Sebban, M.4
-
2
-
-
84898798212
-
Unsupervised domain adaptation by domain invariant projection
-
Mahsa Baktashmotlagh, Mehrtash Harandi, Brian Lovell, and Mathieu Salzmann. Unsupervised domain adaptation by domain invariant projection. In ICCV, pp. 769-776, 2013.
-
(2013)
ICCV
, pp. 769-776
-
-
Baktashmotlagh, M.1
Harandi, M.2
Lovell, B.3
Salzmann, M.4
-
4
-
-
85161970767
-
Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach
-
Alessandro Bergamo and Lorenzo Torresani. Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. In NIPS, pp. 181-189, 2010.
-
(2010)
NIPS
, pp. 181-189
-
-
Bergamo, A.1
Torresani, L.2
-
5
-
-
85018890883
-
Domain separation networks
-
Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan. Domain separation networks. NIPS, 2016.
-
(2016)
NIPS
-
-
Bousmalis, K.1
Trigeorgis, G.2
Silberman, N.3
Krishnan, D.4
Erhan, D.5
-
6
-
-
84990051868
-
-
arXiv preprint
-
Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv preprint arXiv:1606.00915, 2016.
-
(2016)
Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected Crfs
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
8
-
-
84904482223
-
DeCAF: A deep convolutional activation feature for generic visual recognition
-
Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. DeCAF: A deep convolutional activation feature for generic visual recognition. In ICML, pp. 647-655, 2014.
-
(2014)
ICML
, pp. 647-655
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
9
-
-
0003352252
-
The art of computer programming
-
E Knuth Donald. The art of computer programming. Sorting and searching, 3:426-458, 1999.
-
(1999)
Sorting and Searching
, vol.3
, pp. 426-458
-
-
Knuth Donald, E.1
-
10
-
-
84898798531
-
Unsupervised visual domain adaptation using subspace alignment
-
Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In ICCV, pp. 2960-2967, 2013.
-
(2013)
ICCV
, pp. 2960-2967
-
-
Fernando, B.1
Habrard, A.2
Sebban, M.3
Tuytelaars, T.4
-
11
-
-
84969802531
-
Unsupervised domain adaptation by backpropagation
-
Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML, pp. 1180-1189, 2015.
-
(2015)
ICML
, pp. 1180-1189
-
-
Ganin, Y.1
Lempitsky, V.2
-
13
-
-
84866657270
-
Geodesic flow kernel for unsupervised domain adaptation
-
Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, pp. 2066-2073, 2012.
-
(2012)
CVPR
, pp. 2066-2073
-
-
Gong, B.1
Shi, Y.2
Sha, F.3
Grauman, K.4
-
14
-
-
84897476317
-
Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation
-
Boqing Gong, Kristen Grauman, and Fei Sha. Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In ICML, pp. 222-230, 2013.
-
(2013)
ICML
, pp. 222-230
-
-
Gong, B.1
Grauman, K.2
Sha, F.3
-
15
-
-
84863396387
-
Domain adaptation for object recognition: An unsupervised approach
-
Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for object recognition: An unsupervised approach. In ICCV, pp. 999-1006, 2011.
-
(2011)
ICCV
, pp. 999-1006
-
-
Gopalan, R.1
Li, R.2
Chellappa, R.3
-
16
-
-
84859477054
-
A kernel two-sample test
-
Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723-773, 2012.
-
(2012)
The Journal of Machine Learning Research
, vol.13
, Issue.1
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.5
-
17
-
-
84986274465
-
Deep residual learning for image recognition
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. CVPR, 2016.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
Jiayuan Huang, Arthur Gretton, Karsten M Borgwardt, Bernhard Schölkopf, and Alex J Smola. Correcting sample selection bias by unlabeled data. In NIPS, pp. 601-608, 2006.
-
(2006)
NIPS
, pp. 601-608
-
-
Huang, J.1
Gretton, A.2
Borgwardt, K.M.3
Schölkopf, B.4
Smola, A.J.5
-
19
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, pp. 448-456, 2015.
