메뉴 건너뛰기




Volumn 36, Issue 4, 2015, Pages 954-978

Assessing machine-learning algorithms and image- and lidar-derived variables for GEOBIA classification of mining and mine reclamation

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DECISION TREES; FORESTRY; IMAGE ANALYSIS; IMAGE CLASSIFICATION; IMAGE ENHANCEMENT; NEAREST NEIGHBOR SEARCH; OPTICAL RADAR; SATELLITE IMAGERY; SUPPORT VECTOR MACHINES;

EID: 84923357893     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2014.1001086     Document Type: Article
Times cited : (70)

References (116)
  • 2
    • 55049090599 scopus 로고    scopus 로고
    • Using Texture Analysis to Improve Per-Pixel Classification of Very High Resolution Images for Mapping Plastic Greenhouses
    • Agüera, F., F. J. Aguilar, and M. A. Aguilar. 2008. “Using Texture Analysis to Improve Per-Pixel Classification of Very High Resolution Images for Mapping Plastic Greenhouses.” ISPRS Journal of Photogrammetry and Remote Sensing 63 (6): 635–646. doi:10.1016/j.isprsjprs.2008.03.003.
    • (2008) ISPRS Journal of Photogrammetry and Remote Sensing , vol.63 , Issue.6 , pp. 635-646
    • Agüera, F.1    Aguilar, F.J.2    Aguilar, M.A.3
  • 6
    • 0036099294 scopus 로고    scopus 로고
    • Remote Sensing of Selective Logging in Amazonia: Assessing Limitation Based on Detailed Field Observations, Landsat ETM+, and Textural Analysis
    • Asner, G. P., M. Keller, R. Pereira Jr., and J. C. Zweede. 2002. “Remote Sensing of Selective Logging in Amazonia: Assessing Limitation Based on Detailed Field Observations, Landsat ETM+, and Textural Analysis.” Remote Sensing of Environment 80 (3): 483–496. doi:10.1016/S0034-4257(01)00326-1.
    • (2002) Remote Sensing of Environment , vol.80 , Issue.3 , pp. 483-496
    • Asner, G.P.1    Keller, M.2    Pereira, R.3    Zweede, J.C.4
  • 7
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution Segmentation – an Optmization Approach for High Quality Multi-Scale Image Segmentation
    • Strobl J., Blaschke T., Griesebener G., (eds), Berlin: Herbert Wichmann Verlag
    • Baatz, M., and A. Schäpe. 2000. “Multiresolution Segmentation – an Optmization Approach for High Quality Multi-Scale Image Segmentation.” In Angewandte Geographische Informationsverarveitung XII, edited by J. Strobl, T. Blaschke, and G. Griesebener, 12–23. Berlin: Herbert Wichmann Verlag.
    • (2000) Angewandte Geographische Informationsverarveitung XII , pp. 12-23
    • Baatz, M.1    Schäpe, A.2
  • 8
    • 84868536352 scopus 로고    scopus 로고
    • Does Spatial Resolution Matter? A Multi-Scale Comparison of Object-Based and Pixel-Based Methods for Detecting Change Associated with Gas Well Drilling Operations
    • Baker, B. A., T. A. Warner, J. F. Conley, and B. E. McNeil. 2013. “Does Spatial Resolution Matter? A Multi-Scale Comparison of Object-Based and Pixel-Based Methods for Detecting Change Associated with Gas Well Drilling Operations.” International Journal of Remote Sensing 34 (5): 1633–1651. doi:10.1080/01431161.2012.724540.
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.5 , pp. 1633-1651
    • Baker, B.A.1    Warner, T.A.2    Conley, J.F.3    McNeil, B.E.4
  • 9
    • 0032645080 scopus 로고    scopus 로고
    • An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
    • Bauer, E., and R. Kohavi. 1999. “An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants.” Machine Learning 36 (1/2): 105–139. doi:10.1023/A:1007515423169.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 10
    • 79953134214 scopus 로고    scopus 로고
    • The Environmental Costs of Mountaintop Mining Valley Fill Operations for Aquatic Ecosystems of the Central Appalachians
    • Bernhardt, E. S., and M. A. Palmer. 2011. “The Environmental Costs of Mountaintop Mining Valley Fill Operations for Aquatic Ecosystems of the Central Appalachians.” Annals of the New York Academy of Sciences 1223 (1): 39–57. doi:10.1111/j.1749-6632.2011.05986.x.
    • (2011) Annals of the New York Academy of Sciences , vol.1223 , Issue.1 , pp. 39-57
    • Bernhardt, E.S.1    Palmer, M.A.2
  • 11
    • 84856732722 scopus 로고    scopus 로고
    • Object-Based Image Analysis of Downed Logs in Disturbed Forested Landscapes Using Lidar
    • Blanchard, S. D., M. K. Jakubowski, and M. Kelly. 2011. “Object-Based Image Analysis of Downed Logs in Disturbed Forested Landscapes Using Lidar.” Remote Sensing 3: 2420–2439. doi:10.3390/rs3112420.
    • (2011) Remote Sensing , vol.3 , pp. 2420-2439
    • Blanchard, S.D.1    Jakubowski, M.K.2    Kelly, M.3
  • 12
    • 74549210807 scopus 로고    scopus 로고
    • Object-Based Contextual Image Classification Built on Image Segmentation
    • 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, Greenbelt, MD:
    • Blaschke, T. 2003. “Object-Based Contextual Image Classification Built on Image Segmentation.” 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, Greenbelt, MD, October 27–28, 13–119.
    • (2003) , pp. 13-119
    • Blaschke, T.1
  • 13
    • 73249139477 scopus 로고    scopus 로고
    • Object Based Image Analysis for Remote Sensing
    • Blaschke, T. 2010. “Object Based Image Analysis for Remote Sensing.” ISPRS Journal of Photogrammetry and Remote Sensing 65: 2–16. doi:10.1016/j.isprsjprs.2009.06.004.
    • (2010) ISPRS Journal of Photogrammetry and Remote Sensing , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 15
    • 0035382401 scopus 로고    scopus 로고
    • What’s Wrong with Pixels? Some Recent Developments Interfacing Remote Sensing and GIS
    • Blaschke, T., and J. Strobl. 2001. “What’s Wrong with Pixels? Some Recent Developments Interfacing Remote Sensing and GIS.” GIS – Zeitschrift Für Geoinformationssysteme 14 (6): 12–17.
