메뉴 건너뛰기




Volumn 13, Issue 3, 2021, Pages 1-27

Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data

Author keywords

GEOBIA; High resolution imagery; Large area; Supervised machine learning; Training sample size

Indexed keywords

DECISION TREES; LEARNING ALGORITHMS; LEARNING SYSTEMS; MULTILAYER NEURAL NETWORKS; NEAREST NEIGHBOR SEARCH; NETWORK LAYERS; REMOTE SENSING; SAMPLING; SUPPORT VECTOR MACHINES; TEXT PROCESSING; TEXTURES;

EID: 85099883859     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs13030368     Document Type: Article
Times cited : (94)

References (82)
  • 1
    • 33747610735 scopus 로고    scopus 로고
    • Training set size requirements for the classification of a specific class
    • [CrossRef]
    • Foody, G.M.; Mathur, A.; Sanchez-Hernandez, C.; Boyd, D.S. Training set size requirements for the classification of a specific class. Remote Sens. Environ. 2006, 1, 1–14. [CrossRef]
    • (2006) Remote Sens. Environ , vol.1 , pp. 1-14
    • Foody, G.M.1    Mathur, A.2    Sanchez-Hernandez, C.3    Boyd, D.S.4
  • 2
    • 85048716904 scopus 로고    scopus 로고
    • Implementation of machine-learning classification in remote sensing: An applied review
    • [CrossRef]
    • Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef]
    • (2018) Int. J. Remote Sens , vol.39 , pp. 2784-2817
    • Maxwell, A.E.1    Warner, T.A.2    Fang, F.3
  • 3
    • 85022191954 scopus 로고    scopus 로고
    • Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images
    • [CrossRef]
    • Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 50, 144–154. [CrossRef]
    • (2017) Eur. J. Remote Sens , vol.50 , pp. 144-154
    • Raczko, E.1    Zagajewski, B.2
  • 4
    • 80051762829 scopus 로고    scopus 로고
    • Supervised Classification of Agricultural Land Cover Using a Modified k¬-NN Technique (MNN) and Landsat Remote Sensing Imagery
    • [CrossRef]
    • Samaniego, L.; Schulz, K. Supervised Classification of Agricultural Land Cover Using a Modified k¬-NN Technique (MNN) and Landsat Remote Sensing Imagery. Remote Sens. 2009, 1, 875–895. [CrossRef]
    • (2009) Remote Sens , vol.1 , pp. 875-895
    • Samaniego, L.1    Schulz, K.2
  • 5
    • 0029473455 scopus 로고
    • The effect of training set size and composition on artificial neural network classification
    • [CrossRef]
    • Foody, G.M.; McCulloch, M.B.; Yates, W.B. The effect of training set size and composition on artificial neural network classification. Int. J. Remote Sens. 1995, 16, 1707–1723. [CrossRef]
    • (1995) Int. J. Remote Sens , vol.16 , pp. 1707-1723
    • Foody, G.M.1    McCulloch, M.B.2    Yates, W.B.3
  • 6
    • 84937918615 scopus 로고    scopus 로고
    • On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping
    • [CrossRef]
    • Millard, K.; Richardson, M. On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping. Remote Sens. 2015, 7, 8489–8515. [CrossRef]
    • (2015) Remote Sens , vol.7 , pp. 8489-8515
    • Millard, K.1    Richardson, M.2
  • 7
    • 85030761801 scopus 로고    scopus 로고
    • Effect of classifier selection, reference sample size, reference class distribution and scene heterogene-ity in per-pixel classification accuracy using 26 Landsat sites
    • [CrossRef]
    • Heydari, S.S.; Mountrakis, G. Effect of classifier selection, reference sample size, reference class distribution and scene heterogene-ity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens. Environ. 2017, 204. [CrossRef]
    • (2017) Remote Sens. Environ , vol.204
    • Heydari, S.S.1    Mountrakis, G.2
  • 8
    • 85039732569 scopus 로고    scopus 로고
    • Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery
    • [CrossRef]
    • Noi, P.T.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [CrossRef]
    • (2018) Sensors , vol.18 , pp. 18
    • Noi, P.T.1    Kappas, M.2
  • 9
    • 84968712690 scopus 로고    scopus 로고
    • Effect of feature dimensionality on object-based land cover classification: A comparison of three classifiers
    • Myburgh, G.; Van Niekerk, A. Effect of feature dimensionality on object-based land cover classification: A comparison of three classifiers. S. Afr. J. Geomat. 2013, 2, 13–27.
