-
1
-
-
84901651305
-
Land-Use/Cover Classification in a Heterogeneous Coastal Landscape Using RapidEye Imagery: Evaluating the Performance of Random Forest and Support Vector Machines Classifiers
-
Adam, E., O. Mutanga, J. Odindi, and E. M. Abdel-Rahman. 2014. “Land-Use/Cover Classification in a Heterogeneous Coastal Landscape Using RapidEye Imagery: Evaluating the Performance of Random Forest and Support Vector Machines Classifiers.” International Journal of Remote Sensing 35 (10): 3440–3458. doi:10.1080/01431161.2014.903435.
-
(2014)
International Journal of Remote Sensing
, vol.35
, Issue.10
, pp. 3440-3458
-
-
Adam, E.1
Mutanga, O.2
Odindi, J.3
Abdel-Rahman, E.M.4
-
2
-
-
0000581356
-
An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression
-
Altman, N. S. 1992. “An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression.” The American Statistician 46 (3): 175–185. doi:10.1080/00031305.1992.10475879.
-
(1992)
The American Statistician
, vol.46
, Issue.3
, pp. 175-185
-
-
Altman, N.S.1
-
3
-
-
35348920168
-
Feature Selection and Classification of Hyperspectral; Images with Support Vector Machines
-
Archibald, R., and G. Fann. 2007. “Feature Selection and Classification of Hyperspectral; Images with Support Vector Machines.” IEEE Geoscience and Remote Sensing Letters 4 (4): 674–677. doi:10.1109/LGRS.2007.905116.
-
(2007)
IEEE Geoscience and Remote Sensing Letters
, vol.4
, Issue.4
, pp. 674-677
-
-
Archibald, R.1
Fann, G.2
-
4
-
-
0031105739
-
Introduction Neural Networks in Remote Sensing
-
Atkinson, P. M., and A. R. L. Tatnall. 1997. “Introduction Neural Networks in Remote Sensing.” International Journal of Remote Sensing 18 (4): 699–709. doi:10.1080/014311697218700.
-
(1997)
International Journal of Remote Sensing
, vol.18
, Issue.4
, pp. 699-709
-
-
Atkinson, P.M.1
Tatnall, A.R.L.2
-
5
-
-
0017957910
-
A Note on Distance-Weighted K-Nearest Neighbor Rules
-
Bailey, T., and A. K. Jain. 1978. “A Note on Distance-Weighted K-Nearest Neighbor Rules.” IEEE Transactions on Systems, Man, and Cybernetics SMC, 8 (4): 311–313.
-
(1978)
IEEE Transactions on Systems, Man, and Cybernetics SMC
, vol.8
, Issue.4
, pp. 311-313
-
-
Bailey, T.1
Jain, A.K.2
-
7
-
-
33750798496
-
Toward an Optimal SVM Classification System for Hyperspectral Remote Sensing Images
-
Bazi, Y., and F. Melgani. 2006. “Toward an Optimal SVM Classification System for Hyperspectral Remote Sensing Images.” IEEE Transactions on Geoscience and Remote Sensing 44 (11): 3374–3385. doi:10.1109/TGRS.2006.880628.
-
(2006)
IEEE Transactions on Geoscience and Remote Sensing
, vol.44
, Issue.11
, pp. 3374-3385
-
-
Bazi, Y.1
Melgani, F.2
-
8
-
-
84961834117
-
Random Forest in Remote Sensing: A Review of Applications and Future Directions
-
Belgiu, M., and L. Drăguţ. 2016. “Random Forest in Remote Sensing: A Review of Applications and Future Directions.” ISPRS Journal of Photogrammetry and Remote Sensing 114: 24–31. doi:10.1016/j.isprsjprs.2016.01.011.
-
(2016)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.114
, pp. 24-31
-
-
Belgiu, M.1
Drăguţ, L.2
-
9
-
-
77957988489
-
Class Prediction for High-Dimensional Class-Imbalanced Data
-
Blagus, R., and L. Lusa. 2010. “Class Prediction for High-Dimensional Class-Imbalanced Data.” BMC Bioinformatics 11 (523): 1–17. doi:10.1186/1471-2105-11-523.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.523
, pp. 1-17
-
-
Blagus, R.1
Lusa, L.2
-
10
-
-
0035478854
-
Random Forests
-
Breiman, L. 2001. “Random Forests.” Machine Learning 54 (1): 5–32. doi:10.1023/A:1010933404324.
-
(2001)
Machine Learning
, vol.54
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
11
-
-
33746606930
-
Robust Support Vector Regression for Biophysical Variable Estimation from Remotely Sensed Data
-
Camps-Valls, G., L. Bruzzone, J. L. Rojo-Álvarez, and F. Melgani. 2006. “Robust Support Vector Regression for Biophysical Variable Estimation from Remotely Sensed Data.” IEEE Geoscience and Remote Sensing Letters 3 (3): 339–343. doi:10.1109/LGRS.2006.871748.
-
(2006)
IEEE Geoscience and Remote Sensing Letters
, vol.3
, Issue.3
, pp. 339-343
-
-
Camps-Valls, G.1
Bruzzone, L.2
Rojo-Álvarez, J.L.3
Melgani, F.4
-
12
-
-
85014293109
-
Modification of the Random Forest Algorithm to Avoid Statistical Dependence Problems When Classifying Remote Sensing Imagery
-
Cánovas-García, F., F. Alonso-Sarría, F. Gomariz-Castillo, and F. Oñate-Valdivieso. 2017. “Modification of the Random Forest Algorithm to Avoid Statistical Dependence Problems When Classifying Remote Sensing Imagery.” Computers & Geosciences 103: 1–11. doi:10.1016/j.cageo.2017.02.012.
-
(2017)
Computers & Geosciences
, vol.103
, pp. 1-11
-
-
Cánovas-García, F.1
Alonso-Sarría, F.2
Gomariz-Castillo, F.3
Oñate-Valdivieso, F.4
-
13
-
-
0035273693
-
Enhanced Algorithm Performance for Land Cover Classification from Remotely Sensed Data Using Bagging and Boosting
-
Chan, J. C. W., C. Huang, and R. DeFries. 2001. “Enhanced Algorithm Performance for Land Cover Classification from Remotely Sensed Data Using Bagging and Boosting.” IEEE Transactions on Geoscience and Remote Sensing Communications 39 (3): 693–695. doi:10.1109/36.911126.
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing Communications
, vol.39
, Issue.3
, pp. 693-695
-
-
Chan, J.C.W.1
Huang, C.2
Defries, R.3
-
14
-
-
43949125818
-
Evaluation of Random Forests and Adaboost Tree-Based Ensemble Classification and Spectral Band Selection for Ecotope Mapping Using Airborne Hyperspectral Imagery
-
Chan, J. C. W., and D. Paelinckx. 2008. “Evaluation of Random Forests and Adaboost Tree-Based Ensemble Classification and Spectral Band Selection for Ecotope Mapping Using Airborne Hyperspectral Imagery.” Remote Sensing of Environment 112: 2999–3011. doi:10.1016/j.rse.2008.02.011.