    • (2001) GIS – Zeitschrift Für Geoinformationssysteme , vol.14 , Issue.6 , pp. 12-17
    • Blaschke, T.1    Strobl, J.2
  • 16
    • 34548846375 scopus 로고    scopus 로고
    • Integrating Lidar Data and Multispectral Imagery for Enhanced Classification of Rangeland Vegetation: A Meta Analysis
    • Bork, E. W., and J. G. Su. 2007. “Integrating Lidar Data and Multispectral Imagery for Enhanced Classification of Rangeland Vegetation: A Meta Analysis.” Remote Sensing of Environment 111 (1): 11–24. doi:10.1016/j.rse.2007.03.011.
    • (2007) Remote Sensing of Environment , vol.111 , Issue.1 , pp. 11-24
    • Bork, E.W.1    Su, J.G.2
  • 18
    • 33845683509 scopus 로고    scopus 로고
    • Classifying Individual Tree Species under Leaf-Off and Leaf-On Conditions Using Airborne Lidar
    • Brantberg, T. 2007. “Classifying Individual Tree Species under Leaf-Off and Leaf-On Conditions Using Airborne Lidar.” ISPRS Journal of Photogrammetry and Remote Sensing 61 (5): 325–340. doi:10.1016/j.isprsjprs.2006.10.006.
    • (2007) ISPRS Journal of Photogrammetry and Remote Sensing , vol.61 , Issue.5 , pp. 325-340
    • Brantberg, T.1
  • 19
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L. 1996. “Bagging Predictors.” Machine Learning 24 (2): 123–140. doi:10.1007/BF00058655.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 20
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. doi:10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 21
    • 33746166986 scopus 로고    scopus 로고
    • Object-Oriented Land Cover Classification of Lidar-Derived Surfaces
    • Brennan, R., and T. L. Webster. 2006. “Object-Oriented Land Cover Classification of Lidar-Derived Surfaces.” Canadian Journal of Remote Sensing 32 (2): 162–172. doi:10.5589/m06-015.
    • (2006) Canadian Journal of Remote Sensing , vol.32 , Issue.2 , pp. 162-172
    • Brennan, R.1    Webster, T.L.2
  • 22
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • Burges, C. J. C. 1998. “A Tutorial on Support Vector Machines for Pattern Recognition.” Data Mining and Knowledge Discovery 2 (2): 121–167. doi:10.1023/A:1009715923555.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 23
    • 0037457147 scopus 로고    scopus 로고
    • Textural Classification of Logged Forests in Tropical Africa Using Machine-Learning Algorithms
    • Chan, J. C. W., N. Laporte, and R. S. Defries. 2003. “Textural Classification of Logged Forests in Tropical Africa Using Machine-Learning Algorithms.” International Journal of Remote Sensing 24 (6): 1401–1407. doi:10.1080/0143116021000050538.
    • (2003) International Journal of Remote Sensing , vol.24 , Issue.6 , pp. 1401-1407
    • Chan, J.C.W.1    Laporte, N.2    Defries, R.S.3
  • 24
    • 61549110198 scopus 로고    scopus 로고
    • Hierarchical Object Oriented Classification Using Very High Resolution Imagery and Lidar Data over Urban Areas
    • Chen, Y., W. Su, J. Li, and Z. Sun. 2009. “Hierarchical Object Oriented Classification Using Very High Resolution Imagery and Lidar Data over Urban Areas.” Advances in Space Research 43 (7): 1101–1110. doi:10.1016/j.asr.2008.11.008.
    • (2009) Advances in Space Research , vol.43 , Issue.7 , pp. 1101-1110
    • Chen, Y.1    Su, W.2    Li, J.3    Sun, Z.4
  • 25
    • 17344387949 scopus 로고    scopus 로고
    • Computing Geostatistical Image Texture for Remotely Sensed Data Classification
    • Chica-Olmo, M., and F. Abarca-Hernández. 2000. “Computing Geostatistical Image Texture for Remotely Sensed Data Classification.” Computers & Geosciences 26 (4): 373–383. doi:10.1016/S0098-3004(99)00118-1.
    • (2000) Computers & Geosciences , vol.26 , Issue.4 , pp. 373-383
    • Chica-Olmo, M.1    Abarca-Hernández, F.2
  • 26
    • 33645809333 scopus 로고    scopus 로고
    • Object-Based Analysis of IKONOS-2 Imagery for Extraction of Forest Inventory Parameters
    • Chubey, M. S., S. E. Franklin, and M. A. Wulder. 2006. “Object-Based Analysis of IKONOS-2 Imagery for Extraction of Forest Inventory Parameters.” Photogrammetric Engineering & Remote Sensing 72 (4): 383–394. doi:10.14358/PERS.72.4.383.
    • (2006) Photogrammetric Engineering & Remote Sensing , vol.72 , Issue.4 , pp. 383-394
    • Chubey, M.S.1    Franklin, S.E.2    Wulder, M.A.3
  • 27
    • 44549088269 scopus 로고    scopus 로고
    • Coastal and Estuarine Habitat Mapping, Using Lidar Height and Intensity and Multi-Spectral Imagery
    • Chust, G., I. Galparsoro, Á. Borja, J. Franco, and A. Uriarte. 2008. “Coastal and Estuarine Habitat Mapping, Using Lidar Height and Intensity and Multi-Spectral Imagery.” Estuarine, Coastal and Shelf Science 78 (4): 633–643. doi:10.1016/j.ecss.2008.02.003.
    • (2008) Estuarine, Coastal and Shelf Science , vol.78 , Issue.4 , pp. 633-643
    • Chust, G.1    Galparsoro, I.2    Borja, Á.3    Franco, J.4    Uriarte, A.5
  • 29
    • 85018717000 scopus 로고    scopus 로고
    • Genetic Adaption of Segmentation Parameters
    • Blaschke T., Lang S., Hay G. J., (eds), Berlin: Springer-Verlag
    • Costa, G. A. O. P., R. Q. Feitosa, T. B. Cazes, and B. Feijó. 2008. Genetic Adaption of Segmentation Parameters. In Object-based Image Analysis, edited by T. Blaschke, S. Lang, and G. J. Hay, 679–695. Berlin: Springer-Verlag.
    • (2008) Object-based Image Analysis , pp. 679-695
    • Costa, G.A.O.P.1    Feitosa, R.Q.2    Cazes, T.B.3    Feijó, B.4
  • 32
    • 0034476942 scopus 로고    scopus 로고
    • Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data
    • DeFries, R. S., and J. C. W. Chan. 2000. “Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data.” Remote Sensing of Environment 74 (3): 503–515. doi:10.1016/S0034-4257(00)00142-5.