    • (2013) S. Afr. J. Geomat , vol.2 , pp. 13-27
    • Myburgh, G.1    Van Niekerk, A.2
  • 10
    • 84920812571 scopus 로고    scopus 로고
    • Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery
    • [CrossRef]
    • Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery. Remote Sens. 2015, 7, 153–168. [CrossRef]
    • (2015) Remote Sens , vol.7 , pp. 153-168
    • Qian, Y.1    Zhou, W.2    Yan, J.3    Li, W.4    Han, L.5
  • 11
    • 85048594348 scopus 로고    scopus 로고
    • Effects of Training Samples and Classifiers on Classification of Landsat-8 Imagery
    • [CrossRef]
    • Shang, M.; Wang, S.; Zhou, Y.; Du, C. Effects of Training Samples and Classifiers on Classification of Landsat-8 Imagery. J. Indian Soc. Remote Sens. 2018, 46, 1333–1340. [CrossRef]
    • (2018) J. Indian Soc. Remote Sens , vol.46 , pp. 1333-1340
    • Shang, M.1    Wang, S.2    Zhou, Y.3    Du, C.4
  • 12
    • 84961834117 scopus 로고    scopus 로고
    • Random forest in remote sensing: A review of applications and future directions
    • [CrossRef]
    • Belgiu, M.; Drăgut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogram. Remote Sens. 2016, 114, 24–31. [CrossRef]
    • (2016) ISPRS J. Photogram. Remote Sens , vol.114 , pp. 24-31
    • Belgiu, M.1    Drăgut, L.2
  • 13
    • 84942543920 scopus 로고    scopus 로고
    • The AmericaView Classification Methods Accuracy Project: A Rigorous Approach for Model Selection
    • [CrossRef]
    • Lawrence, R.L.; Moran, C.J. The AmericaView Classification Methods Accuracy Project: A Rigorous Approach for Model Selection. Remote Sens. Environ. 2015, 170, 115–120. [CrossRef]
    • (2015) Remote Sens. Environ , vol.170 , pp. 115-120
    • Lawrence, R.L.1    Moran, C.J.2
  • 14
    • 70349137738 scopus 로고    scopus 로고
    • Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization
    • [CrossRef]
    • Neves, J.C.; Vieira, A. Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization. Euro. Account. Rev. 2011, 15, 253–271. [CrossRef]
    • (2011) Euro. Account. Rev , vol.15 , pp. 253-271
    • Neves, J.C.1    Vieira, A.2
  • 15
    • 34247467066 scopus 로고    scopus 로고
    • Intelligent Switching control of pneumatic muscle robot arm using learning vector quantization network
    • [CrossRef]
    • Ahn, K.K.; Nguyen, H.T.C. Intelligent Switching control of pneumatic muscle robot arm using learning vector quantization network. Mechatronics 2007, 17, 225–262. [CrossRef]
    • (2007) Mechatronics , vol.17 , pp. 225-262
    • Ahn, K.K.1    Nguyen, H.T.C.2
  • 16
    • 33846470008 scopus 로고    scopus 로고
    • Magnetic resonance imaging segmentation techniques using batch-type learning vector quantization
    • [CrossRef]
    • Yang, M.; Lin, K.; Liu, H.; Lirng, J. Magnetic resonance imaging segmentation techniques using batch-type learning vector quantization. Magn. Reson. Imaging 2007, 25, 265–277. [CrossRef]
    • (2007) Magn. Reson. Imaging , vol.25 , pp. 265-277
    • Yang, M.1    Lin, K.2    Liu, H.3    Lirng, J.4
  • 17
    • 85021219961 scopus 로고    scopus 로고
    • A review of supervised object-based land-cover image classification
    • [CrossRef]