-
(2008)
Remote Sensing of Environment
, vol.112
, pp. 2999-3011
-
-
Chan, J.C.W.1
Paelinckx, D.2
-
15
-
-
0346586663
-
SMOTE: Synthetic Minority Over-Sampling Technique
-
Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. “SMOTE: Synthetic Minority Over-Sampling Technique.” Journal of Artificial Intelligence Research 16: 321–357.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
16
-
-
84905925092
-
Deep Learning-Based Classification of Hyperspectral Data
-
Chen, Y., Z. Lin, X. Zhao, G. Wang, and Y. Gu. 2014. “Deep Learning-Based Classification of Hyperspectral Data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (6): 2094–2107. doi:10.1109/JSTARS.2014.2329330.
-
(2014)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, vol.7
, Issue.6
, pp. 2094-2107
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
17
-
-
34249753618
-
Support-Vector Networks
-
Cortes, C., and V. Vapnik. 1995. “Support-Vector Networks.” Machine Learning 20: 273–297. doi:10.1007/BF00994018.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
18
-
-
84864263454
-
Modeling Percent Tree Canopy Cover: A Pilot Study
-
Coulston, J. W., G. G. Moisen, B. T. Wilson, M. V. Finco, W. B. Cohen, and C. K. Brewer. 2012. “Modeling Percent Tree Canopy Cover: A Pilot Study.” Photogrammetric Engineering & Remote Sensing 78 (7): 715–727. doi:10.14358/PERS.78.7.715.
-
(2012)
Photogrammetric Engineering & Remote Sensing
, vol.78
, Issue.7
, pp. 715-727
-
-
Coulston, J.W.1
Moisen, G.G.2
Wilson, B.T.3
Finco, M.V.4
Cohen, W.B.5
Brewer, C.K.6
-
20
-
-
38449114584
-
Random Forests for Classification in Ecology
-
Cutler, D. R., T. C. Edwards Jr., K. H. Beard, A. Cutler, K. T. Hess, J. Gibson, and J. J. Lawler. 2007. “Random Forests for Classification in Ecology.” Ecology 88 (11): 2783–2792. doi:10.1890/07-0539.1.
-
(2007)
Ecology
, vol.88
, Issue.11
, pp. 2783-2792
-
-
Cutler, D.R.1
Edwards, T.C.2
Beard, K.H.3
Cutler, A.4
Hess, K.T.5
Gibson, J.6
Lawler, J.J.7
-
22
-
-
84455200427
-
A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery
-
Duro, D. C., S. E. Franklin, and M. F. Dubé. 2012a. “A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery.” Remote Sensing of Environment 118: 259–272. doi:10.1016/j.rse.2011.11.020.
-
(2012)
Remote Sensing of Environment
, vol.118
, pp. 259-272
-
-
Duro, D.C.1
Franklin, S.E.2
Dubé, M.F.3
-
23
-
-
84856982478
-
Multi-Scale Object-Based Analysis and Feature Selection of Multi-Sensor Earth Observation Imagery Using Random Forests
-
Duro, D. S., S. E. Franklin, and M. F. Dubé. 2012b. “Multi-Scale Object-Based Analysis and Feature Selection of Multi-Sensor Earth Observation Imagery Using Random Forests.” International Journal of Remote Sensing 33 (14): 4502–4526. doi:10.1080/01431161.2011.649864.
-
(2012)
International Journal of Remote Sensing
, vol.33
, Issue.14
, pp. 4502-4526
-
-
Duro, D.S.1
Franklin, S.E.2
Dubé, M.F.3
-
24
-
-
0031105722
-
An Evaluation of Some Factors Affecting the Accuracy of Classification by an Artificial Neural Network
-
Foody, F. M., and M. K. Arora. 1997. “An Evaluation of Some Factors Affecting the Accuracy of Classification by an Artificial Neural Network.” International Journal of Remote Sensing 18: 799–810. doi:10.1080/014311697218764.
-
(1997)
International Journal of Remote Sensing
, vol.18
, pp. 799-810
-
-
Foody, F.M.1
Arora, M.K.2
-
25
-
-
3042654673
-
A Relative Evaluation of Multiclass Image Classification by Support Vector Machines
-
Foody, G. M., and H. Mathur. 2004. “A Relative Evaluation of Multiclass Image Classification by Support Vector Machines.” IEEE Transactions on Geoscience and Remote Sensing 42 (6): 1335–1343. doi:10.1109/TGRS.2004.827257.
-
(2004)
IEEE Transactions on Geoscience and Remote Sensing
, vol.42
, Issue.6
, pp. 1335-1343
-
-
Foody, G.M.1
Mathur, H.2
-
26
-
-
84994156533
-
The Sensitivity of Mapping Methods to Reference Data Quality: Training Supervised Image Classification with Imperfect Reference Data
-
Foody, G. M., M. Pal., D. Rocchini, C. X. Garzon-Lopez, and L. Bastin. 2016. “The Sensitivity of Mapping Methods to Reference Data Quality: Training Supervised Image Classification with Imperfect Reference Data.” International Journal of Geo-Information 5 (11): 1–20. doi:10.3390/ijgi5110199.
-
(2016)
International Journal of Geo-Information
, vol.5
, Issue.11
, pp. 1-20
-
-
Foody, G.M.1
Pal, M.2
Rocchini, D.3
Garzon-Lopez, C.X.4
Bastin, L.5
-
28
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
Freund, Y., and R. E. Schapire. 1997. “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting.” Journal of Computer and System Sciences 55: 119–139. doi:10.1006/jcss.1997.1504.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
29
-
-
0344972104
-
Decision Tree Classification of Land Cover Form Remotely Sensed Data
-
Friedl, M. A., and C. E. Brodley. 1997. “Decision Tree Classification of Land Cover Form Remotely Sensed Data.” Remote Sensing of Environment 61: 399–409. doi:10.1016/S0034-4257(97)00049-7.
