-
1
-
-
33747610735
-
Training set size requirements for the classification of a specific class
-
[CrossRef]
-
Foody, G.M.; Mathur, A.; Sanchez-Hernandez, C.; Boyd, D.S. Training set size requirements for the classification of a specific class. Remote Sens. Environ. 2006, 1, 1–14. [CrossRef]
-
(2006)
Remote Sens. Environ
, vol.1
, pp. 1-14
-
-
Foody, G.M.1
Mathur, A.2
Sanchez-Hernandez, C.3
Boyd, D.S.4
-
2
-
-
85048716904
-
Implementation of machine-learning classification in remote sensing: An applied review
-
[CrossRef]
-
Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef]
-
(2018)
Int. J. Remote Sens
, vol.39
, pp. 2784-2817
-
-
Maxwell, A.E.1
Warner, T.A.2
Fang, F.3
-
3
-
-
85022191954
-
Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images
-
[CrossRef]
-
Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 50, 144–154. [CrossRef]
-
(2017)
Eur. J. Remote Sens
, vol.50
, pp. 144-154
-
-
Raczko, E.1
Zagajewski, B.2
-
4
-
-
80051762829
-
Supervised Classification of Agricultural Land Cover Using a Modified k¬-NN Technique (MNN) and Landsat Remote Sensing Imagery
-
[CrossRef]
-
Samaniego, L.; Schulz, K. Supervised Classification of Agricultural Land Cover Using a Modified k¬-NN Technique (MNN) and Landsat Remote Sensing Imagery. Remote Sens. 2009, 1, 875–895. [CrossRef]
-
(2009)
Remote Sens
, vol.1
, pp. 875-895
-
-
Samaniego, L.1
Schulz, K.2
-
5
-
-
0029473455
-
The effect of training set size and composition on artificial neural network classification
-
[CrossRef]
-
Foody, G.M.; McCulloch, M.B.; Yates, W.B. The effect of training set size and composition on artificial neural network classification. Int. J. Remote Sens. 1995, 16, 1707–1723. [CrossRef]
-
(1995)
Int. J. Remote Sens
, vol.16
, pp. 1707-1723
-
-
Foody, G.M.1
McCulloch, M.B.2
Yates, W.B.3
-
6
-
-
84937918615
-
On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping
-
[CrossRef]
-
Millard, K.; Richardson, M. On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping. Remote Sens. 2015, 7, 8489–8515. [CrossRef]
-
(2015)
Remote Sens
, vol.7
, pp. 8489-8515
-
-
Millard, K.1
Richardson, M.2
-
7
-
-
85030761801
-
Effect of classifier selection, reference sample size, reference class distribution and scene heterogene-ity in per-pixel classification accuracy using 26 Landsat sites
-
[CrossRef]
-
Heydari, S.S.; Mountrakis, G. Effect of classifier selection, reference sample size, reference class distribution and scene heterogene-ity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens. Environ. 2017, 204. [CrossRef]
-
(2017)
Remote Sens. Environ
, vol.204
-
-
Heydari, S.S.1
Mountrakis, G.2
-
8
-
-
85039732569
-
Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery
-
[CrossRef]
-
Noi, P.T.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [CrossRef]
-
(2018)
Sensors
, vol.18
, pp. 18
-
-
Noi, P.T.1
Kappas, M.2
-
9
-
-
84968712690
-
Effect of feature dimensionality on object-based land cover classification: A comparison of three classifiers
-
Myburgh, G.; Van Niekerk, A. Effect of feature dimensionality on object-based land cover classification: A comparison of three classifiers. S. Afr. J. Geomat. 2013, 2, 13–27.