    • Ma, L.; Li, M.; Ma, X.; Cheng, K.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogram. Remote Sens. 2017, 130, 277–293. [CrossRef]
    • (2017) ISPRS J. Photogram. Remote Sens , vol.130 , pp. 277-293
    • Ma, L.1    Li, M.2    Ma, X.3    Cheng, K.4    Du, P.5    Liu, Y.6
  • 18
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • [CrossRef]
    • Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogram. Remote Sens. 2010, 65, 2–16. [CrossRef]
    • (2010) ISPRS J. Photogram. Remote Sens , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 19
    • 85035009928 scopus 로고    scopus 로고
    • Land cover classification and feature extraction from National Agriculture Imagery Program (NAIP) Orthoimagery: A review
    • [CrossRef]
    • Maxwell, A.E.; Warner, T.A.; Vanderbilt, B.C.; Ramezan, C.A. Land cover classification and feature extraction from National Agriculture Imagery Program (NAIP) Orthoimagery: A review. Photogram. Eng. Remote Sens. 2017, 83, 737–747. [CrossRef]
    • (2017) Photogram. Eng. Remote Sens , vol.83 , pp. 737-747
    • Maxwell, A.E.1    Warner, T.A.2    Vanderbilt, B.C.3    Ramezan, C.A.4
  • 21
    • 84919398915 scopus 로고    scopus 로고
    • Urban land cover classification using airborne LiDAR data: A review
    • [CrossRef]
    • Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 2015, 158, 295–310. [CrossRef]
    • (2015) Remote Sens. Environ , vol.158 , pp. 295-310
    • Yan, W.Y.1    Shaker, A.2    El-Ashmawy, N.3
  • 22
    • 84965115751 scopus 로고    scopus 로고
    • ESRI. Environmental Systems Research Institute: Redlands, CA, USA
    • ESRI. ArcGIS Desktop: Release 10.5.1; Environmental Systems Research Institute: Redlands, CA, USA, 2017.
    • (2017) ArcGIS Desktop: Release 10.5.1
  • 23
    • 84923357893 scopus 로고    scopus 로고
    • Assessing machine-learning algorithms and image-and lidar-derived variables for GEOBIA classification of mining and mine reclamation
    • [CrossRef]
    • Maxwell, A.E.; Warner, T.A.; Strager, M.P.; Conley, J.F.; Sharp, A.L. Assessing machine-learning algorithms and image-and lidar-derived variables for GEOBIA classification of mining and mine reclamation. Int. J. Remote Sens. 2015, 36, 954–978. [CrossRef]
    • (2015) Int. J. Remote Sens , vol.36 , pp. 954-978
    • Maxwell, A.E.1    Warner, T.A.2    Strager, M.P.3    Conley, J.F.4    Sharp, A.L.5
  • 24
    • 77952675785 scopus 로고    scopus 로고
    • Airborne and Spaceborne Laser Profilers and Scanners
    • Shan, J., Toth, C.K., Eds.; CRC Press: Boca Raton, FL, USA
    • Petrie, G.; Toth, C.K. Airborne and Spaceborne Laser Profilers and Scanners. In Topographic Laser Ranging and Scanning: Principles and Processing; Shan, J., Toth, C.K., Eds.; CRC Press: Boca Raton, FL, USA, 2008.
    • (2008) Topographic Laser Ranging and Scanning: Principles and Processing
    • Petrie, G.1    Toth, C.K.2
  • 25
    • 85060700515 scopus 로고    scopus 로고
    • United States Department of Agriculture Aerial Photography Field Office. (accessed on 28 December 2018)
    • Lear, R.F. NAIP Quality Samples. United States Department of Agriculture Aerial Photography Field Office. Available online: https://www.fsa.usda.gov/Internet/FSA_File/naip_quality_samples_pdf.pdf (accessed on 28 December 2018).