-
(1997)
Remote Sensing of Environment
, vol.61
, pp. 399-409
-
-
Friedl, M.A.1
Brodley, C.E.2
-
30
-
-
62649107523
-
The Classification of Complex Data Sets: An Operational Comparison of Artificial Neural Networks and Decision Tree Classifiers
-
Gahegan, M., and G. West. 1998. “The Classification of Complex Data Sets: An Operational Comparison of Artificial Neural Networks and Decision Tree Classifiers.” Proceedings of the 3rd International Conference on GeoComputation 17–19. http://www.geocomputation.org/1998/61/gc_61.htm
-
(1998)
Proceedings of the 3Rd International Conference on Geocomputation
, pp. 17-19
-
-
Gahegan, M.1
West, G.2
-
31
-
-
85016188297
-
Advanced Spectral Classifiers for Hyperspectral Images: A Review
-
Ghamisi, P., J. Plaza, Y. Chen, J. Li, and A. Plaza. 2017. “Advanced Spectral Classifiers for Hyperspectral Images: A Review.” IEEE Geoscience and Remote Sensing Magazine 5 (1): 8–32. doi:10.1109/MGRS.2016.2616418.
-
(2017)
IEEE Geoscience and Remote Sensing Magazine
, vol.5
, Issue.1
, pp. 8-32
-
-
Ghamisi, P.1
Plaza, J.2
Chen, Y.3
Li, J.4
Plaza, A.5
-
32
-
-
84866847148
-
An Evaluation of Bagging, Boosting, and Random Forests for Land-Cover Classification in Cape Cod, Massachusetts, USA
-
Ghimire, B., J. Rogan, V. Rodríguez-Galiano, P. Panday, and N. Neeti. 2012. “An Evaluation of Bagging, Boosting, and Random Forests for Land-Cover Classification in Cape Cod, Massachusetts, USA.” GIScience & Remote Sensing 49 (5): 623–643. doi:10.2747/1548-1603.49.5.623.
-
(2012)
Giscience & Remote Sensing
, vol.49
, Issue.5
, pp. 623-643
-
-
Ghimire, B.1
Rogan, J.2
Rodríguez-Galiano, V.3
Panday, P.4
Neeti, N.5
-
33
-
-
84897585667
-
A Framework for Mapping Tree Species Combining Hyperspectral and LiDAR Data: Role of Selected Classifiers and Sensor across Three Spatial Scales
-
Ghosh, A., F. E. Fassnacht, P. K. Joshi, and B. Koch. 2014. “A Framework for Mapping Tree Species Combining Hyperspectral and LiDAR Data: Role of Selected Classifiers and Sensor across Three Spatial Scales.” International Journal of Applied Earth Observation and Geoinformation 26: 49–63. doi:10.1016/j.jag.2013.05.017.
-
(2014)
International Journal of Applied Earth Observation and Geoinformation
, vol.26
, pp. 49-63
-
-
Ghosh, A.1
Fassnacht, F.E.2
Joshi, P.K.3
Koch, B.4
-
35
-
-
78650731656
-
Relevance of Airborne LiDAR and Multispectral Image Data for Urban Scene Classification Using Random Forests
-
Guo, L., N. Chehata, C. Mallet, and S. Boukir. 2011. “Relevance of Airborne LiDAR and Multispectral Image Data for Urban Scene Classification Using Random Forests.” ISPRS Journal of Photogrammetry and Remote Sensing 66: 56–66. doi:10.1016/j.isprsjprs.2010.08.007.
-
(2011)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.66
, pp. 56-66
-
-
Guo, L.1
Chehata, N.2
Mallet, C.3
Boukir, S.4
-
38
-
-
0029667616
-
Classification Trees: An Alternative to Traditional Land Cover Classifiers
-
Hansen, M., R. Dubayah, and R. DeFries. 1996. “Classification Trees: An Alternative to Traditional Land Cover Classifiers.” International Journal of Remote Sensing 17 (5): 1075–1081. doi:10.1080/01431169608949069.
-
(1996)
International Journal of Remote Sensing
, vol.17
, Issue.5
, pp. 1075-1081
-
-
Hansen, M.1
Dubayah, R.2
Defries, R.3
-
39
-
-
0034656178
-
A Comparison of the IGBP DISCover and University of Maryland 1 Km Global Land-Cover Products
-
Hansen, M. C., and B. Reed. 2000. “A Comparison of the IGBP DISCover and University of Maryland 1 Km Global Land-Cover Products.” International Journal of Remote Sensing 21 (6–7): 1365–1373. doi:10.1080/014311600210218.
-
(2000)
International Journal of Remote Sensing
, vol.21
, Issue.6-7
, pp. 1365-1373
-
-
Hansen, M.C.1
Reed, B.2
-
40
-
-
84896365008
-
High-Resolution Landcover Classification Using Random Forests
-
Hayes, M. M., S. N. Miller, and M. A. Murphy. 2014. “High-Resolution Landcover Classification Using Random Forests.” Remote Sensing Letters 5 (2): 112–121. doi:10.1080/2150704X.2014.882526.
-
(2014)
Remote Sensing Letters
, vol.5
, Issue.2
, pp. 112-121
-
-
Hayes, M.M.1
Miller, S.N.2
Murphy, M.A.3
-
42
-
-
85025688337
-
A Time Series of Annual Land Use and Land Cover Maps of China from 1982 to 2013 Generated Using AVHRR GIMMS NDVI3g Data
-
He, Y., E. Lee, and T. A. Warner. 2017. “A Time Series of Annual Land Use and Land Cover Maps of China from 1982 to 2013 Generated Using AVHRR GIMMS NDVI3g Data.” Remote Sensing of Environment 199: 201–217. doi:10.1016/j.rse.2017.07.010.
-
(2017)
Remote Sensing of Environment
, vol.199
, pp. 201-217
-
-
He, Y.1
Lee, E.2
Warner, T.A.3
-
43
-
-
4143112403
-
Development of a 2001 National Land-Cover Database for the United States
-
Homer, C., C. Huang, L. Yuang, B. Wylie, and M. Coan. 2004. “Development of a 2001 National Land-Cover Database for the United States.” Photogrammetric Engineering & Remote Sensing 70 (7): 829–840. doi:10.14358/PERS.70.7.829.
-
(2004)
Photogrammetric Engineering & Remote Sensing
, vol.70
, Issue.7
, pp. 829-840
-
-
Homer, C.1
Huang, C.2
Yuang, L.3
Wylie, B.4
Coan, M.5
-
44
-
-
85048710205
-
RWeka: R/Weka Interface
-
Hornik, K., C. Buchta, T. Hothorn, A. Karatzoglou, D. Meyer, and A. Zeileis. 2017. “RWeka: R/Weka Interface.” R package version 0.4-36. https://cran.r-project.org/web/packages/RWeka/index.html.
-
(2017)
R Package Version
, vol.10
, pp. 4-36
-
-
Hornik, K.1
Buchta, C.2
Hothorn, T.3
Karatzoglou, A.4
Meyer, D.5
Zeileis, A.6
-
45
-
-
0037138473
-
An Assessment of Support Vector Machines for Land Cover Classification
-
Huang, C., L. S. Davis, and J. R. G. Townshend. 2002. “An Assessment of Support Vector Machines for Land Cover Classification.” International Journal of Remote Sensing 23 (4): 725–749. doi:10.1080/01431160110040323.