-
(2013)
S. Afr. J. Geomat
, vol.2
, pp. 13-27
-
-
Myburgh, G.1
Van Niekerk, A.2
-
10
-
-
84920812571
-
Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery
-
[CrossRef]
-
Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery. Remote Sens. 2015, 7, 153–168. [CrossRef]
-
(2015)
Remote Sens
, vol.7
, pp. 153-168
-
-
Qian, Y.1
Zhou, W.2
Yan, J.3
Li, W.4
Han, L.5
-
11
-
-
85048594348
-
Effects of Training Samples and Classifiers on Classification of Landsat-8 Imagery
-
[CrossRef]
-
Shang, M.; Wang, S.; Zhou, Y.; Du, C. Effects of Training Samples and Classifiers on Classification of Landsat-8 Imagery. J. Indian Soc. Remote Sens. 2018, 46, 1333–1340. [CrossRef]
-
(2018)
J. Indian Soc. Remote Sens
, vol.46
, pp. 1333-1340
-
-
Shang, M.1
Wang, S.2
Zhou, Y.3
Du, C.4
-
12
-
-
84961834117
-
Random forest in remote sensing: A review of applications and future directions
-
[CrossRef]
-
Belgiu, M.; Drăgut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogram. Remote Sens. 2016, 114, 24–31. [CrossRef]
-
(2016)
ISPRS J. Photogram. Remote Sens
, vol.114
, pp. 24-31
-
-
Belgiu, M.1
Drăgut, L.2
-
13
-
-
84942543920
-
The AmericaView Classification Methods Accuracy Project: A Rigorous Approach for Model Selection
-
[CrossRef]
-
Lawrence, R.L.; Moran, C.J. The AmericaView Classification Methods Accuracy Project: A Rigorous Approach for Model Selection. Remote Sens. Environ. 2015, 170, 115–120. [CrossRef]
-
(2015)
Remote Sens. Environ
, vol.170
, pp. 115-120
-
-
Lawrence, R.L.1
Moran, C.J.2
-
14
-
-
70349137738
-
Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization
-
[CrossRef]
-
Neves, J.C.; Vieira, A. Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization. Euro. Account. Rev. 2011, 15, 253–271. [CrossRef]
-
(2011)
Euro. Account. Rev
, vol.15
, pp. 253-271
-
-
Neves, J.C.1
Vieira, A.2
-
15
-
-
34247467066
-
Intelligent Switching control of pneumatic muscle robot arm using learning vector quantization network
-
[CrossRef]
-
Ahn, K.K.; Nguyen, H.T.C. Intelligent Switching control of pneumatic muscle robot arm using learning vector quantization network. Mechatronics 2007, 17, 225–262. [CrossRef]
-
(2007)
Mechatronics
, vol.17
, pp. 225-262
-
-
Ahn, K.K.1
Nguyen, H.T.C.2
-
16
-
-
33846470008
-
Magnetic resonance imaging segmentation techniques using batch-type learning vector quantization
-
[CrossRef]
-
Yang, M.; Lin, K.; Liu, H.; Lirng, J. Magnetic resonance imaging segmentation techniques using batch-type learning vector quantization. Magn. Reson. Imaging 2007, 25, 265–277. [CrossRef]
-
(2007)
Magn. Reson. Imaging
, vol.25
, pp. 265-277
-
-
Yang, M.1
Lin, K.2
Liu, H.3
Lirng, J.4
-
17
-
-
85021219961
-
A review of supervised object-based land-cover image classification
-
[CrossRef]
-
Ma, L.; Li, M.; Ma, X.; Cheng, K.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogram. Remote Sens. 2017, 130, 277–293. [CrossRef]
-
(2017)
ISPRS J. Photogram. Remote Sens
, vol.130
, pp. 277-293
-
-
Ma, L.1
Li, M.2
Ma, X.3
Cheng, K.4
Du, P.5
Liu, Y.6
-
18
-
-
73249139477
-
Object based image analysis for remote sensing
-
[CrossRef]
-
Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogram. Remote Sens. 2010, 65, 2–16. [CrossRef]
-
(2010)
ISPRS J. Photogram. Remote Sens
, vol.65
, pp. 2-16
-
-
Blaschke, T.1
-
19
-
-
85035009928
-
Land cover classification and feature extraction from National Agriculture Imagery Program (NAIP) Orthoimagery: A review
-
[CrossRef]
-
Maxwell, A.E.; Warner, T.A.; Vanderbilt, B.C.; Ramezan, C.A. Land cover classification and feature extraction from National Agriculture Imagery Program (NAIP) Orthoimagery: A review. Photogram. Eng. Remote Sens. 2017, 83, 737–747. [CrossRef]
-
(2017)
Photogram. Eng. Remote Sens
, vol.83
, pp. 737-747
-
-
Maxwell, A.E.1
Warner, T.A.2
Vanderbilt, B.C.3
Ramezan, C.A.4
-
21
-
-
84919398915
-
Urban land cover classification using airborne LiDAR data: A review
-
[CrossRef]
-
Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 2015, 158, 295–310. [CrossRef]
-
(2015)
Remote Sens. Environ
, vol.158
, pp. 295-310
-
-
Yan, W.Y.1
Shaker, A.2
El-Ashmawy, N.3
-
22
-
-
84965115751
-
-
ESRI. Environmental Systems Research Institute: Redlands, CA, USA
-
ESRI. ArcGIS Desktop: Release 10.5.1; Environmental Systems Research Institute: Redlands, CA, USA, 2017.
