메뉴 건너뛰기




Volumn 18, Issue 1, 2018, Pages

Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery

Author keywords

Classification algorithms; K nearest neighbor (knn); Random forest (RF); Sentinel 2; Support vector machine (svm); Training sample size

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; LAND USE; LEARNING ALGORITHMS; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH; PIXELS; REMOTE SENSING; SAMPLING; SUPPORT VECTOR MACHINES;

EID: 85039732569     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s18010018     Document Type: Article
Times cited : (691)

References (62)
  • 1
    • 84957636591 scopus 로고    scopus 로고
    • Land-use choices: Balancing human needs and ecosystem function
    • DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249-257.
    • (2004) Front. Ecol. Environ , vol.2 , pp. 249-257
    • DeFries, R.S.1    Foley, J.A.2    Asner, G.P.3
  • 3
    • 78650783264 scopus 로고    scopus 로고
    • Challenges in using land use and land cover data for global change studies
    • Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol. 2011, 17, 974-989.
    • (2011) Glob. Chang. Biol , vol.17 , pp. 974-989
    • Verburg, P.H.1    Neumann, K.2    Nol, L.3
  • 4
    • 84865427954 scopus 로고    scopus 로고
    • A review of large area monitoring of land cover change using Landsat data
    • Hansen, T. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66-74.
    • (2012) Remote Sens. Environ , vol.122 , pp. 66-74
    • Hansen, T.1
  • 5
    • 0037377242 scopus 로고    scopus 로고
    • Identification of potential conflict areas between land transformation and biodiversity conservation in north-eastern South Africa
    • Wessels, K.J.; Reyers, B.; Jaarsveld, A.S.; Rutherford, M.C. Identification of potential conflict areas between land transformation and biodiversity conservation in north-eastern South Africa. Agric. Ecosyst. Environ. 2003, 95, 157-178.
    • (2003) Agric. Ecosyst. Environ , vol.95 , pp. 157-178
    • Wessels, K.J.1    Reyers, B.2    Jaarsveld, A.S.3    Rutherford, M.C.4
  • 7
    • 84860279254 scopus 로고    scopus 로고
    • Mapping ecosystem service supply, demand and budgets
    • Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17-29.
    • (2012) Ecol. Indic , vol.21 , pp. 17-29
    • Burkhard, B.1    Kroll, F.2    Nedkov, S.3    Müller, F.4
  • 9
    • 85021141369 scopus 로고    scopus 로고
    • One-Dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California
    • Guidici, D.; Clark, M.L. One-Dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California. Remote Sens. 2017, 9, 629.
    • (2017) Remote Sens , vol.9 , pp. 629
    • Guidici, D.1    Clark, M.L.2
  • 11
    • 84958236853 scopus 로고    scopus 로고
    • A meta-analysis of remote sensing research on supervised pixel-based land cover image classification processes: General guidelines for practitioners and future research
    • Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89-100.
    • (2016) Remote Sens. Environ , vol.177 , pp. 89-100
    • Khatami, R.1    Mountrakis, G.2    Stehman, S.V.3
  • 12
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
    • Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259-272.
    • (2012) Remote Sens. Environ , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 13
    • 85027954351 scopus 로고    scopus 로고
    • Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles
    • Xia, J.S.; Mura, M.D.; Chanussot, J.; Du, P.; He, X. Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4768-4786.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 4768-4786
    • Xia, J.S.1    Mura, M.D.2    Chanussot, J.3    Du, P.4    He, X.5
  • 14
    • 85032872274 scopus 로고    scopus 로고
    • Improving land use/cover classification with a multiple classifier system using AdaBoost integration technique
    • Chen, Y.; Dou, P.; Yang, X. Improving land use/cover classification with a multiple classifier system using AdaBoost integration technique. Remote Sens. 2017, 9, 1055.
    • (2017) Remote Sens , vol.9 , pp. 1055
    • Chen, Y.1    Dou, P.2    Yang, X.3
  • 15
    • 84961815144 scopus 로고    scopus 로고
    • Optical remotely sensed time series data for land cover classification: A review
    • Gomez, C.; White, J.C.;Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. Int. Soc. Photogramm. 2016, 116, 55-72.
    • (2016) Int. Soc. Photogramm , vol.116 , pp. 55-72