-
(2002)
International Journal of Remote Sensing
, vol.23
, Issue.4
, pp. 725-749
-
-
Huang, C.1
Davis, L.S.2
Townshend, J.R.G.3
-
46
-
-
77957741951
-
On the Man Accuracy of Statistical Pattern Recognizers
-
Hughes, G. F. 1968. “On the Man Accuracy of Statistical Pattern Recognizers.” IEEE Transactions on Information Theory 14: 55–63. doi:10.1109/TIT.1968.1054102.
-
(1968)
IEEE Transactions on Information Theory
, vol.14
, pp. 55-63
-
-
Hughes, G.F.1
-
47
-
-
84869054245
-
High Resolution Urban Land Cover Classification Using a Competitive Multi- Scale Object-Based Approach
-
Johnson, B. 2013. “High Resolution Urban Land Cover Classification Using a Competitive Multi- Scale Object-Based Approach.” Remote Sensing Letters 4 (2): 131–140. doi:10.1080/2150704X.2012.705440.
-
(2013)
Remote Sensing Letters
, vol.4
, Issue.2
, pp. 131-140
-
-
Johnson, B.1
-
48
-
-
84879561232
-
Classifying a High Resolution Image of an Urban Area Using Super- Object Information
-
Johnson, B., and Z. Xie. 2013. “Classifying a High Resolution Image of an Urban Area Using Super- Object Information.” ISPRS Journal of Photogrammetry and Remote Sensing 83: 40–49. doi:10.1016/j.isprsjprs.2013.05.008.
-
(2013)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.83
, pp. 40-49
-
-
Johnson, B.1
Xie, Z.2
-
49
-
-
85048703404
-
Kernlab: Kernel-Based Machine Learning Lab
-
Karatzoglou, A., A. Smola, and K. Hornik. 2016. “Kernlab: Kernel-Based Machine Learning Lab.” R package version 0.9-25. https://cran.r-project.org/web/packages/kernlab/index.html.
-
(2016)
R Package Version 0.9-25
-
-
Karatzoglou, A.1
Smola, A.2
Hornik, K.3
-
50
-
-
67650759361
-
A Kernel Function Analysis for Support Vector Machines for Land Cover Classification
-
Kavzoglu, T., and I. Colkesen. 2009. “A Kernel Function Analysis for Support Vector Machines for Land Cover Classification.” International Journal of Applied Earth Observation and Geoinformation 11 (5): 352–359. doi:10.1016/j.jag.2009.06.002.
-
(2009)
International Journal of Applied Earth Observation and Geoinformation
, vol.11
, Issue.5
, pp. 352-359
-
-
Kavzoglu, T.1
Colkesen, I.2
-
51
-
-
0346245214
-
The Use of Backpropagation Artificial Neural Networks in Land Cover Classification
-
Kavzoglu, T., and P. M. Mather. 2003. “The Use of Backpropagation Artificial Neural Networks in Land Cover Classification.” International Journal of Remote Sensing 24: 4907–4938. doi:10.1080/0143116031000114851.
-
(2003)
International Journal of Remote Sensing
, vol.24
, pp. 4907-4938
-
-
Kavzoglu, T.1
Mather, P.M.2
-
52
-
-
84909594503
-
A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning
-
Khalid, S., T. Khalil, and S. Nasreen. 2014. “A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning.” 2014 Science and Information Conference 372–378. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6918213
-
(2014)
2014 Science and Information Conference
, pp. 372-378
-
-
Khalid, S.1
Khalil, T.2
Nasreen, S.3
-
53
-
-
85048704478
-
C50: C5.0 Decision Trees and Rule- Based Models
-
Kuhn, M., S. Weston, N. Coulter, M. Culp, and R. Quinlan. 2015. “C50: C5.0 Decision Trees and Rule- Based Models.” R package version 0.8.0. https://cran.r-project.org/web/packages/C50/index.html.
-
(2015)
R Package Version 0.8.0
-
-
Kuhn, M.1
Weston, S.2
Coulter, N.3
Culp, M.4
Quinlan, R.5
-
54
-
-
84978425812
-
Caret: Classification and Regression Training
-
Kuhn, M., J. Wing, S. Weston, A. Williams, C. Keefer, A. Engelhardt, T. Cooper, et al. 2016. “Caret: Classification and Regression Training.” R package version 6.0-73. https://cran.r-project.org/web/packages/caret/index.html.
-
(2016)
R Package Version 6.0-73
-
-
Kuhn, M.1
Wing, J.2
Weston, S.3
Williams, A.4
Keefer, C.5
Engelhardt, A.6
Cooper, T.7
-
55
-
-
77958158373
-
Feature Selection with the Boruta Package
-
Kursa, M. B., and W. R. Rudnicki. 2010. “Feature Selection with the Boruta Package.” Journal of Statistical Software 36: 1–13. doi:10.18637/jss.v036.i11.
-
(2010)
Journal of Statistical Software
, vol.36
, pp. 1-13
-
-
Kursa, M.B.1
Rudnicki, W.R.2
-
56
-
-
84864510265
-
A Comparison of Three Feature Selection Methods for Object-Based Classification of Sub-Decimeter Resolution UltraCam-L Imagery
-
Laliberte, A. S., D. M. Browning, and A. Rango. 2012. “A Comparison of Three Feature Selection Methods for Object-Based Classification of Sub-Decimeter Resolution UltraCam-L Imagery.” International Journal of Applied Earth Observation and Geoinformation 15: 70–78. doi:10.1016/j.jag.2011.05.011.
-
(2012)
International Journal of Applied Earth Observation and Geoinformation
, vol.15
, pp. 70-78
-
-
Laliberte, A.S.1
Browning, D.M.2
Rango, A.3
-
57
-
-
84942543920
-
The AmericaView Classification Methods Accuracy Project: A Rigorous Approach for Model Selection
-
Lawrence, R. L., and C. J. Moran. 2015. “The AmericaView Classification Methods Accuracy Project: A Rigorous Approach for Model Selection.” Remote Sensing of Environment 170: 115–120. doi:10.1016/j.rse.2015.09.008.
-
(2015)
Remote Sensing of Environment
, vol.170
, pp. 115-120
-
-
Lawrence, R.L.1
Moran, C.J.2
-
58
-
-
31344453556
-
Mapping Invasive Plants Using Hyperspectral Imagery and Breiman Cutler Classifications (Random Forests)
-
Lawrence, R. L., S. D. Wood, and R. L. Sheley. 2006. “Mapping Invasive Plants Using Hyperspectral Imagery and Breiman Cutler Classifications (Random Forests).” Remote Sensing of Environment 100: 356–362. doi:10.1016/j.rse.2005.10.014.