    • (2000) Remote Sensing of Environment , vol.74 , Issue.3 , pp. 503-515
    • DeFries, R.S.1    Chan, J.C.W.2
  • 33
    • 0000259511 scopus 로고    scopus 로고
    • Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms
    • Dietterich, T. G. 1998. “Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms.” Neural Computation 10 (7): 1895–1923. doi:10.1162/089976698300017197.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 34
    • 79953222584 scopus 로고    scopus 로고
    • Comparison of Pixel- and Object-Based Classification in Land Cover Change Mapping
    • Dingle Robertson, L., and D. J. King. 2011. “Comparison of Pixel- and Object-Based Classification in Land Cover Change Mapping.” International Journal of Remote Sensing 32: 1505–1529. doi:10.1080/01431160903571791.
    • (2011) International Journal of Remote Sensing , vol.32 , pp. 1505-1529
    • Dingle Robertson, L.1    King, D.J.2
  • 35
    • 33750482956 scopus 로고    scopus 로고
    • Automated Classification of Landform Elements Using Object-Based Image Analysis
    • Drăgut, L., and T. Blaschke. 2006. “Automated Classification of Landform Elements Using Object-Based Image Analysis.” Geomorphology 81: 330–344. doi:10.1016/j.geomorph.2006.04.013.
    • (2006) Geomorphology , vol.81 , pp. 330-344
    • Drăgut, L.1    Blaschke, T.2
  • 36
    • 77950928858 scopus 로고    scopus 로고
    • Land-Use Pressure and a Transition to Forest-Cover Loss in the Eastern United States
    • Drummond, M. A., and T. R. Loveland. 2010. “Land-Use Pressure and a Transition to Forest-Cover Loss in the Eastern United States.” Bioscience 60 (4): 286–298. doi:10.1525/bio.2010.60.4.7.
    • (2010) Bioscience , vol.60 , Issue.4 , pp. 286-298
    • Drummond, M.A.1    Loveland, T.R.2
  • 37
    • 84455200427 scopus 로고    scopus 로고
    • A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery
    • Duro, D. C., S. E. Franklin, and M. G. Dubé. 2012a. “A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery.” Remote Sensing of Environment 118: 259–272. doi:10.1016/j.rse.2011.11.020.
    • (2012) Remote Sensing of Environment , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 38
    • 84856982478 scopus 로고    scopus 로고
    • Multi-Scale Object-Based Image Analysis and Feature Selection of Multi-Sensor Earth Observation Imagery Using Random Forests
    • Duro, D. C., S. E. Franklin, and M. G. Dubé. 2012b. “Multi-Scale Object-Based Image Analysis and Feature Selection of Multi-Sensor Earth Observation Imagery Using Random Forests.” International Journal of Remote Sensing 33 (14): 4502–4526. doi:10.1080/01431161.2011.649864.
    • (2012) International Journal of Remote Sensing , vol.33 , Issue.14 , pp. 4502-4526
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 40
    • 0013435349 scopus 로고    scopus 로고
    • Laser Altimetry: From Science to Commercial Lidar Mapping
    • Flood, M. 2001. “Laser Altimetry: From Science to Commercial Lidar Mapping.” Photogrammetric Engineering & Remote Sensing 67 (11): 1209–1217.
    • (2001) Photogrammetric Engineering & Remote Sensing , vol.67 , Issue.11 , pp. 1209-1217
    • Flood, M.1
  • 41
    • 3042661357 scopus 로고    scopus 로고
    • Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy
    • Foody, G. M. 2004. “Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy.” Photogrammetric Engineering & Remote Sensing 70 (5): 627–633. doi:10.14358/PERS.70.5.627.
    • (2004) Photogrammetric Engineering & Remote Sensing , vol.70 , Issue.5
    • Foody, G.M.1
  • 42
    • 0034627794 scopus 로고    scopus 로고
    • Incorporating Texture into Classification of Forest Species Composition from Airborne Multispectral Images
    • Franklin, S. E., R. J. Hall, L. M. Moskal, A. J. Maudie, and M. B. Lavigne. 2000. “Incorporating Texture into Classification of Forest Species Composition from Airborne Multispectral Images.” International Journal of Remote Sensing 21 (1): 61–79. doi:10.1080/014311600210993.
    • (2000) International Journal of Remote Sensing , vol.21 , Issue.1 , pp. 61-79
    • Franklin, S.E.1    Hall, R.J.2    Moskal, L.M.3    Maudie, A.J.4    Lavigne, M.B.5
  • 43
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with the New Boosting Algorithm
    • Machine Learning: Proceeding of the Thirteenth International Conference, San Francisco, CA:
    • Freund, Y., and R. E. Schapire. 1996. “Experiments with the New Boosting Algorithm.” Machine Learning: Proceeding of the Thirteenth International Conference, San Francisco, CA, July 3–6, 148–156.
    • (1996) , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 44
    • 0033100735 scopus 로고    scopus 로고
    • Maximizing Land Cover Classification Accuracies Produced by Decision Trees at Continental to Global Scales
    • Friedl, M. A., C. E. Brodley, and A. H. Strahler. 1999. “Maximizing Land Cover Classification Accuracies Produced by Decision Trees at Continental to Global Scales.” IEEE Transactions on Geoscience and Remote Sensing 37 (2): 969–977. doi:10.1109/36.752215.
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.2 , pp. 969-977
    • Friedl, M.A.1    Brodley, C.E.2    Strahler, A.H.3
  • 46
    • 79955448374 scopus 로고    scopus 로고
    • Contextual Land-Cover Classification: Incorporating Spatial Dependence in Land-Cover Classification Models Using Random Forests and the Getis Statistic
    • Ghimire, B., J. Rogan, and J. Miller. 2010. “Contextual Land-Cover Classification: Incorporating Spatial Dependence in Land-Cover Classification Models Using Random Forests and the Getis Statistic.” Remote Sensing Letters 1 (1): 45–54. doi:10.1080/01431160903252327.