    • NAIP Quality Samples
    • Lear, R.F.1
  • 26
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution Segmentation—An Optimization Approach for High Quality Multi-Scale Image Segmentation, ; Strobl, T., Blaschke, G.G., Eds.; Wichmann Verlag: Karlsruhe, Germany
    • Baatz, M.; Schäpe, A. Multiresolution Segmentation—An Optimization Approach for High Quality Multi-Scale Image Segmentation; Angewandte Geographische Informations-Verarbeitung XII; Strobl, T., Blaschke, G.G., Eds.; Wichmann Verlag: Karlsruhe, Germany, 2000; pp. 12–23.
    • (2000) Angewandte Geographische Informations-Verarbeitung XII , pp. 12-23
    • Baatz, M.1    Schäpe, A.2
  • 27
    • 84891136260 scopus 로고    scopus 로고
    • Automated parameterization for multi-scale image segmentation on multiple layers
    • [CrossRef]
    • Drăgut, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterization for multi-scale image segmentation on multiple layers. ISPRS J. Photogram. Remote Sens. 2014, 88, 119–127. [CrossRef]
    • (2014) ISPRS J. Photogram. Remote Sens , vol.88 , pp. 119-127
    • Drăgut, L.1    Csillik, O.2    Eisank, C.3    Tiede, D.4
  • 28
    • 79957608758 scopus 로고    scopus 로고
    • Multi-scale texture segmentation and classification of salt marsh using digital aerial imagery with very high spatial resolution
    • [CrossRef]
    • Kim, M.; Warner, T.A.; Madden, M.; Atkinson, D. Multi-scale texture segmentation and classification of salt marsh using digital aerial imagery with very high spatial resolution. Int. J. Remote Sens. 2011, 32, 2825–2850. [CrossRef]
    • (2011) Int. J. Remote Sens , vol.32 , pp. 2825-2850
    • Kim, M.1    Warner, T.A.2    Madden, M.3    Atkinson, D.4
  • 29
    • 84879590467 scopus 로고    scopus 로고
    • Advances in Geographic Object-Based Image Analysis with Ontologies: A review of main contributions and limitations from a remote sensing perspective
    • [CrossRef]
    • Arvor, D.; Durieux, L.; Andrés, S.; Laporte, M. Advances in Geographic Object-Based Image Analysis with Ontologies: A review of main contributions and limitations from a remote sensing perspective. ISPRS J. Photogram. Remote Sens. 2013, 82, 125–137. [CrossRef]
    • (2013) ISPRS J. Photogram. Remote Sens , vol.82 , pp. 125-137
    • Arvor, D.1    Durieux, L.2    Andrés, S.3    Laporte, M.4
  • 30
    • 28544434203 scopus 로고    scopus 로고
    • An automated object-based approach for the multiscale image segmentation of forest scenes
    • [CrossRef]
    • Hay, G.J.; Castilla, G.; Wulder, M.A.; Ruiz, J.R. An automated object-based approach for the multiscale image segmentation of forest scenes. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 339–359. [CrossRef]
    • (2005) Int. J. Appl. Earth Obs. Geoinf , vol.7 , pp. 339-359