    • Gomez, C.1    White, J.C.2    Wulder, M.A.3
  • 16
  • 18
    • 85028449562 scopus 로고    scopus 로고
    • Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution
    • Gao, Q.; Zribi, M.; Escorihuela, M.J.; Baghdadi, N. Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors 2017, 17, 1966.
    • (2017) Sensors , vol.17 , pp. 1966
    • Gao, Q.1    Zribi, M.2    Escorihuela, M.J.3    Baghdadi, N.4
  • 19
    • 85021177398 scopus 로고    scopus 로고
    • Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening
    • Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sens. 2017, 9, 596.
    • (2017) Remote Sens , vol.9 , pp. 596
    • Yang, X.1    Zhao, S.2    Qin, X.3    Zhao, N.4    Liang, L.5
  • 21
    • 84946846551 scopus 로고    scopus 로고
    • Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments
    • Sibanda, M.; Mutanga, O.; Rouget, M. Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments. ISPRS J. Photogramm. Remote Sens. 2015, 110, 55-65.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.110 , pp. 55-65
    • Sibanda, M.1    Mutanga, O.2    Rouget, M.3
  • 22
    • 85019832234 scopus 로고    scopus 로고
    • Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop
    • Clevers, J.G.P.W.; Kooistra, L.; van den Brande, M.M.M. Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405.
    • (2017) Remote Sens , vol.9 , pp. 405
    • Clevers, J.G.P.W.1    Kooistra, L.2    Van Den Brande, M.M.M.3
  • 24
    • 85013641319 scopus 로고    scopus 로고
    • Monitoring urban areas with Sentinel-2A data: Application to the update of the copernicus high resolution layer imperviousness degree
    • Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring urban areas with Sentinel-2A data: Application to the update of the copernicus high resolution layer imperviousness degree. Remote Sens. 2016, 8, 606.
    • (2016) Remote Sens , vol.8 , pp. 606
    • Lefebvre, A.1    Sannier, C.2    Corpetti, T.3
  • 25
    • 33947591833 scopus 로고    scopus 로고
    • Survey of image classification methods and techniques for improving classification performance
    • Lu, D.; Weng, Q.A. Survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823-870.
    • (2007) Int. J. Remote Sens , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.A.2
  • 26
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote. Sens. Environ. 1997, 61, 399-409.
    • (1997) Remote. Sens. Environ , vol.61 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 27
    • 69849104695 scopus 로고    scopus 로고
    • Classifier ensembles for land cover mapping using multitemporal SAR imagery
    • Waske, B.; Braun, M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 450-457.
    • (2009) ISPRS J. Photogramm. Remote Sens , vol.64 , pp. 450-457
    • Waske, B.1    Braun, M.2
  • 28
    • 84894607481 scopus 로고    scopus 로고
    • Comparison of classification algorithms and training sample sizes in urban land classification with Landsat Thematic Mapper imagery
    • Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat Thematic Mapper imagery. Remote Sens. 2014, 6, 964-983.
    • (2014) Remote Sens , vol.6 , pp. 964-983
    • Li, C.1    Wang, J.2    Wang, L.3    Hu, L.4    Gong, P.5
  • 29
    • 84959467647 scopus 로고    scopus 로고
    • Random forest classification for mangrove land cover mapping using Landsat 5 TM and Alos Palsar imageries
    • Jhonnerie, R.; Siregar, V.P.; Nababan, B.; Prasetyo, L.B.; Wouthuyzen, S. Random forest classification for mangrove land cover mapping using Landsat 5 TM and Alos Palsar imageries. Procedia Environ. Sci. 2015, 24, 215-221.
    • (2015) Procedia Environ. Sci , vol.24 , pp. 215-221
    • Jhonnerie, R.1    Siregar, V.P.2    Nababan, B.3    Prasetyo, L.B.4    Wouthuyzen, S.5
  • 30
    • 85039746531 scopus 로고    scopus 로고
    • Towards improved land use mapping of irrigated croplands: Performance assessment of different image classification algorithms and approaches
    • Basukala, A.K.; Oldenburg, C.; Schellberg, J.; Sultanov, M.; Dubovyk, O. Towards improved land use mapping of irrigated croplands: Performance assessment of different image classification algorithms and approaches. Eur. J. Remote. Sens. 2017, 50, 187-201.
    • (2017) Eur. J. Remote. Sens , vol.50 , pp. 187-201
    • Basukala, A.K.1    Oldenburg, C.2    Schellberg, J.3    Sultanov, M.4    Dubovyk, O.5
