메뉴 건너뛰기




Volumn 50, Issue 1, 2017, Pages 144-154

Corrigendum to: Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images (European Journal of Remote Sensing, (2017), 50, 1, (144-154), 10.1080/22797254.2017.1299557);Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images

Author keywords

artificial neural networks; classification; hyperspectral data; random forest; Support vector machines

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; FORESTRY; IMAGE CLASSIFICATION; RANDOM FORESTS; REMOTE SENSING; SUPPORT VECTOR MACHINES; VECTORS;

EID: 85022191954     PISSN: None     EISSN: 22797254     Source Type: Journal    
DOI: 10.1080/22797254.2017.1309510     Document Type: Erratum
Times cited : (271)

References (57)
  • 1
    • 84962670222 scopus 로고    scopus 로고
    • Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data
    • Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., & Notarnicola, C., (2015). Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sensing, 7, 16398–154. doi:10.3390/rs71215841
    • (2015) Remote Sensing , vol.7 , pp. 16154-16398
    • Ali, I.1    Greifeneder, F.2    Stamenkovic, J.3    Neumann, M.4    Notarnicola, C.5
  • 2
    • 85044825156 scopus 로고    scopus 로고
    • Monitoring forests: A new paradigm of remote sensing & GIS based change detection
    • Ashutosh, S., (2012). Monitoring forests: A new paradigm of remote sensing & GIS based change detection. Journal of Geographic Information System, 4, 470–478. doi:10.4236/jgis.2012.45051
    • (2012) Journal of Geographic Information System , vol.4 , pp. 470-478
    • Ashutosh, S.1
  • 3
    • 85044834585 scopus 로고    scopus 로고
    • Classification of textures in satellite image with Gabor filters and a multilayer perceptron with back propagation algorithm obtaining high accuracy
    • Beluco, A., Engel, P.M., & Beluco, A., (2015). Classification of textures in satellite image with Gabor filters and a multilayer perceptron with back propagation algorithm obtaining high accuracy. International Journal of Energy and Environment, 6(5), 437–460. doi:10.5935/2076-2909.20150001
    • (2015) International Journal of Energy and Environment , vol.6 , Issue.5 , pp. 437-460
    • Beluco, A.1    Engel, P.M.2    Beluco, A.3
  • 4
    • 0031412640 scopus 로고    scopus 로고
    • deterioration of forests in the Sudety Mountains, Poland, detected on satellite images
    • Bochenek, Z., Ciołkosz, A., & Iracka, M., (1997). deterioration of forests in the Sudety Mountains, Poland, detected on satellite images. Environmental Pollution, 98(3), 375–379. doi:10.1016/S0269-7491(97)00146-2
    • (1997) Environmental Pollution , vol.98 , Issue.3 , pp. 375-379
    • Bochenek, Z.1    Ciołkosz, A.2    Iracka, M.3
  • 5
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small sample microarray classification?