-
(2006)
Remote Sensing of Environment
, vol.100
, pp. 356-362
-
-
Lawrence, R.L.1
Wood, S.D.2
Sheley, R.L.3
-
59
-
-
84894607481
-
Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery
-
Li, C., J. Wang, L. Wang, L. Hu, and P. Gong. 2014. “Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery.” Remote Sensing 6 (2): 964–983. doi:10.3390/rs6020964.
-
(2014)
Remote Sensing
, vol.6
, Issue.2
, pp. 964-983
-
-
Li, C.1
Wang, J.2
Wang, L.3
Hu, L.4
Gong, P.5
-
60
-
-
55449099294
-
Mapping Selective Logging in Mixed Deciduous Forest: A Comparison of Machine Learning Algorithms
-
Lippitt, C. D., J. Rogan, Z. Li., J. R. Eastman, and T. G. Jones. 2008. “Mapping Selective Logging in Mixed Deciduous Forest: A Comparison of Machine Learning Algorithms.” Photogrammetric Engineering & Remote Sensing 74 (10): 1201–1211. doi:10.14358/PERS.74.10.1201.
-
(2008)
Photogrammetric Engineering & Remote Sensing
, vol.74
, Issue.10
, pp. 1201-1211
-
-
Lippitt, C.D.1
Rogan, J.2
Li, Z.3
Eastman, J.R.4
Jones, T.G.5
-
62
-
-
33947591833
-
A Survey of Image Classification Methods and Techniques for Improving Classification Performance
-
Lu, D., and Q. Weng. 2007. “A Survey of Image Classification Methods and Techniques for Improving Classification Performance.” International Journal of Remote Sensing 28 (5): 823–870. doi:10.1080/01431160600746456.
-
(2007)
International Journal of Remote Sensing
, vol.28
, Issue.5
, pp. 823-870
-
-
Lu, D.1
Weng, Q.2
-
63
-
-
39749162214
-
Object-Based Classification Using Quickbird Imagery for Delineating Forest Vegetation Polygons in a Mediterranean Test Site
-
Mallinis, G., N. Koutsias, M. Tsakiri-Strati, and M. Karteris. 2008. “Object-Based Classification Using Quickbird Imagery for Delineating Forest Vegetation Polygons in a Mediterranean Test Site.” ISPRS Journal of Photogrammetry and Remote Sensing 63 (2): 237–250. doi:10.1016/j.isprsjprs.2007.08.007.
-
(2008)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.63
, Issue.2
, pp. 237-250
-
-
Mallinis, G.1
Koutsias, N.2
Tsakiri-Strati, M.3
Karteris, M.4
-
64
-
-
26844554427
-
Estimation of Mediterranean Forest Attributes by the Application of k-NN Procedures to Multitemporal Landsat ETM+ Images
-
Maselli, F., G. Chirici, L. Bottai, P. Corona, and M. Marchetti. 2005. “Estimation of Mediterranean Forest Attributes by the Application of k-NN Procedures to Multitemporal Landsat ETM+ Images.” International Journal of Remote Sensing 26 (17): 3781–3796. doi:10.1080/01431160500166433.
-
(2005)
International Journal of Remote Sensing
, vol.26
, Issue.17
, pp. 3781-3796
-
-
Maselli, F.1
Chirici, G.2
Bottai, L.3
Corona, P.4
Marchetti, M.5
-
67
-
-
84901800835
-
Comparison of NAIP Orthophotography and RapidEye Satellite Imagery for Mapping of Mining and Mine Reclamation
-
Maxwell, A. E., M. P. Strager, T. A. Warner, N. P. Zégre, and C. B. Yuill. 2014a. “Comparison of NAIP Orthophotography and RapidEye Satellite Imagery for Mapping of Mining and Mine Reclamation.” GIScience & Remote Sensing 51 (3): 310–320. doi:10.1080/15481603.2014.912874.
-
(2014)
Giscience & Remote Sensing
, vol.51
, Issue.3
, pp. 310-320
-
-
Maxwell, A.E.1
Strager, M.P.2
Warner, T.A.3
Zégre, N.P.4
Yuill, C.B.5
-
68
-
-
84988310639
-
Predicting Palustrine Wetland Probabilities Using Random Forest Machine Learning and Digital Elevation Data-Derived Terrain Variables
-
Maxwell, A. E., T. A. Warner, and M. P. Strager. 2016. “Predicting Palustrine Wetland Probabilities Using Random Forest Machine Learning and Digital Elevation Data-Derived Terrain Variables.” Photogrammetric Engineering & Remote Sensing 82 (6): 437–447. doi:10.14358/PERS.82.6.437.
-
(2016)
Photogrammetric Engineering & Remote Sensing
, vol.82
, Issue.6
, pp. 437-447
-
-
Maxwell, A.E.1
Warner, T.A.2
Strager, M.P.3
-
69
-
-
84923357893
-
Assessing Machine- Learning Algorithms and Image- and LiDAR-derived Variables for GEOBIA Classification of Mining and Mine Reclamation
-
Maxwell, A. E., T. A. Warner, M. P. Strager, J. F. Conley, and A. L. Sharp. 2015. “Assessing Machine- Learning Algorithms and Image- and LiDAR-derived Variables for GEOBIA Classification of Mining and Mine Reclamation.” International Journal of Remote Sensing 36 (4): 954–978. doi:10.1080/01431161.2014.1001086.
-
(2015)
International Journal of Remote Sensing
, vol.36
, Issue.4
, pp. 954-978
-
-
Maxwell, A.E.1
Warner, T.A.2
Strager, M.P.3
Conley, J.F.4
Sharp, A.L.5
-
70
-
-
84893878381
-
Combining RapidEye Satellite Imagery and LiDAR for Mapping of Mining and Mine Reclamation
-
Maxwell, A. E., T. A. Warner, M. P. Strager, and M. Pal. 2014b. “Combining RapidEye Satellite Imagery and LiDAR for Mapping of Mining and Mine Reclamation.” Photogrammetric Engineering & Remote Sensing 80 (2): 179–189. doi:10.14358/PERS.80.2.179-189.
-
(2014)
Photogrammetric Engineering & Remote Sensing
, vol.80
, Issue.2
, pp. 179-189
-
-
Maxwell, A.E.1
Warner, T.A.2
Strager, M.P.3
Pal, M.4
-
71
-
-
4344614511
-
Classification of Hyperspectral Remote Sensing Images with Support Vector Machines
-
Melgani, F., and L. Bruzzone. 2004. “Classification of Hyperspectral Remote Sensing Images with Support Vector Machines.” IEEE Transactions on Geoscience and Remote Sensing 42 (8): 1778–1790. doi:10.1109/TGRS.2004.831865.
