메뉴 건너뛰기




Volumn 7, Issue 9, 2015, Pages 12356-12379

Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery

Author keywords

Crop type mapping; Land cover; Landsat 8; Random forests; Satellite image time series; Sentinel 2; SPOT4 (Take5); Support vector machines

Indexed keywords

AGRICULTURAL MACHINERY; ARTIFICIAL INTELLIGENCE; CROPS; DECISION TREES; IMAGE RESOLUTION; LEARNING SYSTEMS; MAPPING; REMOTE SENSING; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES;

EID: 84942518161     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs70912356     Document Type: Article
Times cited : (304)

References (54)
  • 6
    • 0035853540 scopus 로고    scopus 로고
    • Forecasting Agriculturally Driven Global Environmental Change
    • Tilman, D. Forecasting Agriculturally Driven Global Environmental Change. Science 2001, 292, 281-284.
    • (2001) Science , vol.292 , pp. 281-284
    • Tilman, D.1
  • 7
    • 84865392169 scopus 로고    scopus 로고
    • Restoration of Biodiversity and Ecosystem Services on Agricultural Land
    • Benayas, J.M.R.; Bullock, J.M. Restoration of Biodiversity and Ecosystem Services on Agricultural Land. Ecosystems 2012, 15, 883-899.
    • (2012) Ecosystems , vol.15 , pp. 883-899
    • Benayas, J.M.R.1    Bullock, J.M.2
  • 10
    • 84942534388 scopus 로고    scopus 로고
    • accessed on 18 September
    • Sentinel-2 for Agriculture. Available online: http://www.esa-sen2agri.org/(accessed on 18 September 2015).
    • (2015)
  • 11
    • 84942534389 scopus 로고    scopus 로고
    • CEOS Acquisition Strategy for GEOGLAM Phase 1, accessed on 18 September
    • Committee on Earth Observation Satellites. CEOS Acquisition Strategy for GEOGLAM Phase 1. Available online: http://ceos.org/document_management/Ad_Hoc_Teams/GEOGLAM/GEOGLAM_CEOS-Acquisition-Strategy-for-GEOGLAM-Phase-1_Nov2013.pdf (accessed on 18 September 2015).
    • (2015)
  • 12
    • 84942534390 scopus 로고    scopus 로고
    • accessed on 18 September
    • JECAM. Available online: http://www.jecam.org/(accessed on 18 September 2015).
    • (2015)
  • 15
    • 84925880595 scopus 로고    scopus 로고
    • Global Rain-Fed, Irrigated, and Paddy Croplands: A New High Resolution Map Derived From Remote Sensing, Crop Inventories and Climate Data
    • Salmon, J.; Friedl, M.A.; Frolking, S.; Wisser, D.; Douglas, E.M. Global Rain-Fed, Irrigated, and Paddy Croplands: A New High Resolution Map Derived From Remote Sensing, Crop Inventories and Climate Data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 321-334.
    • (2015) Int. J. Appl. Earth Obs. Geoinf. , vol.38 , pp. 321-334
    • Salmon, J.1    Friedl, M.A.2    Frolking, S.3    Wisser, D.4    Douglas, E.M.5
  • 18
    • 84930933471 scopus 로고    scopus 로고
    • MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets
    • Collection 5.1 IGBP Land Cover, Boston University, Boston, MA, USA
    • Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, 2001-2012, Collection 5.1 IGBP Land Cover, Boston University, Boston, MA, USA
    • (2001)
    • Friedl, M.A.1    Sulla-Menashe, D.2    Tan, B.3    Schneider, A.4    Ramankutty, N.5    Sibley, A.6    Huang, X.7
  • 20
    • 84928819002 scopus 로고    scopus 로고
    • A Framework for Defining Spatially Explicit Earth Observation Requirements for a Global Agricultural Monitoring Initiative (GEOGLAM)
    • Whitcraft, A.; Becker-Reshef, I.; Justice, C. A Framework for Defining Spatially Explicit Earth Observation Requirements for a Global Agricultural Monitoring Initiative (GEOGLAM). Remote Sens. 2015, 7, 1461-1481.
    • (2015) Remote Sens. , vol.7 , pp. 1461-1481
    • Whitcraft, A.1    Becker-Reshef, I.2    Justice, C.3
  • 21
    • 84928776537 scopus 로고    scopus 로고
    • Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions
    • Whitcraft, A.; Becker-Reshef, I.; Killough, B.; Justice, C. Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions. Remote Sens. 2015, 7, 1482-1503.
    • (2015) Remote Sens. , vol.7 , pp. 1482-1503
    • Whitcraft, A.1    Becker-Reshef, I.2    Killough, B.3    Justice, C.4
  • 23
    • 0021644388 scopus 로고
    • Classification of Corn and Soybeans Using Multitemporal Thematic Mapper Data