    • Braga-Neto, U.M., & Dougherty, E.R., (2014). Is cross-validation valid for small sample microarray classification? Bioinformatics, 20, 374–380. doi:10.1093/bioinformatics/btg419
    • (2014) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., (2001). Random forests. Machine Learning, 45, 5–32. doi:10.1023/A:1010933404324
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 7
    • 85044816706 scopus 로고    scopus 로고
    • Random forests
    • 21.04.2016
    • Breiman, L., & Cutler, A., (2004). Random forests. Available at https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm, accessed on 21.04.2016
    • (2004) accessed on
    • Breiman, L.1    Cutler, A.2
  • 8
    • 84926284886 scopus 로고    scopus 로고
    • Classification of herbaceous vegetation using airborne hyperspectral imagery
    • Burai, P., Deak, B., Valko, O., & Tomor, T., (2015). Classification of herbaceous vegetation using airborne hyperspectral imagery. Remote Sensing, 7, 2046–2066. doi:10.3390/rs70202046
    • (2015) Remote Sensing , vol.7 , pp. 2046-2066
    • Burai, P.1    Deak, B.2    Valko, O.3    Tomor, T.4
  • 11
    • 84920084218 scopus 로고    scopus 로고
    • Extraction of plant physiological status from hyperspectral signatures using machine learning methods
    • Doktor, D., Lausch, A., Spengler, D., & Thurner, M., (2014). Extraction of plant physiological status from hyperspectral signatures using machine learning methods. Remote Sensing, 6, 12247–12274. doi:10.3390/rs61212247
    • (2014) Remote Sensing , vol.6 , pp. 12247-12274
    • Doktor, D.1    Lausch, A.2    Spengler, D.3    Thurner, M.4
  • 12
    • 84892990190 scopus 로고    scopus 로고
    • Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: Exploratory of in situ hyperspectral indices and random forest regression
    • Elhadi, A., Onisimo, M., Abdel-Rahman, E., & Riyad, I., (2014). Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: Exploratory of in situ hyperspectral indices and random forest regression. International Journal of Remote Sensing, 35, 693–714. doi:10.1080/01431161.2013.870676
    • (2014) International Journal of Remote Sensing , vol.35 , pp. 693-714
    • Elhadi, A.1    Onisimo, M.2    Abdel-Rahman, E.3    Riyad, I.4
  • 15
    • 84928672637 scopus 로고    scopus 로고
    • Multi-method ensemble selection of spectral bands related to leaf biochemistry
    • Feilhauer, H., Asner, G.P., & Martin, R.E., (2015). Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sensing of Environment, 164, 57–65. doi:10.1016/j.rse.2015.03.033
    • (2015) Remote Sensing of Environment , vol.164 , pp. 57-65
    • Feilhauer, H.1    Asner, G.P.2    Martin, R.E.3
  • 16
    • 79955448374 scopus 로고    scopus 로고
    • Contextual land-cover classification: Incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic
    • Ghimire, B., Rogan, J., & Miller, J., (2010). Contextual land-cover classification: Incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sensing Letters, 1, 45–54. doi:10.1080/01431160903252327
    • (2010) Remote Sensing Letters , vol.1 , pp. 45-54
    • Ghimire, B.1    Rogan, J.2    Miller, J.3
  • 18
    • 84897585667 scopus 로고    scopus 로고
    • A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales
    • Ghosh, A., Fassnacht, F.E., Joshi, P.K., & Koch, B., (2014). A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. International Journal of Applied Erath Observation and Geoinformation, 26, 49–63. doi:10.1016/j.jag.2013.05.017
    • (2014) International Journal of Applied Erath Observation and Geoinformation , vol.26 , pp. 49-63
    • Ghosh, A.1    Fassnacht, F.E.2    Joshi, P.K.3    Koch, B.4
  • 19
    • 84925445146 scopus 로고    scopus 로고
    • Bistatic measurements for the estimation of rice crop variables using artificial neural network
    • Gupta, D.K., Kumar, P., Mishra, V.N., Prasad, R., Dikshit, P.K.S., Dwivedi, S.B., … Srivastava, V., (2015). Bistatic measurements for the estimation of rice crop variables using artificial neural network. Advances in Space Research, 55(6), 1613–1623. doi:10.1016/j.asr.2015.01.003
    • (2015) Advances in Space Research , vol.55 , Issue.6 , pp. 1613-1623
    • Gupta, D.K.1    Kumar, P.2    Mishra, V.N.3    Prasad, R.4    Dikshit, P.K.S.5    Dwivedi, S.B.6    Srivastava, V.7
  • 20
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang, C., Davis, L.S., & Townshed, J.R.G., (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23, 725–749. doi:10.1080/01431160110040323
    • (2002) International Journal of Remote Sensing , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshed, J.R.G.3
  • 23
    • 64549107235 scopus 로고    scopus 로고