    • (2010) Remote Sensing Letters , vol.1 , Issue.1 , pp. 45-54
    • Ghimire, B.1    Rogan, J.2    Miller, J.3
  • 47
    • 84866847148 scopus 로고    scopus 로고
    • An Evaluation of Bagging, Boosting, and Random Forests for Land-Cover Classification in Cape Cod, Massachusetts, USA
    • Ghimire, B., J. Rogan, V. Rodríguez-Galiano, P. Panday, and N. Neeti. 2012. “An Evaluation of Bagging, Boosting, and Random Forests for Land-Cover Classification in Cape Cod, Massachusetts, USA.” GIScience & Remote Sensing 49 (5): 623–643. doi:10.2747/1548-1603.49.5.623.
    • (2012) GIScience & Remote Sensing , vol.49 , Issue.5 , pp. 623-643
    • Ghimire, B.1    Rogan, J.2    Rodríguez-Galiano, V.3    Panday, P.4    Neeti, N.5
  • 48
    • 78650731656 scopus 로고    scopus 로고
    • Relevance of Airborne Lidar and Multispectral Image Data for Urban Scene Classification Using Random Forests
    • Guo, L., N. Chehata, C. Mallet, and S. Boukir. 2011. “Relevance of Airborne Lidar and Multispectral Image Data for Urban Scene Classification Using Random Forests.” ISPRS Journal of Photogrammetry and Remote Sensing 66: 56–66. doi:10.1016/j.isprsjprs.2010.08.007.
    • (2011) ISPRS Journal of Photogrammetry and Remote Sensing , vol.66 , pp. 56-66
    • Guo, L.1    Chehata, N.2    Mallet, C.3    Boukir, S.4
  • 49
    • 33846516990 scopus 로고    scopus 로고
    • An Object-Based Classification Approach in Mapping Tree Mortality Using High Spatial Resolution Imagery
    • Guo, Q., M. Kelly, P. Gong, and D. Liu. 2007. “An Object-Based Classification Approach in Mapping Tree Mortality Using High Spatial Resolution Imagery.” GIScience & Remote Sensing 44 (1): 24–47. doi:10.2747/1548-1603.44.1.24.
    • (2007) GIScience & Remote Sensing , vol.44 , Issue.1 , pp. 24-47
    • Guo, Q.1    Kelly, M.2    Gong, P.3    Liu, D.4
  • 50
    • 0034656178 scopus 로고    scopus 로고
    • A Comparison of the IGBP Discover and University of Maryland 1 Km Global Land-Cover Products
    • Hansen, M. C., and B. Reed. 2000. “A Comparison of the IGBP Discover and University of Maryland 1 Km Global Land-Cover Products.” International Journal of Remote Sensing 21: 1365–1373. doi:10.1080/014311600210218.
    • (2000) International Journal of Remote Sensing , vol.21 , pp. 1365-1373
    • Hansen, M.C.1    Reed, B.2
  • 52
    • 0015984940 scopus 로고
    • Combined Spectral and Spatial Processing of ERTS Imagery Data
    • Haralick, R. M., and K. S. Shanmugam. 1974. “Combined Spectral and Spatial Processing of ERTS Imagery Data.” Remote Sensing of Environment 3 (1): 3–13. doi:10.1016/0034-4257(74)90033-9.
    • (1974) Remote Sensing of Environment , vol.3 , Issue.1 , pp. 3-13
    • Haralick, R.M.1    Shanmugam, K.S.2
  • 53
    • 0026446611 scopus 로고
    • Fast Nearest Neighbor Classification Methods for Multispectral Imagery
    • Hardin, P. J., and C. N. Thomson. 1992. “Fast Nearest Neighbor Classification Methods for Multispectral Imagery.” TheProfessional Geographer 44 (2): 191–202. doi:10.1111/j.0033-0124.1992.00191.x.
    • (1992) TheProfessional Geographer , vol.44 , Issue.2 , pp. 191-202
    • Hardin, P.J.1    Thomson, C.N.2
  • 54
    • 0022927190 scopus 로고
    • The Utility of Thematic Mapper Sensor Characteristics for Surface Mine Monitoring
    • Irons, J. R., and R. L. Kennard. 1986. “The Utility of Thematic Mapper Sensor Characteristics for Surface Mine Monitoring.” Photogrammetric Engineering & Remote Sensing 52: 389–396.
    • (1986) Photogrammetric Engineering & Remote Sensing , vol.52 , pp. 389-396
    • Irons, J.R.1    Kennard, R.L.2
  • 55
    • 84957069814 scopus 로고    scopus 로고
    • Text Categorization with Support Vector Machines: Learning with Many Relevant Features
    • Proceedings of European Conference on Machine Learning, Chemnitz:
    • Joachims, T. 1998. “Text Categorization with Support Vector Machines: Learning with Many Relevant Features.” Proceedings of European Conference on Machine Learning, Chemnitz, April 21–23, 137–142.
    • (1998) , pp. 137-142
    • Joachims, T.1
  • 56
    • 34447521668 scopus 로고    scopus 로고
    • Application of High Spatial Resolution Satellite Imagery for Riparian and Forest Ecosystem Classification
    • Johansen, K., N. C. Coops, S. E. Gergel, and Y. Stange. 2007. “Application of High Spatial Resolution Satellite Imagery for Riparian and Forest Ecosystem Classification.” Remote Sensing of Environment 110: 29–44. doi:10.1016/j.rse.2007.02.014.
    • (2007) Remote Sensing of Environment , vol.110 , pp. 29-44
    • Johansen, K.1    Coops, N.C.2    Gergel, S.E.3    Stange, Y.4
  • 57
    • 27744544598 scopus 로고    scopus 로고
    • Study of Surface Brightness from Backscattering Laser Intensity: Calibration of Laser Data
    • Kaasalainen, S., E. Ahoka, E. Hyyppa, and J. Suomalainen. 2005. “Study of Surface Brightness from Backscattering Laser Intensity: Calibration of Laser Data.” IEEE Geoscience and Remote Sensing Letters 2 (3): 255–259. doi:10.1109/LGRS.2005.850534.
    • (2005) IEEE Geoscience and Remote Sensing Letters , vol.2 , Issue.3 , pp. 255-259
    • Kaasalainen, S.1    Ahoka, E.2    Hyyppa, E.3    Suomalainen, J.4
  • 58
    • 84893853746 scopus 로고    scopus 로고
    • Assessment of Carbon Storage and Biomass on Minelands Reclaimed to Grassland Environments Using Landsat Spectral Indices
    • Kazar, S. A., and T. A. Warner. 2013. “Assessment of Carbon Storage and Biomass on Minelands Reclaimed to Grassland Environments Using Landsat Spectral Indices.” Journal of Applied Remote Sensing 7 (1): 073583. doi:10.1117/1.JRS.7.073583.