-
(2004)
IEEE Transactions on Geoscience and Remote Sensing
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
72
-
-
84859549618
-
E1071: Misc Functions of the Department of Statistics (E1071)
-
Meyer, D., E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. 2012. “E1071: Misc Functions of the Department of Statistics (E1071).” R Package Version 1.6-1.
-
(2012)
R Package Version
, vol.1
, pp. 6-11
-
-
Meyer, D.1
Dimitriadou, E.2
Hornik, K.3
Weingessel, A.4
Leisch, F.5
-
74
-
-
74549225673
-
Quantifying Bufo Boreas Connectivity in Yellowstone National Park with Landscape Genetics
-
Murphy, M. A., J. S. Evans, and A. S. Storfer. 2010. “Quantifying Bufo Boreas Connectivity in Yellowstone National Park with Landscape Genetics.” Ecology 91: 252–261. doi:10.1890/08-0879.1.
-
(2010)
Ecology
, vol.91
, pp. 252-261
-
-
Murphy, M.A.1
Evans, J.S.2
Storfer, A.S.3
-
75
-
-
13344278660
-
Random Forest Classifier for Remote Sensing Classification
-
Pal, M. 2005. “Random Forest Classifier for Remote Sensing Classification.” International Journal of Remote Sensing 26 (1): 217–222. doi:10.1080/01431160412331269698.
-
(2005)
International Journal of Remote Sensing
, vol.26
, Issue.1
, pp. 217-222
-
-
Pal, M.1
-
76
-
-
33747119337
-
Support Vector Machine-Based Feature Selection for Land Cover Classification: A Case Study with DAIS Hyperspectral Data
-
Pal, M. 2006. “Support Vector Machine-Based Feature Selection for Land Cover Classification: A Case Study with DAIS Hyperspectral Data.” International Journal of Remote Sensing 27 (14): 2877–2894. doi:10.1080/01431160500242515.
-
(2006)
International Journal of Remote Sensing
, vol.27
, Issue.14
, pp. 2877-2894
-
-
Pal, M.1
-
77
-
-
43049106852
-
Ensemble of Support Vector Machines for Land Cover Classification
-
Pal, M. 2008. “Ensemble of Support Vector Machines for Land Cover Classification.” International Journal of Remote Sensing 29 (10): 3043–3049. doi:10.1080/01431160802007624.
-
(2008)
International Journal of Remote Sensing
, vol.29
, Issue.10
, pp. 3043-3049
-
-
Pal, M.1
-
78
-
-
77951295936
-
Feature Selection for Classification of Hyperspectral Data
-
Pal, M., and F. M. Foody. 2010. “Feature Selection for Classification of Hyperspectral Data.” IEEE Transactions on Geoscience and Remote Sensing 48 (5): 2297–2307. doi:10.1109/TGRS.2009.2039484.
-
(2010)
IEEE Transactions on Geoscience and Remote Sensing
, vol.48
, Issue.5
, pp. 2297-2307
-
-
Pal, M.1
Foody, F.M.2
-
79
-
-
84869488312
-
Evaluation of SVM, RVM and SMLR for Accurate Image Classification with Limited Ground Data
-
Pal, M., and G. M. Foody. 2012. “Evaluation of SVM, RVM and SMLR for Accurate Image Classification with Limited Ground Data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5 (5): 1344–1355. doi:10.1109/JSTARS.2012.2215310.
-
(2012)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, vol.5
, Issue.5
, pp. 1344-1355
-
-
Pal, M.1
Foody, G.M.2
-
80
-
-
0141569007
-
An Assessment of the Effectiveness of Decision Tree Methods for Land Cover Classification
-
Pal, M., and P. M. Mather. 2003. “An Assessment of the Effectiveness of Decision Tree Methods for Land Cover Classification.” Remote Sensing of Environment 86: 554–565. doi:10.1016/S0034-4257(03)00132-9.
-
(2003)
Remote Sensing of Environment
, vol.86
, pp. 554-565
-
-
Pal, M.1
Mather, P.M.2
-
81
-
-
13644256120
-
Support Vector Machines for Classification in Remote Sensing
-
Pal, M., and P. M. Mather. 2005. “Support Vector Machines for Classification in Remote Sensing.” International Journal of Remote Sensing 26 (5): 1007–1011. doi:10.1080/01431160512331314083.
-
(2005)
International Journal of Remote Sensing
, vol.26
, Issue.5
, pp. 1007-1011
-
-
Pal, M.1
Mather, P.M.2
-
82
-
-
84880397408
-
Kernel-Based Extreme Learning Machine for Remote-Sensing Image Classification
-
Pal, M., A. E. Maxwell, and T. A. Warner. 2013. “Kernel-Based Extreme Learning Machine for Remote-Sensing Image Classification.” Remote Sensing Letters 4 (9): 853–862. doi:10.1080/2150704X.2013.805279.
-
(2013)
Remote Sensing Letters
, vol.4
, Issue.9
, pp. 853-862
-
-
Pal, M.1
Maxwell, A.E.2
Warner, T.A.3
-
83
-
-
84857916067
-
Support Vector Machines and Object- Based Classification for Obtaining Land-Use/Cover Cartography Form Hyperion Hyperspectral Imagery
-
Petropoulos, G. P., C. Kalaizidis, and K. P. Vadrevu. 2012. “Support Vector Machines and Object- Based Classification for Obtaining Land-Use/Cover Cartography Form Hyperion Hyperspectral Imagery.” Computers & Geoscience 41 (2012): 99–107. doi:10.1016/j.cageo.2011.08.019.
-
(2012)
Computers & Geoscience
, vol.41
, Issue.2012
, pp. 99-107
-
-
Petropoulos, G.P.1
Kalaizidis, C.2
Vadrevu, K.P.3
-
84
-
-
33744584654
-
Induction of Decision Trees
-
Quinlan, J. R. 1986. “Induction of Decision Trees.” Machine Learning 1: 81–106. doi:10.1007/BF00116251.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
85
-
-
84961153928
-
R: A Language and Environment for Statistical Computing
-
R Core Development Team
-
R Core Development Team. 2016. “R: A Language and Environment for Statistical Computing.” R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/.
-
(2016)
R Foundation for Statistical Computing. Vienna, Austria
-
-
-
86
-
-
84891793070
-
Nnet: Feed-Forward Neural Networks and Multinomial Log- Linear Models
-
Ripley, B., and W. Venables. 2016. “nnet: Feed-Forward Neural Networks and Multinomial Log- Linear Models.” R package version 7.3-12. https://cran.r-project.org/web/packages/nnet/index.html.
-
(2016)
R Package Version
, vol.7
, pp. 3-12
-
-
Ripley, B.1
Venables, W.2
-
87
-
-
84855970934
-
An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification
-
Rodríguez-Galiano, V. F., B. Ghimire, J. Rogan, M. Chica-Olmo, and J. P. Rigol-Sanchez. 2012. “An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification.” ISPRS Journal of Photogrammetry and Remote Sensing 67: 93–104. doi:10.1016/j.isprsjprs.2011.11.002.