    • Natural effects of large-area forest decline in the Western Sudeten
    • Jadczyk, P., (2009). Natural effects of large-area forest decline in the Western Sudeten. Environment Protection Engineering, 35, 49–56. http://epe.pwr.wroc.pl/2009/Jadczyk_1-2009.pdf
    • (2009) Environment Protection Engineering , vol.35 , pp. 49-56
    • Jadczyk, P.1
  • 27
    • 0346245214 scopus 로고    scopus 로고
    • The use of backpropagating artificial neural networks in land cover classification
    • Kavzoglu, T., & Mather, P.M., (2003). The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 24(23), 4097–4938. doi:10.1080/0143116031000114851
    • (2003) International Journal of Remote Sensing , vol.24 , Issue.23 , pp. 4097-4938
    • Kavzoglu, T.1    Mather, P.M.2
  • 28
    • 0242418172 scopus 로고    scopus 로고
    • Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data
    • Kokaly, R.F., Despain, D.G., Clark, R.N., & Livo, K.E., (2003). Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sensing of Environment, 84, 437–456. doi:10.1016/S0034-4257(02)00133-5
    • (2003) Remote Sensing of Environment , vol.84 , pp. 437-456
    • Kokaly, R.F.1    Despain, D.G.2    Clark, R.N.3    Livo, K.E.4
  • 29
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw, A., & Wiener, M., (2002). Classification and regression by randomForest. R News, 2(3), 18–22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 30
    • 1942536039 scopus 로고    scopus 로고
    • Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data
    • Linderman, M., Liu, J., Qi, J., An, L., Ouyang, Z., Yang, J., & Tan, Y., (2004). Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data. International Journal Remote Sensing, 25(9), 1685–1700. doi:10.1080/01431160310001598971
    • (2004) International Journal Remote Sensing , vol.25 , Issue.9 , pp. 1685-1700
    • Linderman, M.1    Liu, J.2    Qi, J.3    An, L.4    Ouyang, Z.5    Yang, J.6    Tan, Y.7
  • 31
    • 41449111212 scopus 로고    scopus 로고
    • Classification of Australian forest communities using aerial photography, CASI and HyMap data
    • Lucas, R., Bunting, P., Paterson, M., & Chisholm, L., (2008). Classification of Australian forest communities using aerial photography, CASI and HyMap data. Remote Sensing of Environment, 112(5), 2088–2103. doi:10.1016/j.rse.2007.10.011
    • (2008) Remote Sensing of Environment , vol.112 , Issue.5 , pp. 2088-2103
    • Lucas, R.1    Bunting, P.2    Paterson, M.3    Chisholm, L.4
  • 32
    • 84904020896 scopus 로고    scopus 로고
    • Mapping vegetation communities of the Karkonosze National Park using APEX hyperspectral data and support vector machines
    • Marcinkowska, A., Zagajewski, B., Ochtyra, A., Jarocińska, A., Raczko, E., Kupkova, L., … Meuleman, K., (2014). Mapping vegetation communities of the Karkonosze National Park using APEX hyperspectral data and support vector machines. Miscellanea Geographica, 18(2), 1–7. doi:10.2478/mgrsd-2014-0007.
    • (2014) Miscellanea Geographica , vol.18 , Issue.2 , pp. 1-7
    • Marcinkowska, A.1    Zagajewski, B.2    Ochtyra, A.3    Jarocińska, A.4    Raczko, E.5    Kupkova, L.6    Meuleman, K.7
  • 33
    • 37549009133 scopus 로고    scopus 로고
    • The application of artificial neural networks to the analysis of remotely sensed data
    • Mas, J.F., & Flores, J.J., (2008). The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3), 617–663. doi:10.1080/01431160701352154
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.3 , pp. 617-663
    • Mas, J.F.1    Flores, J.J.2
  • 34
    • 84904440118 scopus 로고    scopus 로고
    • The influence of the growing season on the spectral reflectance properties of forest tree species
    • Masaitis, G., & Mozgeris, G., (2013). The influence of the growing season on the spectral reflectance properties of forest tree species. Research for Rural Development - International Scientific Conference, 2, 20–26. http://connection.ebscohost.com/c/articles/93640992/influence-growing-season-spectral-reflectance-properties-forest-tree-species
    • (2013) Research for Rural Development - International Scientific Conference , vol.2 , pp. 20-26
    • Masaitis, G.1    Mozgeris, G.2
  • 36
    • 84894949232 scopus 로고    scopus 로고
    • Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats
    • Nagendra, H., Lucas, R., Honradoc, J.P., Jongman, R.H.G., Tarantino, C., Adamo, M., & Mairotaf, P., (2013). Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators, 33, 45–59. doi:10.1016/j.ecolind.2012.09.014
    • (2013) Ecological Indicators , vol.33 , pp. 45-59