-
(2017)
ArcGIS Desktop: Release 10.5.1
-
-
-
23
-
-
84923357893
-
Assessing machine-learning algorithms and image-and lidar-derived variables for GEOBIA classification of mining and mine reclamation
-
[CrossRef]
-
Maxwell, A.E.; Warner, T.A.; Strager, M.P.; Conley, J.F.; Sharp, A.L. Assessing machine-learning algorithms and image-and lidar-derived variables for GEOBIA classification of mining and mine reclamation. Int. J. Remote Sens. 2015, 36, 954–978. [CrossRef]
-
(2015)
Int. J. Remote Sens
, vol.36
, pp. 954-978
-
-
Maxwell, A.E.1
Warner, T.A.2
Strager, M.P.3
Conley, J.F.4
Sharp, A.L.5
-
24
-
-
77952675785
-
Airborne and Spaceborne Laser Profilers and Scanners
-
Shan, J., Toth, C.K., Eds.; CRC Press: Boca Raton, FL, USA
-
Petrie, G.; Toth, C.K. Airborne and Spaceborne Laser Profilers and Scanners. In Topographic Laser Ranging and Scanning: Principles and Processing; Shan, J., Toth, C.K., Eds.; CRC Press: Boca Raton, FL, USA, 2008.
-
(2008)
Topographic Laser Ranging and Scanning: Principles and Processing
-
-
Petrie, G.1
Toth, C.K.2
-
25
-
-
85060700515
-
-
United States Department of Agriculture Aerial Photography Field Office. (accessed on 28 December 2018)
-
Lear, R.F. NAIP Quality Samples. United States Department of Agriculture Aerial Photography Field Office. Available online: https://www.fsa.usda.gov/Internet/FSA_File/naip_quality_samples_pdf.pdf (accessed on 28 December 2018).
-
NAIP Quality Samples
-
-
Lear, R.F.1
-
26
-
-
0001812168
-
-
Multiresolution Segmentation—An Optimization Approach for High Quality Multi-Scale Image Segmentation, ; Strobl, T., Blaschke, G.G., Eds.; Wichmann Verlag: Karlsruhe, Germany
-
Baatz, M.; Schäpe, A. Multiresolution Segmentation—An Optimization Approach for High Quality Multi-Scale Image Segmentation; Angewandte Geographische Informations-Verarbeitung XII; Strobl, T., Blaschke, G.G., Eds.; Wichmann Verlag: Karlsruhe, Germany, 2000; pp. 12–23.
-
(2000)
Angewandte Geographische Informations-Verarbeitung XII
, pp. 12-23
-
-
Baatz, M.1
Schäpe, A.2
-
27
-
-
84891136260
-
Automated parameterization for multi-scale image segmentation on multiple layers
-
[CrossRef]
-
Drăgut, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterization for multi-scale image segmentation on multiple layers. ISPRS J. Photogram. Remote Sens. 2014, 88, 119–127. [CrossRef]
-
(2014)
ISPRS J. Photogram. Remote Sens
, vol.88
, pp. 119-127
-
-
Drăgut, L.1
Csillik, O.2
Eisank, C.3
Tiede, D.4
-
28
-
-
79957608758
-
Multi-scale texture segmentation and classification of salt marsh using digital aerial imagery with very high spatial resolution
-
[CrossRef]
-
Kim, M.; Warner, T.A.; Madden, M.; Atkinson, D. Multi-scale texture segmentation and classification of salt marsh using digital aerial imagery with very high spatial resolution. Int. J. Remote Sens. 2011, 32, 2825–2850. [CrossRef]
-
(2011)
Int. J. Remote Sens
, vol.32
, pp. 2825-2850
-
-
Kim, M.1
Warner, T.A.2
Madden, M.3
Atkinson, D.4
-
29
-
-
84879590467
-
Advances in Geographic Object-Based Image Analysis with Ontologies: A review of main contributions and limitations from a remote sensing perspective
-
[CrossRef]
-
Arvor, D.; Durieux, L.; Andrés, S.; Laporte, M. Advances in Geographic Object-Based Image Analysis with Ontologies: A review of main contributions and limitations from a remote sensing perspective. ISPRS J. Photogram. Remote Sens. 2013, 82, 125–137. [CrossRef]
-
(2013)
ISPRS J. Photogram. Remote Sens
, vol.82
, pp. 125-137
-
-
Arvor, D.1
Durieux, L.2
Andrés, S.3
Laporte, M.4
-
30
-