  • 31
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: Bagging and random forests for ecological prediction
    • Prasad, A.; Iverson, L.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181-199.
    • (2006) Ecosystems , vol.9 , pp. 181-199
    • Prasad, A.1    Iverson, L.2    Liaw, A.3
  • 32
    • 84859644121 scopus 로고    scopus 로고
    • Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a random forest data mining environment
    • Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a random forest data mining environment. ISPRS J. Photogramm. Remote Sens. 2012, 69, 167-179.
    • (2012) ISPRS J. Photogramm. Remote Sens , vol.69 , pp. 167-179
    • Naidoo, L.1    Cho, M.A.2    Mathieu, R.3    Asner, G.4
  • 33
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32.
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 34
    • 84901651305 scopus 로고    scopus 로고
    • Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers
    • Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440-3458.
    • (2014) Int. J. Remote Sens , vol.35 , pp. 3440-3458
    • Adam, E.1    Mutanga, O.2    Odindi, J.3    Abdel-Rahman, E.M.4
  • 35
    • 84897586103 scopus 로고    scopus 로고
    • A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery
    • Ghosh, A.; Joshi, P.K. A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 298-311.
    • (2014) Int. J. Appl. Earth Obs. Geoinf , vol.26 , pp. 298-311
    • Ghosh, A.1    Joshi, P.K.2
  • 37
    • 85030761801 scopus 로고    scopus 로고
    • Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites
    • Heydari, S.S.; Mountrakis, G. Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens. Environ. 2018, 204, 648-658.
    • (2018) Remote Sens. Environ , vol.204 , pp. 648-658
    • Heydari, S.S.1    Mountrakis, G.2
  • 38
    • 85039756906 scopus 로고    scopus 로고
    • Available online, accessed on 22 July 2017
    • U.S. Geological Survey. Available online: https://earthexplorer.usgs.gov/ (accessed on 22 July 2017).
  • 40
    • 56249113343 scopus 로고    scopus 로고
    • Building predictive models in R using the caret package
    • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1-26.
    • (2008) J. Stat. Softw , vol.28 , pp. 1-26
    • Kuhn, M.1
  • 41
    • 84920812571 scopus 로고    scopus 로고
    • Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery
    • Qian, Y.; Zhou,W.; Yan, J.; Li,W.; Han, L. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 2015, 7, 153-168.
    • (2015) Remote Sens , vol.7 , pp. 153-168
    • Qian, Y.1    Zhou, W.2    Yan, J.3    Li, W.4    Han, L.5
  • 42
    • 63749121428 scopus 로고    scopus 로고
    • Land cover mapping of large areas using chain classification of neighboring Landsat satellite images
    • Knorn, J.; Rabe, A.; Radeloff, V.C.; Kuemmerle, T.; Kozak, J.; Hostert, P. Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote. Sens. Environ. 2009, 113, 957-964.
    • (2009) Remote. Sens. Environ , vol.113 , pp. 957-964
    • Knorn, J.1    Rabe, A.2    Radeloff, V.C.3    Kuemmerle, T.4    Kozak, J.5    Hostert, P.6
  • 43
    • 85032877078 scopus 로고    scopus 로고
    • Support vector machines for land cover mapping from remote sensor imagery
    • Springer: Dordrecht, The Netherlands
    • Shi, D.; Yang, X. Support vector machines for land cover mapping from remote sensor imagery. In Monitoring and Modeling of Global Changes: A Geomatics Perspective; Springer: Dordrecht, The Netherlands, 2015; pp. 265-279.
    • (2015) Monitoring and Modeling of Global Changes: A Geomatics Perspective , pp. 265-279
    • Shi, D.1    Yang, X.2
  • 44
    • 84974801090 scopus 로고    scopus 로고
    • Tree species classification using hyperspectral imagery: A comparison of two classifiers
    • Ballanti, L.; Blesius, L.; Hines, E.; Kruse, B. Tree species classification using hyperspectral imagery: A comparison of two classifiers. Remote Sens. 2016, 8, 445.
    • (2016) Remote Sens , vol.8 , pp. 445
    • Ballanti, L.1    Blesius, L.2    Hines, E.3    Kruse, B.4
  • 45
    • 84974790271 scopus 로고    scopus 로고
    • Exelis Visual Information Solutions: Boulder, CO, USA
    • Exelis Visual Information Solutions. ENVI Help; Exelis Visual Information Solutions: Boulder, CO, USA, 2013.
    • (2013) ENVI Help
  • 46
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778-1790.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 47