    • Badhwar, G. Classification of Corn and Soybeans Using Multitemporal Thematic Mapper Data. Remote Sens. Environ. 1984, 16, 175-181.
    • (1984) Remote Sens. Environ. , vol.16 , pp. 175-181
    • Badhwar, G.1
  • 24
    • 0346875638 scopus 로고    scopus 로고
    • Classification of Wheat Crop with Multi-Temporal Images: Performance of Maximum Likelihood and Artificial Neural Networks
    • Murthy, C.S.; Raju, P.V.; Badrinath, K.V.S. Classification of Wheat Crop with Multi-Temporal Images: Performance of Maximum Likelihood and Artificial Neural Networks. Int. J. Remote Sens. 2003, 24, 4871-4890.
    • (2003) Int. J. Remote Sens. , vol.24 , pp. 4871-4890
    • Murthy, C.S.1    Raju, P.V.2    Badrinath, K.V.S.3
  • 25
    • 84870666272 scopus 로고    scopus 로고
    • Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data
    • Brown, J.C.; Kastens, J.H.; Coutinho, A.C.; de Castro Victoria, D.; Bishop, C.R. Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sens. Environ. 2013, 130, 39-50.
    • (2013) Remote Sens. Environ. , vol.130 , pp. 39-50
    • Brown, J.C.1    Kastens, J.H.2    Coutinho, A.C.3    de Castro Victoria, D.4    Bishop, C.R.5
  • 26
    • 39749173163 scopus 로고    scopus 로고
    • Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains
    • Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096-1116.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 1096-1116
    • Wardlow, B.D.1    Egbert, S.L.2
  • 27
    • 5044236302 scopus 로고    scopus 로고
    • Cropland distributions from temporal unmixing of MODIS data
    • Lobell, D.B.; Asner, G.P. Cropland distributions from temporal unmixing of MODIS data. Remote Sens. Environ. 2004, 93, 412-422.
    • (2004) Remote Sens. Environ. , vol.93 , pp. 412-422
    • Lobell, D.B.1    Asner, G.P.2
  • 28
    • 77949486575 scopus 로고    scopus 로고
    • The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis
    • Ozdogan, M. The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis. Remote Sens. Environ. 2010, 114, 1190-1204.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 1190-1204
    • Ozdogan, M.1
  • 29
    • 54949085113 scopus 로고    scopus 로고
    • Sub-Pixel Classification of Spot-Vegetation Time Series for the Assessment of Regional Crop Areas in Belgium
    • Verbeiren, S.; Eerens, H.; Piccard, I.; Bauwens, I.; Orshoven, J.V. Sub-Pixel Classification of Spot-Vegetation Time Series for the Assessment of Regional Crop Areas in Belgium. Int. J. Appl. Earth Observ. Geoinf. 2008, 10, 486-497.
    • (2008) Int. J. Appl. Earth Observ. Geoinf. , vol.10 , pp. 486-497
    • Verbeiren, S.1    Eerens, H.2    Piccard, I.3    Bauwens, I.4    Orshoven, J.V.5
  • 30
    • 80051985673 scopus 로고    scopus 로고
    • Continuous Fields of Land Cover for the Conterminous United States Using Landsat Data: First Results From the Web-Enabled Landsat Data (weld) Project
    • Hansen, M.C.; Egorov, A.; Roy, D.P.; Potapov, P.; Ju, J.; Turubanova, S.; Kommareddy, I.; Loveland, T.R. Continuous Fields of Land Cover for the Conterminous United States Using Landsat Data: First Results From the Web-Enabled Landsat Data (weld) Project. Remote Sens. Lett. 2011, 2, 279-288.
    • (2011) Remote Sens. Lett. , vol.2 , pp. 279-288
    • Hansen, M.C.1    Egorov, A.2    Roy, D.P.3    Potapov, P.4    Ju, J.5    Turubanova, S.6    Kommareddy, I.7    Loveland, T.R.8
  • 31
    • 84884264508 scopus 로고    scopus 로고
    • Efficient Corn and Soybean Mapping with Temporal Extendability: A Multi-Year Experiment Using Landsat Imagery
    • Zhong, L.; Gong, P.; Biging, G.S. Efficient Corn and Soybean Mapping with Temporal Extendability: A Multi-Year Experiment Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 1-13.
    • (2014) Remote Sens. Environ. , vol.140 , pp. 1-13
    • Zhong, L.1    Gong, P.2    Biging, G.S.3
  • 33
    • 84942534392 scopus 로고    scopus 로고
    • accessed on 18 September
    • Theia Land Data Centre. Available online: https://www.theia-land.fr/en/products/spot4-take5 (accessed on 18 September 2015).
    • (2015)
  • 34
    • 84942534393 scopus 로고    scopus 로고
    • accessed on 18 September
    • Centre d'Etudes Spatiales de la BlOsphere. Available online: http://www.cesbio.ups-tlse.fr/(accessed on 18 September 2015).
    • (2015)