    • Hay, G.J.1    Castilla, G.2    Wulder, M.A.3    Ruiz, J.R.4
  • 31
    • 68649112896 scopus 로고    scopus 로고
    • Forest type mapping using object-specific texture measures from multispectral IKONOS imagery: Segmentation quality and image classification issues
    • [CrossRef]
    • Kim, M.; Madden, M.; Warner, T.A. Forest type mapping using object-specific texture measures from multispectral IKONOS imagery: Segmentation quality and image classification issues. Photogram. Eng. Remote Sens. 2009, 75, 819–829. [CrossRef]
    • (2009) Photogram. Eng. Remote Sens , vol.75 , pp. 819-829
    • Kim, M.1    Madden, M.2    Warner, T.A.3
  • 32
    • 77951189897 scopus 로고    scopus 로고
    • ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data
    • [CrossRef]
    • Drăguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geo-Inf. 2010, 24, 859–871. [CrossRef]
    • (2010) Int. J. Geo-Inf , vol.24 , pp. 859-871
    • Drăguţ, L.1    Tiede, D.2    Levick, S.R.3
  • 33
    • 84868123768 scopus 로고    scopus 로고
    • Object-Based Classification of Urban Areas Using VHR Imagery and Height Points Ancillary Data
    • [CrossRef]
    • Salehi, B.; Zhang, Y.; Zhong, M.; Dey, V. Object-Based Classification of Urban Areas Using VHR Imagery and Height Points Ancillary Data. Remote Sens. 2012, 4, 2256–2276. [CrossRef]
    • (2012) Remote Sens , vol.4 , pp. 2256-2276
    • Salehi, B.1    Zhang, Y.2    Zhong, M.3    Dey, V.4
  • 34
    • 85060681925 scopus 로고    scopus 로고
    • Evaluation of Sampling and Cross-Validation Tuning Strategies for Regional-Scale Machine Learning Classification
    • [CrossRef]
    • Ramezan, C.A.; Warner, T.A.; Maxwell, A.E. Evaluation of Sampling and Cross-Validation Tuning Strategies for Regional-Scale Machine Learning Classification. Remote Sens. 2019, 11, 185. [CrossRef]
    • (2019) Remote Sens , vol.11 , pp. 185
    • Ramezan, C.A.1    Warner, T.A.2    Maxwell, A.E.3
  • 35
    • 84860837265 scopus 로고    scopus 로고
    • Accuracy assessment
    • Warner, T.A., Nellis, M.D., Foody, G.M., Eds.; Sage Publications Ltd.: London, UK, ISBN 9781412936163
    • Stehman, S.V.; Foody, G.M. Accuracy assessment. In The SAGE Handbook of Remote Sensing; Warner, T.A., Nellis, M.D., Foody, G.M., Eds.; Sage Publications Ltd.: London, UK, 2009; pp. 129–145. ISBN 9781412936163.
    • (2009) The SAGE Handbook of Remote Sensing , pp. 129-145
    • Stehman, S.V.1    Foody, G.M.2
  • 36
    • 59249094016 scopus 로고    scopus 로고
    • R Package Version 6.0-71. (accessed on 18 February 2019)
    • Kuhn, M. Caret: Classification and Regression Training. R Package Version 6.0-71. 2016. Available online: https://CRAN.R-project.org/package=caret (accessed on 18 February 2019).