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725-749.
    • (2002) Int. J. Remote Sens , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 48
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw, A.;Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 49
    • 84870760985 scopus 로고    scopus 로고
    • Tree species classification with random forest using very high spatial resolution 8-BandWorldView-2 satellite data
    • Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-BandWorldView-2 satellite data. Remote Sens. 2012, 4, 2661-2693.
    • (2012) Remote Sens , vol.4 , pp. 2661-2693
    • Immitzer, M.1    Atzberger, C.2    Koukal, T.3
  • 50
    • 85019554371 scopus 로고    scopus 로고
    • Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification
    • Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 2017, 197, 15-34.
    • (2017) Remote Sens. Environ , vol.197 , pp. 15-34
    • Zhang, H.K.1    Roy, D.P.2
  • 51
    • 84979895639 scopus 로고    scopus 로고
    • UAV remote sensing for urban vegetation mapping using random forest and texture analysis
    • Feng, Q.; Liu, J.; Gong, J. UAV remote sensing for urban vegetation mapping using random forest and texture analysis. Remote Sens. 2015, 7, 1074-1094.
    • (2015) Remote Sens , vol.7 , pp. 1074-1094
    • Feng, Q.1    Liu, J.2    Gong, J.3
  • 53
    • 0034814349 scopus 로고    scopus 로고
    • Estimation and mapping of forest stand density, volume and cover type using the k-Nearest Neighbors method
    • Franco-Lopez, H.; Ek, A.R.; Bauer, M.E. Estimation and mapping of forest stand density, volume and cover type using the k-Nearest Neighbors method. Remote Sens. Environ. 2001, 77, 251-274.
    • (2001) Remote Sens. Environ , vol.77 , pp. 251-274
    • Franco-Lopez, H.1    Ek, A.R.2    Bauer, M.E.3
  • 54
    • 85029459234 scopus 로고    scopus 로고
    • NS-k-NN: Neutrosophic Set-Based k-Nearest Neighbors classifier
    • Akbulut, Y.; Sengur, A.; Guo, Y.; Smarandache, F. NS-k-NN: Neutrosophic Set-Based k-Nearest Neighbors classifier. Symmetry 2017, 9, 179.
    • (2017) Symmetry , vol.9 , pp. 179
    • Akbulut, Y.1    Sengur, A.2    Guo, Y.3    Smarandache, F.4
  • 55
    • 85019964407 scopus 로고    scopus 로고
    • Estimation and mapping of winter oilseed rape LAI from high spatial resolution satellite data based on a hybrid method
    • Wei, C.; Huang, J.; Mansaray, L.R.; Li, Z.; Liu,W.; Han, J. Estimation and mapping of winter oilseed rape LAI from high spatial resolution satellite data based on a hybrid method. Remote Sens. 2017, 9, 488.
    • (2017) Remote Sens , vol.9 , pp. 488
    • Wei, C.1    Huang, J.2    Mansaray, L.R.3    Li, Z.4    Liu, W.5    Han, J.6
  • 57
  • 58
    • 84939449765 scopus 로고    scopus 로고
    • An evaluation of different training sample allocation schemes for discrete and continuous land cover classification using decision tree-based algorithms
    • Colditz, R.R. An evaluation of different training sample allocation schemes for discrete and continuous land cover classification using decision tree-based algorithms. Remote Sens. 2015, 7, 9655-9681.
    • (2015) Remote Sens , vol.7 , pp. 9655-9681
    • Colditz, R.R.1
  • 59
    • 84928328671 scopus 로고    scopus 로고
    • Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin
    • Mellor, A.; Boukir, S.; Haywood, A.; Jones, S. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 2015, 105, 155-168.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.105 , pp. 155-168
    • Mellor, A.1    Boukir, S.2    Haywood, A.3    Jones, S.4
  • 61
    • 84896836907 scopus 로고    scopus 로고
    • Assessing the impact of training sample extraction on accuracy of an urban classification: A case study in Denver, Colorado
    • Jin, H.; Stehman, S.V.; Mountrakis, G. Assessing the impact of training sample extraction on accuracy of an urban classification: A case study in Denver, Colorado. Int. J. Remote Sens. 2014, 35, 2067-2081.
    • (2014) Int. J. Remote Sens , vol.35 , pp. 2067-2081
    • Jin, H.1    Stehman, S.V.2    Mountrakis, G.3
  • 62
    • 84860601047 scopus 로고    scopus 로고
    • Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points
    • Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78-87.
    • (2012) ISPRS J. Photogramm. Remote Sens , vol.70 , pp. 78-87
    • Shao, Y.1    Lunetta, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.