-
28544434203
-
An automated object-based approach for the multiscale image segmentation of forest scenes
-
[CrossRef]
-
Hay, G.J.; Castilla, G.; Wulder, M.A.; Ruiz, J.R. An automated object-based approach for the multiscale image segmentation of forest scenes. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 339–359. [CrossRef]
-
(2005)
Int. J. Appl. Earth Obs. Geoinf
, vol.7
, pp. 339-359
-
-
Hay, G.J.1
Castilla, G.2
Wulder, M.A.3
Ruiz, J.R.4
-
31
-
-
68649112896
-
Forest type mapping using object-specific texture measures from multispectral IKONOS imagery: Segmentation quality and image classification issues
-
[CrossRef]
-
Kim, M.; Madden, M.; Warner, T.A. Forest type mapping using object-specific texture measures from multispectral IKONOS imagery: Segmentation quality and image classification issues. Photogram. Eng. Remote Sens. 2009, 75, 819–829. [CrossRef]
-
(2009)
Photogram. Eng. Remote Sens
, vol.75
, pp. 819-829
-
-
Kim, M.1
Madden, M.2
Warner, T.A.3
-
32
-
-
77951189897
-
ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data
-
[CrossRef]
-
Drăguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geo-Inf. 2010, 24, 859–871. [CrossRef]
-
(2010)
Int. J. Geo-Inf
, vol.24
, pp. 859-871
-
-
Drăguţ, L.1
Tiede, D.2
Levick, S.R.3
-
33
-
-
84868123768
-
Object-Based Classification of Urban Areas Using VHR Imagery and Height Points Ancillary Data
-
[CrossRef]
-
Salehi, B.; Zhang, Y.; Zhong, M.; Dey, V. Object-Based Classification of Urban Areas Using VHR Imagery and Height Points Ancillary Data. Remote Sens. 2012, 4, 2256–2276. [CrossRef]
-
(2012)
Remote Sens
, vol.4
, pp. 2256-2276
-
-
Salehi, B.1
Zhang, Y.2
Zhong, M.3
Dey, V.4
-
34
-
-
85060681925
-
Evaluation of Sampling and Cross-Validation Tuning Strategies for Regional-Scale Machine Learning Classification
-
[CrossRef]
-
Ramezan, C.A.; Warner, T.A.; Maxwell, A.E. Evaluation of Sampling and Cross-Validation Tuning Strategies for Regional-Scale Machine Learning Classification. Remote Sens. 2019, 11, 185. [CrossRef]
-
(2019)
Remote Sens
, vol.11
, pp. 185
-
-
Ramezan, C.A.1
Warner, T.A.2
Maxwell, A.E.3
-
35
-
-
84860837265
-
Accuracy assessment
-
Warner, T.A., Nellis, M.D., Foody, G.M., Eds.; Sage Publications Ltd.: London, UK, ISBN 9781412936163
-
Stehman, S.V.; Foody, G.M. Accuracy assessment. In The SAGE Handbook of Remote Sensing; Warner, T.A., Nellis, M.D., Foody, G.M., Eds.; Sage Publications Ltd.: London, UK, 2009; pp. 129–145. ISBN 9781412936163.
-
(2009)
The SAGE Handbook of Remote Sensing
, pp. 129-145
-
-
Stehman, S.V.1
Foody, G.M.2
-
36
-
-
59249094016
-
-
R Package Version 6.0-71. (accessed on 18 February 2019)
-
Kuhn, M. Caret: Classification and Regression Training. R Package Version 6.0-71. 2016. Available online: https://CRAN.R-project.org/package=caret (accessed on 18 February 2019).
-
(2016)
Caret: Classification and Regression Training
-
-
Kuhn, M.1
-
38
-
-
85016782791
-
Ranger: A fast implementation of random forests for high dimensional data in C++ and R
-
[CrossRef]
-
Wright, M.N.; Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [CrossRef]
-
(2017)
J. Stat. Softw
, vol.77
, pp. 1-17
-
-
Wright, M.N.1
Ziegler, A.2
-
40
-
-
85099880747
-
-
R. Package Version 7.3-12. (accessed on 10 October 2020)
-
Ripley, B.; Venables, W. Functions for Classification, including k-nearest neighbour, Learning Vector Quantization, and Self-Organizing Maps. R. Package Version 7.3-12. 2015. Available online: https://cran.r-project.org/web/packages/class/index.html (accessed on 10 October 2020).