    • (2013) Journal of Applied Remote Sensing , vol.7 , Issue.1 , pp. 073583
    • Kazar, S.A.1    Warner, T.A.2
  • 59
    • 84867076135 scopus 로고    scopus 로고
    • Mine Spoil Reclamation with Switchgrass for Biofuel Production
    • 2010 National Meeting of the American Society for Mining and Reclamation, Pittsburgh, PA:
    • Keene, T., and J. Skousen. 2010. “Mine Spoil Reclamation with Switchgrass for Biofuel Production.” 2010 National Meeting of the American Society for Mining and Reclamation, Pittsburgh, PA, June 5–11, 1–16.
    • (2010) , pp. 1-16
    • Keene, T.1    Skousen, J.2
  • 60
    • 77949657728 scopus 로고    scopus 로고
    • Synergistic Use of Quickbird Multispectral Imagery and Lidar Data for Object-Based Forest Species Classification
    • Ke, Y., L. J. Quackenbush, and J. Im. 2010. “Synergistic Use of Quickbird Multispectral Imagery and Lidar Data for Object-Based Forest Species Classification.” Remote Sensing of Environment 114: 1141–1154. doi:10.1016/j.rse.2010.01.002.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 1141-1154
    • Ke, Y.1    Quackenbush, L.J.2    Im, J.3
  • 61
    • 68649112896 scopus 로고    scopus 로고
    • Forest Type Mapping Using Object-Specific Texture Measures from Multispectral IKONOS Imagery: Segmentation Quality and Image Classification Issues
    • Kim, M., M. Madden, and T. A. Warner. 2009. “Forest Type Mapping Using Object-Specific Texture Measures from Multispectral IKONOS Imagery: Segmentation Quality and Image Classification Issues.” Photogrammetric Engineering & Remote Sensing 75 (7): 819–829. doi:10.14358/PERS.75.7.819.
    • (2009) Photogrammetric Engineering & Remote Sensing , vol.75 , Issue.7 , pp. 819-829
    • Kim, M.1    Madden, M.2    Warner, T.A.3
  • 62
    • 79957608758 scopus 로고    scopus 로고
    • Multi-Scale Texture Segmentation and Classification of Salt Marsh Using Digital Aerial Imagery with Very High Spatial Resolution
    • Kim, M., T. A. Warner, M. Madden, and D. Atkinson. 2011. “Multi-Scale Texture Segmentation and Classification of Salt Marsh Using Digital Aerial Imagery with Very High Spatial Resolution.” International Journal of Remote Sensing 32: 2825–2850. doi:10.1080/01431161003745608.
    • (2011) International Journal of Remote Sensing , vol.32 , pp. 2825-2850
    • Kim, M.1    Warner, T.A.2    Madden, M.3    Atkinson, D.4
  • 63
    • 33846818667 scopus 로고    scopus 로고
    • Combining Decision Trees with Hierarchical Object-Oriented Image Analysis for Mapping Arid Rangelands
    • Laliberte, A., E. L. Fredrickson, and A. Rango. 2007. “Combining Decision Trees with Hierarchical Object-Oriented Image Analysis for Mapping Arid Rangelands.” Photogrammetric Engineering & Remote Sensing 73: 197–207. doi:10.14358/PERS.73.2.197.
    • (2007) Photogrammetric Engineering & Remote Sensing , vol.73 , pp. 197-207
    • Laliberte, A.1    Fredrickson, E.L.2    Rango, A.3
  • 64
    • 1842431416 scopus 로고    scopus 로고
    • Classification of Remotely Sensed Imagery Using Stochastic Gradient Boosting as a Refinement of Classification Tree Analysis
    • Lawrence, R., A. Bunn, S. Powell, and M. Zambon. 2004. “Classification of Remotely Sensed Imagery Using Stochastic Gradient Boosting as a Refinement of Classification Tree Analysis.” Remote Sensing of Environment 90 (3): 331–336. doi:10.1016/j.rse.2004.01.007.
    • (2004) Remote Sensing of Environment , vol.90 , Issue.3 , pp. 331-336
    • Lawrence, R.1    Bunn, A.2    Powell, S.3    Zambon, M.4
  • 65
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by Randomforest
    • Liaw, A., and M. Wiener. 2002. “Classification and Regression by Randomforest.” R News 2 (3): 18–22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 67
    • 76249111057 scopus 로고    scopus 로고
    • Factors Influencing Pulse Width of Small Footprint, Full Waveform Airborne Laser Scanning Data
    • Lin, Y., and J. P. Mills. 2010. “Factors Influencing Pulse Width of Small Footprint, Full Waveform Airborne Laser Scanning Data.” Photogrammetric Engineering & Remote Sensing 76 (1): 49–59. doi:10.14358/PERS.76.1.49.
    • (2010) Photogrammetric Engineering & Remote Sensing , vol.76 , Issue.1 , pp. 49-59
    • Lin, Y.1    Mills, J.P.2
  • 68
    • 79955383550 scopus 로고    scopus 로고
    • Assessing Object-Based Classification: Advantages and Limitations
    • Liu, D., and F. Xia. 2010. “Assessing Object-Based Classification: Advantages and Limitations.” Remote Sensing Letters 1: 187–194. doi:10.1080/01431161003743173.
    • (2010) Remote Sensing Letters , vol.1 , pp. 187-194
    • Liu, D.1    Xia, F.2
  • 69
    • 39749162214 scopus 로고    scopus 로고
    • Object-Based Classification Using Quickbird Imagery for Delineating Forest Vegetation Polygons in a Mediterranean Test Site
    • Mallinis, G., N. Koutsias, M. Tsakiri-Strati, and M. Karteris. 2008. “Object-Based Classification Using Quickbird Imagery for Delineating Forest Vegetation Polygons in a Mediterranean Test Site.” ISPRS Journal of Photogrammetry and Remote Sensing 63: 237–250. doi:10.1016/j.isprsjprs.2007.08.007.
    • (2008) ISPRS Journal of Photogrammetry and Remote Sensing , vol.63 , pp. 237-250
    • Mallinis, G.1    Koutsias, N.2    Tsakiri-Strati, M.3    Karteris, M.4
  • 71
    • 36849090769 scopus 로고    scopus 로고
    • Object-Based Classification of IKONOS Imagery for Mapping Large-Scale Vegetation Communities in Urban Areas
    • Mathieu, R., J. Aryal, and A. K. Chong. 2007. “Object-Based Classification of IKONOS Imagery for Mapping Large-Scale Vegetation Communities in Urban Areas.” Sensors 7: 2860–2880. doi:10.3390/s7112860.