    • Nagendra, H.1    Lucas, R.2    Honradoc, J.P.3    Jongman, R.H.G.4    Tarantino, C.5    Adamo, M.6    Mairotaf, P.7
  • 37
    • 84859644121 scopus 로고    scopus 로고
    • Classification of Savanna tree species, in the greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a random forest data mining environment
    • Naidoo, L., Cho, M.A., Mathieu, R., & Asner, G., (2012). Classification of Savanna tree species, in the greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a random forest data mining environment. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 167–179. doi:10.1016/j.isprsjprs.2012.03.005
    • (2012) ISPRS Journal of Photogrammetry and Remote Sensing , vol.69 , pp. 167-179
    • Naidoo, L.1    Cho, M.A.2    Mathieu, R.3    Asner, G.4
  • 38
    • 84939624431 scopus 로고    scopus 로고
    • Performance of support vector machines and artificial neural network for mapping endangered tree species using WorldView-2 data in Dukuduku forest, South Africa
    • Omer, G., Mutanga, O., Abdel-Rahman, E.M., & Adam, E., (2015). Performance of support vector machines and artificial neural network for mapping endangered tree species using WorldView-2 data in Dukuduku forest, South Africa. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10), 4825–4840. doi:10.1109/JSTARS.2015.2461136
    • (2015) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol.8 , Issue.10 , pp. 4825-4840
    • Omer, G.1    Mutanga, O.2    Abdel-Rahman, E.M.3    Adam, E.4
  • 39
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal, M., (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222. doi:10.1080/01431160412331269698
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 40
    • 33747086525 scopus 로고    scopus 로고
    • Some issues in the classification of DAIS hyperspectral data
    • Pal, M., & Mather, P.M., (2006). Some issues in the classification of DAIS hyperspectral data. International Journal of Remote Sensing, 27(14), 2895–2916. doi:10.1080/01431160500185227
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.14 , pp. 2895-2916
    • Pal, M.1    Mather, P.M.2
  • 41
    • 84874785808 scopus 로고    scopus 로고
    • Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu–Natal, South Africa
    • Peerbhay, K., Mutanga, O., & Ismail, R., (2013). Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu–Natal, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 19–28. doi:10.1016/j.isprsjprs.2013.01.013
    • (2013) ISPRS Journal of Photogrammetry and Remote Sensing , vol.79 , pp. 19-28
    • Peerbhay, K.1    Mutanga, O.2    Ismail, R.3
  • 43
    • 84867953019 scopus 로고    scopus 로고
    • High-resolution NO2 remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer
    • Damm, A., Van Roozendael, M., Fayt, C., & Buchmann, B
    • Popp, C., Brunner, D., Damm, A., Van Roozendael, M., Fayt, C., & Buchmann, B. (2012). High-resolution NO2 remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer, Atmospheric Measurement Techniques. 5, 2211–2225. doi:10.5194/amt-5-2211-2012
    • (2012) Atmospheric Measurement Techniques , vol.5 , pp. 2211-2225
    • Popp, C.1    Brunner, D.2
  • 47
    • 80052228371 scopus 로고    scopus 로고
    • High spatial resolution hyperspectral mapping for forest ecosystem at tree species level
    • Shen, G., Sakai, K., & Hoshino, Y., (2010). High spatial resolution hyperspectral mapping for forest ecosystem at tree species level. Agricultural Information Research, 19(3), 71–78. doi:10.3173/air.19.71
    • (2010) Agricultural Information Research , vol.19 , Issue.3 , pp. 71-78
    • Shen, G.1    Sakai, K.2    Hoshino, Y.3
  • 48
    • 78650132025 scopus 로고    scopus 로고
    • Comparing techniques for vegetation classification using multi- and hyperspectral images and ancillary environmental data
    • Sluiter, R., & Pebesma, E.J., (2010). Comparing techniques for vegetation classification using multi- and hyperspectral images and ancillary environmental data. International Journal of Remote Sensing, 31(23), 6143–6161. doi:10.1080/01431160903401379
    • (2010) International Journal of Remote Sensing , vol.31 , Issue.23 , pp. 6143-6161
    • Sluiter, R.1    Pebesma, E.J.2
  • 49
    • 85050459134 scopus 로고    scopus 로고
    • Feature-based treee species classification using airborne hyperspectral and lidar data in the Bavarian Forest National Park., EARSeL eProceedings, 14, (2), 49-70
    • Sommer, C,. Holzwarth S., Heiden U., Heurich M., Mueller J., & Mauser W. (2015). Feature-based treee species classification using airborne hyperspectral and lidar data in the Bavarian Forest National Park. EARSeL eProceedings, 14(2), 49-70. doi: 10.12760/02-2015-2-05.