-
(2015)
Functions for Classification, including k-nearest neighbour, Learning Vector Quantization, and Self-Organizing Maps
-
-
Ripley, B.1
Venables, W.2
-
42
-
-
34249753618
-
Support-Vector Networks
-
[CrossRef]
-
Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
-
(1995)
Mach. Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
43
-
-
85007613389
-
Kernel Methods in Remote Sensing: A Review
-
[CrossRef]
-
Pal, M. Kernel Methods in Remote Sensing: A Review. ISH J. Hydraul. Eng. 2012, 15, 194–215. [CrossRef]
-
(2012)
ISH J. Hydraul. Eng
, vol.15
, pp. 194-215
-
-
Pal, M.1
-
44
-
-
79951950272
-
Support Vector machines in remote sensing: A review
-
[CrossRef]
-
Mountrakis, G.; Im, J.; Ogole, C. Support Vector machines in remote sensing: A review. ISPRS J. Photogram. Remote Sens. 2010, 66, 247–259. [CrossRef]
-
(2010)
ISPRS J. Photogram. Remote Sens
, vol.66
, pp. 247-259
-
-
Mountrakis, G.1
Im, J.2
Ogole, C.3
-
45
-
-
84958236853
-
A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research
-
[CrossRef]
-
Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [CrossRef]
-
(2016)
Remote Sens. Environ
, vol.177
, pp. 89-100
-
-
Khatami, R.1
Mountrakis, G.2
Stehman, S.V.3
-
46
-
-
85099885950
-
An assessment of support vector machine kernel parameters using remotely sensed satellite data
-
Bangalore, India, 20–21 May 2016. [CrossRef]
-
Sharma, V.; Baruah, D.; Chutia, D.; Raju, P.; Bhattacharya, D.K. An assessment of support vector machine kernel parameters using remotely sensed satellite data. In Proceedings of the IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 20–21 May 2016. [CrossRef]
-
Proceedings of the IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)
-
-
Sharma, V.1
Baruah, D.2
Chutia, D.3
Raju, P.4
Bhattacharya, D.K.5
-
47
-
-
0036113847
-
Classification using ASTER data and SVM algorithms; the case study of Beer Sheva, Israel
-
[CrossRef]
-
Zhu, G.; Blumberg, D.G. Classification using ASTER data and SVM algorithms; the case study of Beer Sheva, Israel. Remote Sens. Environ. 2002, 80, 233–240. [CrossRef]
-
(2002)
Remote Sens. Environ
, vol.80
, pp. 233-240
-
-
Zhu, G.1
Blumberg, D.G.2
-
48
-
-
70349598845
-
Appearance-based object recognition using SVMs: Which kernel should I use?
-
Whistler, BC, Canada, 1 January
-
Caputo, B.; Sim, K.; Furesjo, F.; Smola, A. Appearance-based object recognition using SVMs: Which kernel should I use? In Proceedings of the NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision, Whistler, BC, Canada, 1 January 2002.
-
(2002)
Proceedings of the NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision
-
-
Caputo, B.1
Sim, K.2
Furesjo, F.3
Smola, A.4
-
49
-
-
84971599192
-
-
R Package Version 0.9-25. (accessed on 10 October 2020)
-
Karatzoglou, A.; Smola, A.; Hornik, K. Kernel-Based Machine Learning Lab. R Package Version 0.9-25. 2019. Available online: https://cran.r-project.org/web/packages/kernlab/index.html (accessed on 10 October 2020).