    • (2016) Caret: Classification and Regression Training
    • Kuhn, M.1
  • 38
    • 85016782791 scopus 로고    scopus 로고
    • Ranger: A fast implementation of random forests for high dimensional data in C++ and R
    • [CrossRef]
    • Wright, M.N.; Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [CrossRef]
    • (2017) J. Stat. Softw , vol.77 , pp. 1-17
    • Wright, M.N.1    Ziegler, A.2
  • 42
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • [CrossRef]
    • Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 43
    • 85007613389 scopus 로고    scopus 로고
    • Kernel Methods in Remote Sensing: A Review
    • [CrossRef]
    • Pal, M. Kernel Methods in Remote Sensing: A Review. ISH J. Hydraul. Eng. 2012, 15, 194–215. [CrossRef]
    • (2012) ISH J. Hydraul. Eng , vol.15 , pp. 194-215
    • Pal, M.1
  • 44
    • 79951950272 scopus 로고    scopus 로고
    • Support Vector machines in remote sensing: A review
    • [CrossRef]
    • Mountrakis, G.; Im, J.; Ogole, C. Support Vector machines in remote sensing: A review. ISPRS J. Photogram. Remote Sens. 2010, 66, 247–259. [CrossRef]
    • (2010) ISPRS J. Photogram. Remote Sens , vol.66 , pp. 247-259
    • Mountrakis, G.1    Im, J.2    Ogole, C.3
  • 45
    • 84958236853 scopus 로고    scopus 로고
    • A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research
    • [CrossRef]
    • Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [CrossRef]
    • (2016) Remote Sens. Environ , vol.177 , pp. 89-100
    • Khatami, R.1    Mountrakis, G.2    Stehman, S.V.3
  • 47
    • 0036113847 scopus 로고    scopus 로고
    • Classification using ASTER data and SVM algorithms; the case study of Beer Sheva, Israel
    • [CrossRef]
    • Zhu, G.; Blumberg, D.G. Classification using ASTER data and SVM algorithms; the case study of Beer Sheva, Israel. Remote Sens. Environ. 2002, 80, 233–240. [CrossRef]
    • (2002) Remote Sens. Environ , vol.80 , pp. 233-240
    • Zhu, G.1    Blumberg, D.G.2
  • 49
    • 84971599192 scopus 로고    scopus 로고
    • R Package Version 0.9-25. (accessed on 10 October 2020)
    • Karatzoglou, A.; Smola, A.; Hornik, K. Kernel-Based Machine Learning Lab. R Package Version 0.9-25. 2019. Available online: https://cran.r-project.org/web/packages/kernlab/index.html (accessed on 10 October 2020).
    • (2019) Kernel-Based Machine Learning Lab
    • Karatzoglou, A.1    Smola, A.2    Hornik, K.3
  • 50
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • [CrossRef]
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 51
    • 84994364961 scopus 로고    scopus 로고
    • Classification of High-Resolution Remotely Sensed Images Based on Random Forests
    • [CrossRef]
    • Chen, L.; Cheng, X. Classification of High-Resolution Remotely Sensed Images Based on Random Forests. J. Softw. Eng. 2016, 10, 318–327. [CrossRef]
    • (2016) J. Softw. Eng , vol.10 , pp. 318-327
    • Chen, L.1    Cheng, X.2
  • 53
    • 85034775396 scopus 로고    scopus 로고
    • Developing a Random Forest Algorithm for MODIS Global Burned Area Classification
    • [CrossRef]
    • Ramo, R.; Chuvieco, E. Developing a Random Forest Algorithm for MODIS Global Burned Area Classification. Remote Sens. 2017, 9, 1193. [CrossRef]
    • (2017) Remote Sens , vol.9 , pp. 1193
    • Ramo, R.1    Chuvieco, E.2
  • 54
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • [CrossRef]
    • Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [CrossRef]
    • (2005) Int. J. Remote Sens , vol.26 , pp. 217-222
    • Pal, M.1
  • 55
    • 85016188297 scopus 로고    scopus 로고
    • Advanced Spectral Classifiers for Hyperspectral Images: A Review
    • [CrossRef]
    • Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A.J. Advanced Spectral Classifiers for Hyperspectral Images: A Review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–32. [CrossRef]
    • (2017) IEEE Geosci. Remote Sens. Mag , vol.5 , pp. 8-32
    • Ghamisi, P.1    Plaza, J.2    Chen, Y.3    Li, J.4    Plaza, A.J.5
  • 56
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014, 15, 3133–3181.