    • (2015)
    • Sommer, C.1    Holzwarth, S.2    Heiden, U.3    Heurich, M.4    Mueller, J.5    Mauser, W.6
  • 50
    • 84939434402 scopus 로고    scopus 로고
    • Using class probabilities to map gradual transitions in shrub vegetation from simulated EnMAP data
    • Suess, S., van der Linden, S., Okujeni, A., Leitão, P.J., Schwieder, M., & Hostert, P., (2015). Using class probabilities to map gradual transitions in shrub vegetation from simulated EnMAP data. Remote Sensing, 7, 10668–10688. doi:10.3390/rs70810668
    • (2015) Remote Sensing , vol.7 , pp. 10668-10688
    • Suess, S.1    van der Linden, S.2    Okujeni, A.3    Leitão, P.J.4    Schwieder, M.5    Hostert, P.6
  • 51
    • 84937904899 scopus 로고    scopus 로고
    • The improvement of land cover classification by thermal remote sensing
    • Sun, L., & Schulz, K., (2015). The improvement of land cover classification by thermal remote sensing. Remote Sensing, 7, 8368–8390. doi:10.3390/rs70708368
    • (2015) Remote Sensing , vol.7 , pp. 8368-8390
    • Sun, L.1    Schulz, K.2
  • 52
    • 84870673267 scopus 로고    scopus 로고
    • Advances in hyperspectral remote sensing of vegetation and agricultural croplands
    • Thenkabail P.S., Lyon J.G., Huete A., (eds), Boca Raton, FL, USA: CRC Press Taylor & Francis Group, &,. In, (eds)
    • Thenkabail, P.S., Lyon, J.G., & Huete, A., (2012). Advances in hyperspectral remote sensing of vegetation and agricultural croplands. In P.S., Thenkabail, J.G., Lyon, & A., Huete (eds), ‘Hyperspectral remote sensing of vegetation’ (pp. 3–35). Boca Raton, FL, USA: CRC Press Taylor & Francis Group.
    • (2012) ‘Hyperspectral remote sensing of vegetation’ , pp. 3-35
    • Thenkabail, P.S.1    Lyon, J.G.2    Huete, A.3
  • 56
    • 85007380421 scopus 로고    scopus 로고
    • Ocena przydatności sieci neuronowych i danych hiperspektralnych do klasyfikacji roślinności Tatr Wysokich [assessment of neural networks and imaging spectroscopy for vegetation classification of the high tatras]
    • Zagajewski, B., (2010). Ocena przydatności sieci neuronowych i danych hiperspektralnych do klasyfikacji roślinności Tatr Wysokich [assessment of neural networks and imaging spectroscopy for vegetation classification of the high tatras]. Teledetekcja Środowiska, 43, 113.
    • (2010) Teledetekcja Środowiska , vol.43 , pp. 113
    • Zagajewski, B.1
  • 57
    • 84862164250 scopus 로고    scopus 로고
    • Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery
    • Zhang, C., & Xie, Z., (2012). Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery. Remote Sensing of Environment, 124, 310–320. doi:10.1016/j.rse.2012.05.015
    • (2012) Remote Sensing of Environment , vol.124 , pp. 310-320
    • Zhang, C.1    Xie, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.