-
(2019)
Kernel-Based Machine Learning Lab
-
-
Karatzoglou, A.1
Smola, A.2
Hornik, K.3
-
50
-
-
0035478854
-
Random forests
-
[CrossRef]
-
Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
-
(2001)
Mach. Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
51
-
-
84994364961
-
Classification of High-Resolution Remotely Sensed Images Based on Random Forests
-
[CrossRef]
-
Chen, L.; Cheng, X. Classification of High-Resolution Remotely Sensed Images Based on Random Forests. J. Softw. Eng. 2016, 10, 318–327. [CrossRef]
-
(2016)
J. Softw. Eng
, vol.10
, pp. 318-327
-
-
Chen, L.1
Cheng, X.2
-
52
-
-
15944365217
-
Random Forest classification of multisource remote sensing and geographic data
-
Anchorage, AK, USA, 20–24 September 2004. [CrossRef]
-
Gislason, P.O.; Benediktsson, J.A.; Dveinsson, J.R. Random Forest classification of multisource remote sensing and geographic data. In Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004. [CrossRef]
-
Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium
-
-
Gislason, P.O.1
Benediktsson, J.A.2
Dveinsson, J.R.3
-
53
-
-
85034775396
-
Developing a Random Forest Algorithm for MODIS Global Burned Area Classification
-
[CrossRef]
-
Ramo, R.; Chuvieco, E. Developing a Random Forest Algorithm for MODIS Global Burned Area Classification. Remote Sens. 2017, 9, 1193. [CrossRef]
-
(2017)
Remote Sens
, vol.9
, pp. 1193
-
-
Ramo, R.1
Chuvieco, E.2
-
54
-
-
13344278660
-
Random forest classifier for remote sensing classification
-
[CrossRef]
-
Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [CrossRef]
-
(2005)
Int. J. Remote Sens
, vol.26
, pp. 217-222
-
-
Pal, M.1
-
55
-
-
85016188297
-
Advanced Spectral Classifiers for Hyperspectral Images: A Review
-
[CrossRef]
-
Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A.J. Advanced Spectral Classifiers for Hyperspectral Images: A Review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–32. [CrossRef]
-
(2017)
IEEE Geosci. Remote Sens. Mag
, vol.5
, pp. 8-32
-
-
Ghamisi, P.1
Plaza, J.2
Chen, Y.3
Li, J.4
Plaza, A.J.5
-
56
-
-
84919773193
-
Do we need hundreds of classifiers to solve real world classification problems?
-
Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014, 15, 3133–3181.
-
(2014)
J. Mach. Learn. Res
, vol.15
, pp. 3133-3181
-
-
Fernández-Delgado, M.1
Cernadas, E.2
Barro, S.3
Amorim, D.4
-
57
-
-
14644421528
-
Investigation of the random forest framework for classification of hyperspectral data
-
[CrossRef]
-
Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [CrossRef]
-
(2005)
IEEE Trans. Geosci. Remote Sens
, vol.43
, pp. 492-501
-
-
Ham, J.1
Chen, Y.2
Crawford, M.M.3
Ghosh, J.4
-
58
-
-
85068142949
-
Large-Area, High Spatial Resolution Land Cover Mapping using Random Forests, GEOBIA, and NAIP Orthophotography: Findings and Recommendations
-
[CrossRef]
-
Maxwell, A.E.; Strager, M.P.; Warner, T.A.; Ramezan, C.A.; Morgan, A.N.; Pauley, C.A. Large-Area, High Spatial Resolution Land Cover Mapping using Random Forests, GEOBIA, and NAIP Orthophotography: Findings and Recommendations. Remote Sens. 2019, 11, 1409. [CrossRef]
-
(2019)
Remote Sens
, vol.11
, pp. 1409
-
-
Maxwell, A.E.1
Strager, M.P.2
Warner, T.A.3
Ramezan, C.A.4
Morgan, A.N.5
Pauley, C.A.6
-
59
-
-
84870760985
-
Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data
-
[CrossRef]
-
Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [CrossRef]
-
(2012)
Remote Sens
, vol.4
, pp. 2661-2693
-
-
Immitzer, M.1
Atzberger, C.2
Koukal, T.3
-
60
-
-
85051627752
-
The Transferability of Random Forest in Canopy Height Estimation from Multi-Source Remote Sensing Data
-
[CrossRef]
-
Jin, S.; Su, Y.; Gao, S.; Hu, T.; Liu, J.; Guo, Q. The Transferability of Random Forest in Canopy Height Estimation from Multi-Source Remote Sensing Data. Remote Sens. 2018, 10, 1183. [CrossRef]