  • 35
    • 84942534394 scopus 로고    scopus 로고
    • accessed on 18 September
    • Geoglam crop monitor. Available online: http://www.geoglam-crop-monitor.org/index.php (accessed on 18 September 2015).
    • (2015)
  • 36
    • 84942534395 scopus 로고    scopus 로고
    • accessed on 18 September
    • AMIS. Available online: http://www.amis-outlook.org (accessed on 18 September 2015).
    • (2015)
  • 37
    • 84455200427 scopus 로고    scopus 로고
    • A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using Spot-5 Hrg Imagery
    • Duro, D.C.; Franklin, S.E.; Dubé, M.G. A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using Spot-5 Hrg Imagery. Remote Sens. Environ. 2012, 118, 259-272.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 39
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121-167.
    • (1998) Data Min. Knowl. Discov. , vol.2 , pp. 121-167
    • Burges, C.J.1
  • 41
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189-1232.
    • (2001) Ann. Stat. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 42
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 43
    • 84942534396 scopus 로고    scopus 로고
    • accessed on 18 September
    • Orfeo Toolbox. Available online: http://www.orfeo-toolbox.org/(accessed on 18 September 2015).
    • (2015)
  • 44
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35-46.
    • (1991) Remote Sens. Environ. , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 45
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation
    • Powers, D.M. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation; J. Mach. Lear. Technol. 2011, 1, 37-63.
    • (2011) J. Mach. Lear. Technol. , vol.1 , pp. 37-63
    • Powers, D.M.1
  • 46
    • 0036565814 scopus 로고    scopus 로고
    • Mean Shift: A Robust Approach toward Feature Space Analysis
    • Commaniciu, D. Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603-619.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 603-619
    • Commaniciu, D.1
  • 47
    • 0030429663 scopus 로고    scopus 로고
    • NDWI. A normalized difference water index for remote sensing of vegetation liquid water from space
    • Gao, B.C. NDWI. A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257-266.
    • (1996) Remote Sens. Environ. , vol.58 , pp. 257-266
    • Gao, B.C.1
  • 48
    • 0002792194 scopus 로고
    • What is Dempster-Shafer's model?
    • John Wiley & Sons, Inc.: New York, NY, USA
    • Smets, P. What is Dempster-Shafer's model? In Advances in the Dempster-Shafer Theory of Evidence; John Wiley & Sons, Inc.: New York, NY, USA, 1994; pp. 5-34.
    • (1994) Advances in the Dempster-Shafer Theory of Evidence , pp. 5-34
    • Smets, P.1
  • 49
    • 0026860706 scopus 로고
    • Methods of Combining Multiple Classifiers and Their Applications To Handwriting Recognition
    • Xu, L.; Krzyzak, A.; Suen, C.Y. Methods of Combining Multiple Classifiers and Their Applications To Handwriting Recognition. IEEE Trans. Syst. Man Cybern. 1992, 22, 418-435.
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 50
    • 65649138430 scopus 로고    scopus 로고
    • A Systematic Analysis of Performance Measures for Classification Tasks
    • Sokolova, M.; Lapalme, G. A Systematic Analysis of Performance Measures for Classification Tasks. Inf. Process. Manag. 2009, 45, 427-437.
    • (2009) Inf. Process. Manag. , vol.45 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2
  • 53
    • 67349093551 scopus 로고    scopus 로고
    • Classification Accuracy Comparison: Hypothesis Tests and the Use of Confidence Intervals in Evaluations of Difference, Equivalence and Non-Inferiority
    • Foody, G.M. Classification Accuracy Comparison: Hypothesis Tests and the Use of Confidence Intervals in Evaluations of Difference, Equivalence and Non-Inferiority. Remote Sens. Environ. 2009, 113, 1658-1663.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 1658-1663
    • Foody, G.M.1
  • 54
    • 84942534397 scopus 로고    scopus 로고
    • accessed on 18 September
    • Processing Chain for Crop type Map Production. Available online: http://tully.ups-tlse.fr/ariasm/croptype_bench/(accessed on 18 September 2015).
    • (2015)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.