    • (2007) Sensors , vol.7 , pp. 2860-2880
    • Mathieu, R.1    Aryal, J.2    Chong, A.K.3
  • 72
    • 84901800835 scopus 로고    scopus 로고
    • Comparison of NAIP Orthophotography and Rapideye Satellite Imagery for Mapping of Mining and Mine Reclamation
    • Maxwell, A. E., M. P. Strager, T. A. Warner, N. P. Zegre, and C. B. Yuill. 2014. “Comparison of NAIP Orthophotography and Rapideye Satellite Imagery for Mapping of Mining and Mine Reclamation.” GIScience & Remote Sensing 51 (3): 301–320. doi:10.1080/15481603.2014.912874.
    • (2014) GIScience & Remote Sensing , vol.51 , Issue.3 , pp. 301-320
    • Maxwell, A.E.1    Strager, M.P.2    Warner, T.A.3    Zegre, N.P.4    Yuill, C.B.5
  • 73
    • 84893878381 scopus 로고    scopus 로고
    • Combining Rapideye Satellite Imagery and Lidar for Mapping of Mining and Mine Reclamation
    • Maxwell, A. E., T. A. Warner, M. P. Strager, and M. Pal. 2014. “Combining Rapideye Satellite Imagery and Lidar for Mapping of Mining and Mine Reclamation.” Photogrammetric Engineering & Remote Sensing 80 (2): 179–189. doi:10.14358/PERS.80.2.179-189.
    • (2014) Photogrammetric Engineering & Remote Sensing , vol.80 , Issue.2 , pp. 179-189
    • Maxwell, A.E.1    Warner, T.A.2    Strager, M.P.3    Pal, M.4
  • 74
    • 0036327090 scopus 로고    scopus 로고
    • Using Prior Probabilities in Decision-Tree Classification of Remotely Sensed Data
    • McIver, D. K., and M. A. Friedl. 2002. “Using Prior Probabilities in Decision-Tree Classification of Remotely Sensed Data.” Remote Sensing of Environment 81 (2–3): 253–261. doi:10.1016/S0034-4257(02)00003-2.
    • (2002) Remote Sensing of Environment , vol.81 , Issue.2-3
    • McIver, D.K.1    Friedl, M.A.2
  • 75
    • 85032572572 scopus 로고    scopus 로고
    • A Comparison of Segmentation Programs for High Resolution Remote Sensing Data
    • Meinel, G., and M. Neubert. 2004. “A Comparison of Segmentation Programs for High Resolution Remote Sensing Data.” International Archives of the ISPRS 35: 1097–1105.
    • (2004) International Archives of the ISPRS , vol.35 , pp. 1097-1105
    • Meinel, G.1    Neubert, M.2
  • 76
    • 84879837474 scopus 로고    scopus 로고
    • Mapping Trees outside Forests Using High-Resolution Aerial Imagery: A Comparison of Pixel- and Object-Based Classification Approaches
    • Meneguzzo, D. M., G. C. Liknes, and M. D. Nelson. 2013. “Mapping Trees outside Forests Using High-Resolution Aerial Imagery: A Comparison of Pixel- and Object-Based Classification Approaches.” Environmental Monitoring and Assessment 185: 6261–6275. doi:10.1007/s10661-012-3022-1.
    • (2013) Environmental Monitoring and Assessment , vol.185 , pp. 6261-6275
    • Meneguzzo, D.M.1    Liknes, G.C.2    Nelson, M.D.3
  • 77
    • 84888257466 scopus 로고    scopus 로고
    • Scenario Analysis Predicts Context-Dependent Stream Response to Landuse Change in a Heavily Mined Central Appalachian Watershed
    • Merriam, E. R., J. T. Petty, M. P. Strager, A. E. Maxwell, and P. F. Ziemkiewicz. 2013. “Scenario Analysis Predicts Context-Dependent Stream Response to Landuse Change in a Heavily Mined Central Appalachian Watershed.” Freshwater Science 32 (4): 1246–1259. doi:10.1899/13-003.1.
    • (2013) Freshwater Science , vol.32 , Issue.4 , pp. 1246-1259
    • Merriam, E.R.1    Petty, J.T.2    Strager, M.P.3    Maxwell, A.E.4    Ziemkiewicz, P.F.5
  • 79
    • 0034655487 scopus 로고    scopus 로고
    • Application of the MODIS Global Supervised Classification Model to Vegetation and Land Cover Mapping of Central America
    • Muchoney, D., J. Borak, H. Chi, M. Friedl, S. Gopal, J. Hodges, N. Morrow, and A. Strahler. 2000. “Application of the MODIS Global Supervised Classification Model to Vegetation and Land Cover Mapping of Central America.” International Journal of Remote Sensing 21 (6–7): 1115–1138. doi:10.1080/014311600210100.
    • (2000) International Journal of Remote Sensing , vol.21 , Issue.6-7 , pp. 1115-1138
    • Muchoney, D.1    Borak, J.2    Chi, H.3    Friedl, M.4    Gopal, S.5    Hodges, J.6    Morrow, N.7    Strahler, A.8
  • 80
    • 79952070569 scopus 로고    scopus 로고
    • Per-Pixel Vs. Object-Based Classification of Urban Land Cover Extraction Using High Spatial Resolution Imagery
    • Myint, S. W., P. Gober, A. Brazel, S. Grossman-Clarke, and Q. Weng. 2011. “Per-Pixel Vs. Object-Based Classification of Urban Land Cover Extraction Using High Spatial Resolution Imagery.” Remote Sensing of Environment 115: 1145–1161. doi:10.1016/j.rse.2010.12.017.
    • (2011) Remote Sensing of Environment , vol.115 , pp. 1145-1161
    • Myint, S.W.1    Gober, P.2    Brazel, A.3    Grossman-Clarke, S.4    Weng, Q.5
  • 81
    • 84879527781 scopus 로고    scopus 로고
    • An Object-Based System for Lidar Data Fusion and Feature Extraction
    • O’Neil-Dunne, J. P. M., S. W. MacFaden, A. R. Royar, and K. C. Pelletier. 2013. “An Object-Based System for Lidar Data Fusion and Feature Extraction.” Geocarto International 28 (3): 227–242. doi:10.1080/10106049.2012.689015.