-
(2018)
Remote Sens
, vol.10
, pp. 1183
-
-
Jin, S.1
Su, Y.2
Gao, S.3
Hu, T.4
Liu, J.5
Guo, Q.6
-
61
-
-
85012255167
-
Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China
-
[CrossRef]
-
Li, Z.; Xin, X.; Tang, H.; Yang, F.; Chen, B.; Zhang, B. Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China. J. Integr. Agric. 2017, 16, 286–297. [CrossRef]
-
(2017)
J. Integr. Agric
, vol.16
, pp. 286-297
-
-
Li, Z.1
Xin, X.2
Tang, H.3
Yang, F.4
Chen, B.5
Zhang, B.6
-
62
-
-
84888253719
-
Conditional Classification Trees by Weighting the Gini Impurity Measure
-
Ingrassia, S., Rocci, R., Vichi, M., Eds.; Springer: Berlin/Heidelberg, Germany, [CrossRef]
-
D’Ambrosio, A.; Tutore, V.A. Conditional Classification Trees by Weighting the Gini Impurity Measure. In New Perspectives in Statistical Modeling and Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization; Ingrassia, S., Rocci, R., Vichi, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [CrossRef]
-
(2011)
New Perspectives in Statistical Modeling and Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization
-
-
D’Ambrosio, A.1
Tutore, V.A.2
-
63
-
-
33646430006
-
Extremely randomized trees
-
[CrossRef]
-
Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
-
(2006)
Mach. Learn
, vol.63
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
64
-
-
84879019267
-
-
5th ed.; John Wiley & Sons, Ltd.: Chichester, UK
-
Everitt, B.S.; Laundau, S.; Leese, M.; Stahl, D. Miscellaneous Cluster Methods in Cluster Analysis, 5th ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006.
-
(2006)
Miscellaneous Cluster Methods in Cluster Analysis
-
-
Everitt, B.S.1
Laundau, S.2
Leese, M.3
Stahl, D.4
-
65
-
-
84992087461
-
Performance Assessment of Neural Network and K-Nearest Neighbour Classification with Random Subwindows
-
[CrossRef]
-
Seetha, M.; Sunitha, K.V.N.; Devi, G.M. Performance Assessment of Neural Network and K-Nearest Neighbour Classification with Random Subwindows. Int. J. Mach. Learn. Comput. 2012, 2, 844–847. [CrossRef]
-
(2012)
Int. J. Mach. Learn. Comput
, vol.2
, pp. 844-847
-
-
Seetha, M.1
Sunitha, K.V.N.2
Devi, G.M.3
-
66
-
-
0023855839
-
An introduction to neural computing
-
[CrossRef]
-
Kohonen, T. An introduction to neural computing. Neur. Netw. 1998, 1, 3–16. [CrossRef]
-
(1998)
Neur. Netw
, vol.1
, pp. 3-16
-
-
Kohonen, T.1
-
67
-
-
0029415649
-
A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery
-
[CrossRef]
-
Paola, J.D.; Schowengerdt, R.A. A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery. Int. J. Remote Sens. 1995, 16, 3033–3058. [CrossRef]
-
(1995)
Int. J. Remote Sens
, vol.16
, pp. 3033-3058
-
-
Paola, J.D.1
Schowengerdt, R.A.2
-
68
-
-
0031106314
-
Strategies and best practice for neural network image classification
-
[CrossRef]
-
Kanellopoulos, I.; Wilkinson, G.G. Strategies and best practice for neural network image classification. Int. J. Remote Sens. 1997, 18, 711–725. [CrossRef]
-
(1997)
Int. J. Remote Sens
, vol.18
, pp. 711-725
-
-
Kanellopoulos, I.1
Wilkinson, G.G.2
-
69
-
-
85048297781
-
A review of neural networks in plant disease detection using hyperspectral data
-
[CrossRef]
-
Golhani, K.; Balasundram, S.K.; Vadamalai, G.; Pradhan, B. A review of neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric. 2018, 5, 354–371. [CrossRef]
-
(2018)
Inf. Process. Agric
, vol.5
, pp. 354-371
-
-
Golhani, K.1
Balasundram, S.K.2
Vadamalai, G.3
Pradhan, B.4
-
70
-
-
34047276317
-
Learning vector quantization
-
Springer: Berlin/Heidelberg, Germany
-
Kohonen, T. Learning vector quantization. In Self-Organizing Maps; Springer: Berlin/Heidelberg, Germany, 1995.