-
(2012)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.67
, pp. 93-104
-
-
Rodríguez-Galiano, V.F.1
Ghimire, B.2
Rogan, J.3
Chica-Olmo, M.4
Rigol-Sanchez, J.P.5
-
88
-
-
41249103454
-
Mapping Land-Cover Modifications over Large Areas: A Comparison of Machine Learning Algorithms
-
Rogan, J., J. Franklin, D. Stow, J. Miller, C. Woodcock, and D. Roberts. 2008. “Mapping Land-Cover Modifications over Large Areas: A Comparison of Machine Learning Algorithms.” Remote Sensing of Environment 112 (5): 2272–2283. doi:10.1016/j.rse.2007.10.004.
-
(2008)
Remote Sensing of Environment
, vol.112
, Issue.5
, pp. 2272-2283
-
-
Rogan, J.1
Franklin, J.2
Stow, D.3
Miller, J.4
Woodcock, C.5
Roberts, D.6
-
89
-
-
0038606532
-
Land-Cover Change Monitoring with Classification Trees Using Landsat TM and Ancillary Data
-
Rogan, J., J. Miller, D. Stow, J. Franklin, L. Levien, and C. Fischer. 2003. “Land-Cover Change Monitoring with Classification Trees Using Landsat TM and Ancillary Data.” Photogrammetric Engineering & Remote Sensing 69 (7): 793–804. doi:10.14358/PERS.69.7.793.
-
(2003)
Photogrammetric Engineering & Remote Sensing
, vol.69
, Issue.7
, pp. 793-804
-
-
Rogan, J.1
Miller, J.2
Stow, D.3
Franklin, J.4
Levien, L.5
Fischer, C.6
-
91
-
-
84865742501
-
Simultaneous Feature Selection and SVM Parameter Determination in Classification of Hyperspectral Imagery Using Ant Colony Optimization
-
Samadzadegan, F., H. Hasani, and T. Schenk. 2012. “Simultaneous Feature Selection and SVM Parameter Determination in Classification of Hyperspectral Imagery Using Ant Colony Optimization.” Canadian Journal of Remote Sensing 23 (2): 139–156. doi:10.5589/m12-022.
-
(2012)
Canadian Journal of Remote Sensing
, vol.23
, Issue.2
, pp. 139-156
-
-
Samadzadegan, F.1
Hasani, H.2
Schenk, T.3
-
92
-
-
84988416232
-
An Assessment of Algorithmic Parameters Affecting Image Classification Accuracy by Random Forests
-
Shi, D., and X. Yang. 2016. “An Assessment of Algorithmic Parameters Affecting Image Classification Accuracy by Random Forests.” Photogrammetric Engineering & Remote Sensing 82 (6): 407–417. doi:10.14358/PERS.82.6.407.
-
(2016)
Photogrammetric Engineering & Remote Sensing
, vol.82
, Issue.6
, pp. 407-417
-
-
Shi, D.1
Yang, X.2
-
93
-
-
84949812908
-
Accuracy Assessment
-
edited by T. A. Warner, M. D. Nellis, and G. M. Foody, London, UK: SAGE
-
Stehman, S. V., and G. M. Foody. 2009. “Accuracy Assessment.” In The SAGE Handbook of Remote Sensing, edited by T. A. Warner, M. D. Nellis, and G. M. Foody, 297–309.London, UK: SAGE.
-
(2009)
The SAGE Handbook of Remote Sensing
, pp. 297-309
-
-
Stehman, S.V.1
Foody, G.M.2
-
94
-
-
48549095457
-
Conditional Variable Importance for Random Forests
-
Strobl, C., A. L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. 2008. “Conditional Variable Importance for Random Forests.” BMC Bioinformatics 9 (307): 1–11. doi:10.1186/1471-2105-9-307.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.307
, pp. 1-11
-
-
Strobl, C.1
Boulesteix, A.L.2
Kneib, T.3
Augustin, T.4
Zeileis, A.5
-
95
-
-
77954817283
-
Party On! A New, Conditional Variable-Importance Measure for Random Forests Available in the Party Package
-
Strobl, C., T. Hothorn, and A. Zeileis. 2009. “Party On! A New, Conditional Variable-Importance Measure for Random Forests Available in the Party Package.” The R Journal 1-2: 14–17.
-
(2009)
The R Journal
, vol.1
, pp. 14-17
-
-
Strobl, C.1
Hothorn, T.2
Zeileis, A.3
-
96
-
-
79960743609
-
Object-Oriented Mapping of Landslides Using Random Forests
-
Stumpf, A., and N. Kerle. 2011. “Object-Oriented Mapping of Landslides Using Random Forests.” Remote Sensing of Environment 115: 2564–2577. doi:10.1016/j.rse.2011.05.013.
-
(2011)
Remote Sensing of Environment
, vol.115
, pp. 2564-2577
-
-
Stumpf, A.1
Kerle, N.2
-
97
-
-
67649669804
-
Optimizing Support Vector Machine Learning for Semi-Arid Vegetation Mapping by Using Clustering Analysis
-
Su, L. 2009. “Optimizing Support Vector Machine Learning for Semi-Arid Vegetation Mapping by Using Clustering Analysis.” IJRS Journal of Photogrammetry and Remote Sensing 64: 407–413. doi:10.1016/j.isprsjprs.2009.02.002.
-
(2009)
IJRS Journal of Photogrammetry and Remote Sensing
, vol.64
, pp. 407-413
-
-
Su, L.1
-
98
-
-
0018203420
-
Fundamentals of Pattern Recognition in Remote Sensing
-
edited by P. H. Swain and S. M. Davis, New York: McGraw Hill
-
Swain, P. H. 1978. “Fundamentals of Pattern Recognition in Remote Sensing.” In Remote Sensing: The Quantitative Approach, edited by P. H. Swain and S. M. Davis, 136–187. New York: McGraw Hill.
-
(1978)
Remote Sensing: The Quantitative Approach
, pp. 136-187
-
-
Swain, P.H.1
-
99
-
-
84908354293
-
Rpart: Recursive Partitioning and Regression Trees
-
Therneau, T., B. Atkinson, and B. Ripley. 2017. “Rpart: Recursive Partitioning and Regression Trees.” R package version 4.1-11. https://cran.r-project.org/web/packages/rpart/index.html.
-
(2017)
R Package Version
, vol.4
, pp. 1-11
-
-
Therneau, T.1
Atkinson, B.2
Ripley, B.3
-
100
-
-
85048716408
-
-
Trimble, eCognition Developer 8.64.1 User Guide. Munich: Trimble
-
Trimble. 2011. eCognition Developer 8.64.1 User Guide. Munich: Trimble.