    • (2013) Geocarto International , vol.28 , Issue.3 , pp. 227-242
    • O’Neil-Dunne, J.P.M.1    MacFaden, S.W.2    Royar, A.R.3    Pelletier, K.C.4
  • 82
    • 13344278660 scopus 로고    scopus 로고
    • Random Forest Classifier for Remote Sensing Classification
    • Pal, M. 2005. “Random Forest Classifier for Remote Sensing Classification.” International Journal of Remote Sensing 26 (1): 217–222. doi:10.1080/01431160412331269698.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 83
    • 13644256120 scopus 로고    scopus 로고
    • Support Vector Machines for Classification in Remote Sensing
    • Pal, M., and P. M. Mather. 2005. “Support Vector Machines for Classification in Remote Sensing.” International Journal of Remote Sensing 26 (5): 1007–1011. doi:10.1080/01431160512331314083.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.5 , pp. 1007-1011
    • Pal, M.1    Mather, P.M.2
  • 85
    • 0023524787 scopus 로고
    • High-Resolution Remote Sensing of Spatially and Spectrally Complex Coal Surface Mines of Central Pennsylvania: A Comparison between SPOT, MSS, and Landsat-5 Thematic Mapper
    • Parks, N. F., G. W. Petersen, and G. M. Baumer. 1987. “High-Resolution Remote Sensing of Spatially and Spectrally Complex Coal Surface Mines of Central Pennsylvania: A Comparison between SPOT, MSS, and Landsat-5 Thematic Mapper.” Photogrammetric Engineering & Remote Sensing 53 (4): 415–420.
    • (1987) Photogrammetric Engineering & Remote Sensing , vol.53 , Issue.4 , pp. 415-420
    • Parks, N.F.1    Petersen, G.W.2    Baumer, G.M.3
  • 86
    • 38549177512 scopus 로고    scopus 로고
    • An Evaluation of an Object-Oriented Paradigm for Land Use/Land Cover Classification
    • Platt, R. V., and L. Rapoza. 2008. “An Evaluation of an Object-Oriented Paradigm for Land Use/Land Cover Classification.” The Professional Geographer 60 (1): 87–100. doi:10.1080/00330120701724152.
    • (2008) The Professional Geographer , vol.60 , Issue.1 , pp. 87-100
    • Platt, R.V.1    Rapoza, L.2
  • 87
    • 79956324768 scopus 로고    scopus 로고
    • Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment
    • Pontius, R. G.Jr., and M. Millones. 2011. “Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment.” International Journal of Remote Sensing 32 (15): 4407–4429. doi:10.1080/01431161.2011.552923.
    • (2011) International Journal of Remote Sensing , vol.32 , Issue.15 , pp. 4407-4429
    • Pontius, R.G.1    Millones, M.2
  • 88
    • 0032004705 scopus 로고    scopus 로고
    • Land-Use Mapping and Change Detection in a Coal Mining Area – a Case Study in the Jharia Coalfield, India
    • Prakash, A., and R. P. Gupta. 1998. “Land-Use Mapping and Change Detection in a Coal Mining Area – a Case Study in the Jharia Coalfield, India.” International Journal of Remote Sensing 19 (3): 391–410. doi:10.1080/014311698216053.
    • (1998) International Journal of Remote Sensing , vol.19 , Issue.3 , pp. 391-410
    • Prakash, A.1    Gupta, R.P.2
  • 89
    • 79960061887 scopus 로고    scopus 로고
    • Object-Based Urban Detailed Land Cover Classification with High Spatial Resolution IKONOS Imagery
    • Pu, R., S. Landry, and Q. Yu. 2011. “Object-Based Urban Detailed Land Cover Classification with High Spatial Resolution IKONOS Imagery.” International Journal of Remote Sensing 32: 3285–3308. doi:10.1080/01431161003745657.
    • (2011) International Journal of Remote Sensing , vol.32 , pp. 3285-3308
    • Pu, R.1    Landry, S.2    Yu, Q.3
  • 90
    • 84863304598 scopus 로고    scopus 로고
    • Vienna: R Foundation for Statistical Computing, June
    • R Core Development Team. 2012. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Accessed June1, 2013. http://www.R-project.org
    • (2012) R: A Language and Environment for Statistical Computing
  • 91
    • 0027334539 scopus 로고
    • Monitoring Environmental Impacts of Surface Coal-Mining
    • Rathore, C. S., and R. Wright. 1993. “Monitoring Environmental Impacts of Surface Coal-Mining.” International Journal of Remote Sensing 14 (6): 1021–1042. doi:10.1080/01431169308904394.
    • (1993) International Journal of Remote Sensing , vol.14 , Issue.6 , pp. 1021-1042
    • Rathore, C.S.1    Wright, R.2
  • 94
    • 84893826785 scopus 로고    scopus 로고
    • June
    • Saylor, K. L. 2008. “Land Cover Trend Project: Central Appalachians.” U.S. Department of the Interior, U.S. Geological Survey. Washington, DC. Accessed June1, 2013. http://landcovertrends.usgs.gov/east/eco69Report.html
    • (2008) Land Cover Trend Project: Central Appalachians
    • Saylor, K.L.1
  • 95
  • 96
    • 84857985171 scopus 로고    scopus 로고
    • Identifying Revegetated Mines as Disturbance/Recovery Trajectories Using an Interannual Landsat Chronosequence
    • Sen, S., C. E. Zipper, R. H. Wynne, and P. F. Donovan. 2012. “Identifying Revegetated Mines as Disturbance/Recovery Trajectories Using an Interannual Landsat Chronosequence.” Photogrammetric Engineering & Remote Sensing 78 (3): 223–235. doi:10.14358/PERS.78.3.223.
    • (2012) Photogrammetric Engineering & Remote Sensing , vol.78 , Issue.3 , pp. 223-235
    • Sen, S.1    Zipper, C.E.2    Wynne, R.H.3    Donovan, P.F.4
  • 98
    • 79957650754 scopus 로고    scopus 로고
    • Image Segmentation Scale Parameter Optimization and Land Cover Classification Using the Random Forest Algorithm
    • Smith, A. 2010. “Image Segmentation Scale Parameter Optimization and Land Cover Classification Using the Random Forest Algorithm.” Journal of Spatial Science 55: 69–79. doi:10.1080/14498596.2010.487851.