-
(1995)
Self-Organizing Maps
-
-
Kohonen, T.1
-
71
-
-
32244435216
-
Fuzzy learning vector quantization for hyperspectral coastal vegetation classification
-
[CrossRef]
-
Filippi, A.M.; Jensen, J.R. Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sens. Environ. 2006, 100, 512–530. [CrossRef]
-
(2006)
Remote Sens. Environ
, vol.100
, pp. 512-530
-
-
Filippi, A.M.1
Jensen, J.R.2
-
72
-
-
77951193542
-
Regression Learning Vector Quantization
-
Miami, FL, USA, 28 December [CrossRef]
-
Grbovic, M.; Vucetic, S. Regression Learning Vector Quantization. In Proceedings of the 2009 Ninth IEEE International Conference on Data Mining, Miami, FL, USA, 28 December 2009. [CrossRef]
-
(2009)
Proceedings of the 2009 Ninth IEEE International Conference on Data Mining
-
-
Grbovic, M.1
Vucetic, S.2
-
73
-
-
0037186544
-
Stochastic gradient boosting
-
[CrossRef]
-
Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2001, 38, 367–378. [CrossRef]
-
(2001)
Comput. Stat. Data Anal
, vol.38
, pp. 367-378
-
-
Friedman, J.H.1
-
74
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
[CrossRef]
-
Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2002, 29, 1189–1232. [CrossRef]
-
(2002)
Ann. Stat
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
75
-
-
84942518161
-
Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery
-
[CrossRef]
-
Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356–12379. [CrossRef]
-
(2015)
Remote Sens
, vol.7
, pp. 12356-12379
-
-
Inglada, J.1
Arias, M.2
Tardy, B.3
Hagolle, O.4
Valero, S.5
Morin, D.6
Dedieu, G.7
-
76
-
-
85086996111
-
Population Spatialization in Beijing City Based on Machine Learning and Multisource Remote Sensing Data
-
[CrossRef]
-
He, M.; Xu, Y.; Li, N. Population Spatialization in Beijing City Based on Machine Learning and Multisource Remote Sensing Data. Remote Sens. 2020, 12, 1910. [CrossRef]
-
(2020)
Remote Sens
, vol.12
, pp. 1910
-
-
He, M.1
Xu, Y.2
Li, N.3
-
77
-
-
84964778324
-
-
R Package Version 1.3.2.1. 2021. (accessed on 15 January 2021)
-
Chen, T.; He, T.; Benetsy, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. Extreme Gradient Boosting. R Package Version 1.3.2.1. 2021. Available online: https://cran.r-project.org/web/packages/xgboost/index.html (accessed on 15 January 2021).
-
Extreme Gradient Boosting
-
-
Chen, T.1
He, T.2
Benetsy, M.3
Khotilovich, V.4
Tang, Y.5
Cho, H.6
Chen, K.7
Mitchell, R.8
Cano, I.9
Zhou, T.10
-
78
-
-
33645695410
-
Support Vector Machines in R
-
[CrossRef]
-
Karatzoglou, A.; Meyer, D.; Hornik, K. Support Vector Machines in R. J. Stat. Softw. 2006, 15, 1–28. [CrossRef]
-
(2006)
J. Stat. Softw
, vol.15
, pp. 1-28
-
-
Karatzoglou, A.1
Meyer, D.2
Hornik, K.3
-
80
-
-
85099884072
-
-
R Package Version 1.0.0. (accessed on 11 November 2020)
-
Kusnierczyk, W.; Eddelbuettel, D.; Hasselman, B. rbenchmark. R Package Version 1.0.0. 2012. Available online: https://cran.r-project.org/web/packages/rbenchmark/index.html (accessed on 11 November 2020).
-
(2012)
rbenchmark
-
-
Kusnierczyk, W.1
Eddelbuettel, D.2
Hasselman, B.3
-
81
-
-
80052353804
-
The analysis and optimization of KNN algorithm space-time efficiency for Chinese text categorization
-
Springer: Berlin/Heidelberg, Germany
-
Cai, Y.; Wang, X. The analysis and optimization of KNN algorithm space-time efficiency for Chinese text categorization. In International Conference on Computer Science, Environment, Ecoinformatics, and Education; Springer: Berlin/Heidelberg, Germany, 2011.
-
(2011)
International Conference on Computer Science, Environment, Ecoinformatics, and Education
-
-
Cai, Y.1
Wang, X.2
-
82
-
-
84908097106
-
Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass
-
[CrossRef]
-
Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernandez, J.; Corvalan, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [CrossRef]
-
(2014)
Remote Sens. Environ
, vol.154
, pp. 102-114
-
-
Fassnacht, F.E.1
Hartig, F.2
Latifi, H.3
Berger, C.4
Hernandez, J.5
Corvalan, P.6
Koch, B.7
|