-
(2011)
-
-
-
101
-
-
79959689358
-
Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation
-
Tuia, D., J. Verrelst, L. Alonso, F. Pérez-Cruz, and G. Camps-Valls. 2011. “Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation.” IEEE Geoscience and Remote Sensing Letters 8 (4): 804–808. doi:10.1109/LGRS.2011.2109934.
-
(2011)
IEEE Geoscience and Remote Sensing Letters
, vol.8
, Issue.4
, pp. 804-808
-
-
Tuia, D.1
Verrelst, J.2
Alonso, L.3
Pérez-Cruz, F.4
Camps-Valls, G.5
-
103
-
-
82055178109
-
Applying Support Vector Regression to Water Quality Modelling by Remote Sensing
-
Wang, X., L. Fu, and C. He. 2011. “Applying Support Vector Regression to Water Quality Modelling by Remote Sensing.” International Journal of Remote Sensing 32 (23): 8615–8627. doi:10.1080/01431161.2010.543183.
-
(2011)
International Journal of Remote Sensing
, vol.32
, Issue.23
, pp. 8615-8627
-
-
Wang, X.1
Fu, L.2
He, C.3
-
104
-
-
70349329573
-
Classifying Remote Sensing Data with Support Vector Machines and Imbalanced Training Data
-
edited by J. A. Benediktsson, J. Kittler, and F. Roli, Berlin, Germany: Springer-Verlag
-
Waske, B., J. A. Benediktsson, and J. R. Sveinsson. 2009. “Classifying Remote Sensing Data with Support Vector Machines and Imbalanced Training Data.” In Multiple Classifier Systems, edited by J. A. Benediktsson, J. Kittler, and F. Roli, 375–384. Berlin, Germany: Springer-Verlag.
-
(2009)
Multiple Classifier Systems
, pp. 375-384
-
-
Waske, B.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
105
-
-
69849104695
-
Classifier Ensembles for Land Cover Mapping Using Multiemporal SAR Imagery
-
Waske, B., and M. Braun. 2009. “Classifier Ensembles for Land Cover Mapping Using Multiemporal SAR Imagery.” ISPRS Journal of Photogrammetry and Remote Sensing 64: 450–457. doi:10.1016/j.isprsjprs.2009.01.003.
-
(2009)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.64
, pp. 450-457
-
-
Waske, B.1
Braun, M.2
-
106
-
-
34047138873
-
Improved Wetland Remote Sensing in Yellowstone National Park Using Classification Trees to Combine TM Imagery and Ancillary Environmental Data
-
Wright, C., and A. Gallant. 2007. “Improved Wetland Remote Sensing in Yellowstone National Park Using Classification Trees to Combine TM Imagery and Ancillary Environmental Data.” Remote Sensing of Environment 107: 582–605. doi:10.1016/j.rse.2006.10.019.
-
(2007)
Remote Sensing of Environment
, vol.107
, pp. 582-605
-
-
Wright, C.1
Gallant, A.2
-
107
-
-
85048716891
-
Ranger: A Fast Implementation of Random Forests
-
Wright, M. N. 2017. “Ranger: A Fast Implementation of Random Forests.” R package version 0.8.0. https://cran.r-project.org/web/packages/ranger/index.html.
-
(2017)
R Package Version 0.8
-
-
Wright, M.N.1
-
108
-
-
84904971625
-
Meta-Discoveries Form a Synthesis of Satellite-Based Land-Cover Mapping Research
-
Yu, L., L. Liang, J. Wang, Y. Zhao, Q. Cheng, L. Hu, S. Liu, et al. 2014. “Meta-Discoveries Form a Synthesis of Satellite-Based Land-Cover Mapping Research.” International Journal of Remote Sensing 35 (13): 4573–4588. doi:10.1080/01431161.2014.930206.
-
(2014)
International Journal of Remote Sensing
, vol.35
, Issue.13
, pp. 4573-4588
-
-
Yu, L.1
Liang, L.2
Wang, J.3
Zhao, Y.4
Cheng, Q.5
Hu, L.6
Liu, S.7
-
109
-
-
33745615125
-
Object-Based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery
-
Yu, Q., P. Gong, N. Clinton, G. Biging, M. Kelly, and D. Schirokauer. 2006. “Object-Based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery.” Photogrammetric Engineering & Remote Sensing 72 (7): 799–811. doi:10.14358/PERS.72.7.799.
-
(2006)
Photogrammetric Engineering & Remote Sensing
, vol.72
, Issue.7
, pp. 799-811
-
-
Yu, Q.1
Gong, P.2
Clinton, N.3
Biging, G.4
Kelly, M.5
Schirokauer, D.6
-
110
-
-
84930423638
-
Spectral-Spatial Classification of Hyperspectral Images Using Deep Convolution Neural Networks
-
Yue, J., W. Zhao, S. Mao, and H. Liu. 2015. “Spectral-Spatial Classification of Hyperspectral Images Using Deep Convolution Neural Networks.” Remote Sensing Letters 6 (6): 468–477. doi:10.1080/2150704X.2015.1047045.
-
(2015)
Remote Sensing Letters
, vol.6
, Issue.6
, pp. 468-477
-
-
Yue, J.1
Zhao, W.2
Mao, S.3
Liu, H.4
-
111
-
-
84902481208
-
Object-Based Vegetation Mapping in the Kissimmee River Watershed Using HyMap Data and Machine Learning Techniques
-
Zhang, C., and Z. Xie. 2013. “Object-Based Vegetation Mapping in the Kissimmee River Watershed Using HyMap Data and Machine Learning Techniques.” Wetlands 33: 233–244. doi:10.1007/s13157-012-0373-x.
-
(2013)
Wetlands
, vol.33
, pp. 233-244
-
-
Zhang, C.1
Xie, Z.2
-
112
-
-
84976384382
-
Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art
-
Zhang, L., L. Zhang, and B. Du. 2016. “Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art.” IEEE Geoscience and Remote Sensing Magazine 4 (2): 22–40. doi:10.1109/MGRS.2016.2540798.
-
(2016)
IEEE Geoscience and Remote Sensing Magazine
, vol.4
, Issue.2
, pp. 22-40
-
-
Zhang, L.1
Zhang, L.2
Du, B.3
-
113
-
-
70449384598
-
Feature Selection for Hyperspectral Data Based on Recursive Support Vector Machines
-
Zhang, R., and J. Ma. 2009. “Feature Selection for Hyperspectral Data Based on Recursive Support Vector Machines.” International Journal of Remote Sensing 30 (14): 3669–3677. doi:10.1080/01431160802609718.
-
(2009)
International Journal of Remote Sensing
, vol.30
, Issue.14
, pp. 3669-3677
-
-
Zhang, R.1
Ma, J.2
|