    • (2010) Journal of Spatial Science , vol.55 , pp. 69-79
    • Smith, A.1
  • 99
    • 84867602187 scopus 로고    scopus 로고
    • Airborne Photogrammetry and Lidar for DSM Extraction and 3D Change Detection over an Urban Area- a Comparative Study
    • Stal, C., F. Tack, P. De Maeyer, A. De Wulf, and R. Goossens. 2013. “Airborne Photogrammetry and Lidar for DSM Extraction and 3D Change Detection over an Urban Area- a Comparative Study.” International Journal of Remote Sensing 34 (4): 1087–1110. doi:10.1080/01431161.2012.717183.
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.4 , pp. 1087-1110
    • Stal, C.1    Tack, F.2    De Maeyer, P.3    De Wulf, A.4    Goossens, R.5
  • 100
    • 0034482007 scopus 로고    scopus 로고
    • Combining Multiple Classifiers An Application Using Spatial and Remotely Sensed Information for Land Cover Type Mapping
    • Steele, B. M. 2000. “Combining Multiple Classifiers An Application Using Spatial and Remotely Sensed Information for Land Cover Type Mapping.” Remote Sensing of Environment 74 (3): 545–556. doi:10.1016/S0034-4257(00)00145-0.
    • (2000) Remote Sensing of Environment , vol.74 , Issue.3 , pp. 545-556
    • Steele, B.M.1
  • 101
    • 0344654801 scopus 로고    scopus 로고
    • Estimation and Mapping of Misclassification Probabilities for Thematic Land-Cover Maps
    • Steele, B. M., J. C. Winne, and R. L. Redmond. 1998. “Estimation and Mapping of Misclassification Probabilities for Thematic Land-Cover Maps.” Remote Sensing of Environment 66 (2): 192–202. doi:10.1016/S0034-4257(98)00061-3.
    • (1998) Remote Sensing of Environment , vol.66 , Issue.2 , pp. 192-202
    • Steele, B.M.1    Winne, J.C.2    Redmond, R.L.3
  • 102
    • 0032084126 scopus 로고    scopus 로고
    • Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles
    • Stehman, S. V., and R. L. Czaplewski. 1998. “Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles.” Remote Sensing of Environment 64: 331–344. doi:10.1016/S0034-4257(98)00010-8.
    • (1998) Remote Sensing of Environment , vol.64 , pp. 331-344
    • Stehman, S.V.1    Czaplewski, R.L.2
  • 104
    • 56949108484 scopus 로고    scopus 로고
    • Changes in the Extent of Surface Mining and Reclamation in the Central Appalachians Detected Using a 1976-2006 Landsat Time Series
    • Townsend, P. A., D. P. Helmers, C. C. Kingdon, B. E. McNeil, K. M. De Beurs, and K. N. Eshleman. 2009. “Changes in the Extent of Surface Mining and Reclamation in the Central Appalachians Detected Using a 1976-2006 Landsat Time Series.” Remote Sensing of Environment 113: 62–72. doi:10.1016/j.rse.2008.08.012.
    • (2009) Remote Sensing of Environment , vol.113 , pp. 62-72
    • Townsend, P.A.1    Helmers, D.P.2    Kingdon, C.C.3    McNeil, B.E.4    De Beurs, K.M.5    Eshleman, K.N.6
  • 109
    • 1642528357 scopus 로고    scopus 로고
    • Object-Based Classification of Remote Sensing Data for Change Detection
    • Walter, V. 2004. “Object-Based Classification of Remote Sensing Data for Change Detection.” ISPRS Journal of Photogrammetry and Remote Sensing 58 (3–4): 225–238. doi:10.1016/j.isprsjprs.2003.09.007.
    • (2004) ISPRS Journal of Photogrammetry and Remote Sensing , vol.58 , Issue.3-4 , pp. 225-238
    • Walter, V.1
  • 110
    • 80053584464 scopus 로고    scopus 로고
    • Kernel-Based Texture in Remote Sensing Image Classification
    • Warner, T. 2011. “Kernel-Based Texture in Remote Sensing Image Classification.” Geography Compass 5 (10): 781–798. doi:10.1111/j.1749-8198.2011.00451.x.
    • (2011) Geography Compass , vol.5 , Issue.10 , pp. 781-798
    • Warner, T.1
  • 111
    • 70449369788 scopus 로고    scopus 로고
    • Does Single Broadband or Multispectral Thermal Data Add Information for Classification of Visible, Near- and Shortwave Infrared Imagery of Urban Areas?
    • Warner, T. A., and F. Nerry. 2009. “Does Single Broadband or Multispectral Thermal Data Add Information for Classification of Visible, Near- and Shortwave Infrared Imagery of Urban Areas?” International Journal of Remote Sensing 30 (9): 2155–2171. doi:10.1080/01431160802549286.
    • (2009) International Journal of Remote Sensing , vol.30 , Issue.9 , pp. 2155-2171
    • Warner, T.A.1    Nerry, F.2
  • 112
    • 33846629855 scopus 로고    scopus 로고
    • The Effect of Appalachian Mountaintop Mining on Interior Forest
    • Wickham, J. D., K. H. Riitters, T. G. Wade, M. Coan, and C. Homer. 2007. “The Effect of Appalachian Mountaintop Mining on Interior Forest.” Landscape Ecology 22: 179–187. doi:10.1007/s10980-006-9040-z.
    • (2007) Landscape Ecology , vol.22 , pp. 179-187
    • Wickham, J.D.1    Riitters, K.H.2    Wade, T.G.3    Coan, M.4    Homer, C.5
  • 113
    • 33745615125 scopus 로고    scopus 로고
    • Object-Based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery
    • Yu., O., P. Gong, N. Clinton, G. Biging, M. Kelly, and D. Schirokauer. 2006. “Object-Based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery.” Photogrammetric Engineering & Remote Sensing 72: 799–811. doi:10.14358/PERS.72.7.799.
    • (2006) Photogrammetric Engineering & Remote Sensing , vol.72 , pp. 799-811
    • Yu, O.1    Gong, P.2    Clinton, N.3    Biging, G.4    Kelly, M.5    Schirokauer, D.6
  • 116
    • 84878631650 scopus 로고    scopus 로고
    • An Object-Based Approach for Urban Land Cover Classification: Integrating Lidar Height and Intensity Data
    • Zhou, W. 2013. “An Object-Based Approach for Urban Land Cover Classification: Integrating Lidar Height and Intensity Data.” IEEEGeoscience and Remote Sensing Letters 10 (4): 928–931. doi:10.1109/LGRS.2013.2251453.
    • (2013) IEEEGeoscience and Remote Sensing Letters , vol.10 , Issue.4 , pp. 928-931
    • Zhou, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.