    • (2014) J. Mach. Learn. Res , vol.15 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 57
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • [CrossRef]
    • Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [CrossRef]
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 58
    • 85068142949 scopus 로고    scopus 로고
    • Large-Area, High Spatial Resolution Land Cover Mapping using Random Forests, GEOBIA, and NAIP Orthophotography: Findings and Recommendations
    • [CrossRef]
    • Maxwell, A.E.; Strager, M.P.; Warner, T.A.; Ramezan, C.A.; Morgan, A.N.; Pauley, C.A. Large-Area, High Spatial Resolution Land Cover Mapping using Random Forests, GEOBIA, and NAIP Orthophotography: Findings and Recommendations. Remote Sens. 2019, 11, 1409. [CrossRef]
    • (2019) Remote Sens , vol.11 , pp. 1409
    • Maxwell, A.E.1    Strager, M.P.2    Warner, T.A.3    Ramezan, C.A.4    Morgan, A.N.5    Pauley, C.A.6
  • 59
    • 84870760985 scopus 로고    scopus 로고
    • Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data
    • [CrossRef]
    • Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [CrossRef]
    • (2012) Remote Sens , vol.4 , pp. 2661-2693
    • Immitzer, M.1    Atzberger, C.2    Koukal, T.3
  • 60
    • 85051627752 scopus 로고    scopus 로고
    • The Transferability of Random Forest in Canopy Height Estimation from Multi-Source Remote Sensing Data
    • [CrossRef]
    • Jin, S.; Su, Y.; Gao, S.; Hu, T.; Liu, J.; Guo, Q. The Transferability of Random Forest in Canopy Height Estimation from Multi-Source Remote Sensing Data. Remote Sens. 2018, 10, 1183. [CrossRef]
    • (2018) Remote Sens , vol.10 , pp. 1183
    • Jin, S.1    Su, Y.2    Gao, S.3    Hu, T.4    Liu, J.5    Guo, Q.6
  • 61
    • 85012255167 scopus 로고    scopus 로고
    • Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China
    • [CrossRef]
    • Li, Z.; Xin, X.; Tang, H.; Yang, F.; Chen, B.; Zhang, B. Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China. J. Integr. Agric. 2017, 16, 286–297. [CrossRef]
    • (2017) J. Integr. Agric , vol.16 , pp. 286-297
    • Li, Z.1    Xin, X.2    Tang, H.3    Yang, F.4    Chen, B.5    Zhang, B.6
  • 63
    • 33646430006 scopus 로고    scopus 로고
    • Extremely randomized trees
    • [CrossRef]
    • Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
    • (2006) Mach. Learn , vol.63 , pp. 3-42
    • Geurts, P.1    Ernst, D.2    Wehenkel, L.3
  • 65
    • 84992087461 scopus 로고    scopus 로고
    • Performance Assessment of Neural Network and K-Nearest Neighbour Classification with Random Subwindows
    • [CrossRef]
    • Seetha, M.; Sunitha, K.V.N.; Devi, G.M. Performance Assessment of Neural Network and K-Nearest Neighbour Classification with Random Subwindows. Int. J. Mach. Learn. Comput. 2012, 2, 844–847. [CrossRef]
    • (2012) Int. J. Mach. Learn. Comput , vol.2 , pp. 844-847
    • Seetha, M.1    Sunitha, K.V.N.2    Devi, G.M.3
  • 66
    • 0023855839 scopus 로고    scopus 로고
    • An introduction to neural computing
    • [CrossRef]
    • Kohonen, T. An introduction to neural computing. Neur. Netw. 1998, 1, 3–16. [CrossRef]
    • (1998) Neur. Netw , vol.1 , pp. 3-16
    • Kohonen, T.1
  • 67
    • 0029415649 scopus 로고
    • A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery
    • [CrossRef]
    • Paola, J.D.; Schowengerdt, R.A. A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery. Int. J. Remote Sens. 1995, 16, 3033–3058. [CrossRef]
    • (1995) Int. J. Remote Sens , vol.16 , pp. 3033-3058
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 68
    • 0031106314 scopus 로고    scopus 로고
    • Strategies and best practice for neural network image classification
    • [CrossRef]
    • Kanellopoulos, I.; Wilkinson, G.G. Strategies and best practice for neural network image classification. Int. J. Remote Sens. 1997, 18, 711–725. [CrossRef]
    • (1997) Int. J. Remote Sens , vol.18 , pp. 711-725
    • Kanellopoulos, I.1    Wilkinson, G.G.2
  • 69
    • 85048297781 scopus 로고    scopus 로고
    • A review of neural networks in plant disease detection using hyperspectral data
    • [CrossRef]
    • Golhani, K.; Balasundram, S.K.; Vadamalai, G.; Pradhan, B. A review of neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric. 2018, 5, 354–371. [CrossRef]
    • (2018) Inf. Process. Agric , vol.5 , pp. 354-371
    • Golhani, K.1    Balasundram, S.K.2    Vadamalai, G.3    Pradhan, B.4
  • 70
    • 34047276317 scopus 로고
    • Learning vector quantization
    • Springer: Berlin/Heidelberg, Germany
    • Kohonen, T. Learning vector quantization. In Self-Organizing Maps; Springer: Berlin/Heidelberg, Germany, 1995.