-
(2015)
ICML
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
20
-
-
84867852273
-
Undoing the damage of dataset bias
-
Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A Efros, and Antonio Torralba. Undoing the damage of dataset bias. In ECCV, pp. 158-171. 2012.
-
(2012)
ECCV
, pp. 158-171
-
-
Khosla, A.1
Zhou, T.2
Malisiewicz, T.3
Efros, A.A.4
Torralba, A.5
-
21
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pp. 1097-1105, 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
22
-
-
84969549144
-
Learning transferable features with deep adaptation networks
-
Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with deep adaptation networks. In ICML, pp. 97-105, 2015.
-
(2015)
ICML
, pp. 97-105
-
-
Long, M.1
Cao, Y.2
Wang, J.3
Jordan, M.4
-
23
-
-
85018871069
-
Unsupervised domain adaptation with residual transfer networks
-
Mingsheng Long, Jianmin Wang, and Michael I Jordan. Unsupervised domain adaptation with residual transfer networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Long, M.1
Wang, J.2
Jordan, M.I.3
-
24
-
-
79951681949
-
Domain adaptation via transfer component analysis
-
Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 22(2):199-210, 2011.
-
(2011)
IEEE Transactions on Neural Networks
, vol.22
, Issue.2
, pp. 199-210
-
-
Pan, S.J.1
Tsang, I.W.2
Kwok, J.T.3
Yang, Q.4
-
25
-
-
85032751052
-
Visual domain adaptation: A survey of recent advances
-
Vishal M Patel, Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Visual domain adaptation: A survey of recent advances. IEEE Signal Processing Magazine, 32(3):53-69, 2015.
-
(2015)
IEEE Signal Processing Magazine
, vol.32
, Issue.3
, pp. 53-69
-
-
Patel, V.M.1
Gopalan, R.2
Li, R.3
Chellappa, R.4
-
26
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211-252, 2015.
-
(2015)
International Journal of Computer Vision
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
27
-
-
78149318752
-
Adapting visual category models to new domains
-
Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new domains. In ECCV, pp. 213-226. 2010.
-
(2010)
ECCV
, pp. 213-226
-
-
Saenko, K.1
Kulis, B.2
Fritz, M.3
Darrell, T.4
-
28
-
-
0037527188
-
Improving predictive inference under covariate shift by weighting the log-likelihood function
-
Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of statistical planning and inference, 90(2):227-244, 2000.
-
(2000)
Journal of Statistical Planning and Inference
, vol.90
, Issue.2
, pp. 227-244
-
-
Shimodaira, H.1
-
30
-
-
84990048974
-
Return of frustratingly easy domain adaptation
-
Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. AAAI, 2016.
-
(2016)
AAAI
-
-
Sun, B.1
Feng, J.2
Saenko, K.3
-
31
-
-
84990032289
-
-
arXiv preprint
-
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.
-
(2015)
Rethinking the Inception Architecture for Computer Vision
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
33
-
-
80052908300
-
Unbiased look at dataset bias
-
Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR, pp. 1521-1528, 2011.
-
(2011)
CVPR
, pp. 1521-1528
-
-
Torralba, A.1
Efros, A.A.2
-
34
-
-
84969568676
-
-
arXiv preprint
-
Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.
-
(2014)
Deep Domain Confusion: Maximizing for Domain Invariance
-
-
Tzeng, E.1
Hoffman, J.2
Zhang, N.3
Saenko, K.4
Darrell, T.5
-
35
-
-
84973897613
-
Simultaneous deep transfer across domains and tasks
-
Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across domains and tasks. In ICCV, pp. 4068-4076, 2015.
-
(2015)
ICCV
, pp. 4068-4076
-
-
Tzeng, E.1
Hoffman, J.2
Darrell, T.3
Saenko, K.4
-
37
-
-
84937508363
-
How transferable are features in deep neural networks?
-
Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural networks? In NIPS, pp. 3320-3328, 2014.
-
(2014)
NIPS
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
|