    • (1995) Self-Organizing Maps
    • Kohonen, T.1
  • 71
    • 32244435216 scopus 로고    scopus 로고
    • Fuzzy learning vector quantization for hyperspectral coastal vegetation classification
    • [CrossRef]
    • Filippi, A.M.; Jensen, J.R. Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sens. Environ. 2006, 100, 512–530. [CrossRef]
    • (2006) Remote Sens. Environ , vol.100 , pp. 512-530
    • Filippi, A.M.1    Jensen, J.R.2
  • 73
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • [CrossRef]
    • Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2001, 38, 367–378. [CrossRef]
    • (2001) Comput. Stat. Data Anal , vol.38 , pp. 367-378
    • Friedman, J.H.1
  • 74
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • [CrossRef]
    • Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2002, 29, 1189–1232. [CrossRef]
    • (2002) Ann. Stat , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 75
    • 84942518161 scopus 로고    scopus 로고
    • Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery
    • [CrossRef]
    • Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356–12379. [CrossRef]
    • (2015) Remote Sens , vol.7 , pp. 12356-12379
    • Inglada, J.1    Arias, M.2    Tardy, B.3    Hagolle, O.4    Valero, S.5    Morin, D.6    Dedieu, G.7
  • 76
    • 85086996111 scopus 로고    scopus 로고
    • Population Spatialization in Beijing City Based on Machine Learning and Multisource Remote Sensing Data
    • [CrossRef]
    • He, M.; Xu, Y.; Li, N. Population Spatialization in Beijing City Based on Machine Learning and Multisource Remote Sensing Data. Remote Sens. 2020, 12, 1910. [CrossRef]
    • (2020) Remote Sens , vol.12 , pp. 1910
    • He, M.1    Xu, Y.2    Li, N.3
  • 78
    • 33645695410 scopus 로고    scopus 로고
    • Support Vector Machines in R
    • [CrossRef]
    • Karatzoglou, A.; Meyer, D.; Hornik, K. Support Vector Machines in R. J. Stat. Softw. 2006, 15, 1–28. [CrossRef]
    • (2006) J. Stat. Softw , vol.15 , pp. 1-28
    • Karatzoglou, A.1    Meyer, D.2    Hornik, K.3
  • 80
    • 85099884072 scopus 로고    scopus 로고
    • R Package Version 1.0.0. (accessed on 11 November 2020)
    • Kusnierczyk, W.; Eddelbuettel, D.; Hasselman, B. rbenchmark. R Package Version 1.0.0. 2012. Available online: https://cran.r-project.org/web/packages/rbenchmark/index.html (accessed on 11 November 2020).
    • (2012) rbenchmark
    • Kusnierczyk, W.1    Eddelbuettel, D.2    Hasselman, B.3
  • 81
  • 82
    • 84908097106 scopus 로고    scopus 로고
    • Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass
    • [CrossRef]
    • Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernandez, J.; Corvalan, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [CrossRef]
    • (2014) Remote Sens. Environ , vol.154 , pp. 102-114
    • Fassnacht, F.E.1    Hartig, F.2    Latifi, H.3    Berger, C.4    Hernandez, J.5    Corvalan, P.6    Koch, B.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.