메뉴 건너뛰기




Volumn , Issue , 2015, Pages 1-249

Local Fractional Integral Transforms and Their Applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85088982362     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Book
Times cited : (398)

References (430)
  • 2
    • 0040655648 scopus 로고    scopus 로고
    • Fractional differentiability of nowhere differentiable functions and dimensions
    • Kolwankar K.M., Gangal A.D. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 1996, 6(4):505-513.
    • (1996) Chaos , vol.6 , Issue.4 , pp. 505-513
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 7
    • 0030671988 scopus 로고    scopus 로고
    • Hölder exponents of irregular signals and local fractional derivatives
    • Kolwankar K.M., Gangal A.D. Hölder exponents of irregular signals and local fractional derivatives. Pramana 1997, 48(1):49-68.
    • (1997) Pramana , vol.48 , Issue.1 , pp. 49-68
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 8
    • 0001707390 scopus 로고    scopus 로고
    • Local fractional Fokker-Planck equation
    • Kolwankar K.M., Gangal A.D. Local fractional Fokker-Planck equation. Phys. Rev. Lett. 1998, 80(2):214.
    • (1998) Phys. Rev. Lett. , vol.80 , Issue.2 , pp. 214
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 9
    • 0036028181 scopus 로고    scopus 로고
    • A fractional calculus approach to the description of stress and strain localization in fractal media
    • Carpinteri A., Cornetti P. A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos Soliton. Fract. 2002, 13(1):85-94.
    • (2002) Chaos Soliton. Fract. , vol.13 , Issue.1 , pp. 85-94
    • Carpinteri, A.1    Cornetti, P.2
  • 10
    • 0035834542 scopus 로고    scopus 로고
    • Static-kinematic duality and the principle of virtual work in the mechanics of fractal media
    • Carpinteri A., Chiaia B., Cornetti P. Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput. Methods Appl. Mech. Eng. 2001, 191(1):3-19.
    • (2001) Comput. Methods Appl. Mech. Eng. , vol.191 , Issue.1 , pp. 3-19
    • Carpinteri, A.1    Chiaia, B.2    Cornetti, P.3
  • 11
    • 0742324870 scopus 로고    scopus 로고
    • The elastic problem for fractal media: basic theory and finite element formulation
    • Carpinteri A., Chiaia B., Cornetti P. The elastic problem for fractal media: basic theory and finite element formulation. Comput. Struct. 2004, 82(6):499-508.
    • (2004) Comput. Struct. , vol.82 , Issue.6 , pp. 499-508
    • Carpinteri, A.1    Chiaia, B.2    Cornetti, P.3
  • 12
    • 1342264358 scopus 로고    scopus 로고
    • Calculation of the tensile and flexural strength of disordered materials using fractional calculus
    • Carpinteri A., Cornetti P., Kolwankar K.M. Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos Soliton. Fract. 2004, 21(3):623-632.
    • (2004) Chaos Soliton. Fract. , vol.21 , Issue.3 , pp. 623-632
    • Carpinteri, A.1    Cornetti, P.2    Kolwankar, K.M.3
  • 13
    • 70350325151 scopus 로고    scopus 로고
    • On the local fractional derivative
    • Chen Y., Yan Y., Zhang K. On the local fractional derivative. J. Math. Anal. Appl. 2010, 362(1):17-33.
    • (2010) J. Math. Anal. Appl. , vol.362 , Issue.1 , pp. 17-33
    • Chen, Y.1    Yan, Y.2    Zhang, K.3
  • 14
    • 0035891478 scopus 로고    scopus 로고
    • About non-differentiable functions
    • Adda F.B., Cresson J. About non-differentiable functions. J. Math. Anal. Appl. 2001, 263(2):721-737.
    • (2001) J. Math. Anal. Appl. , vol.263 , Issue.2 , pp. 721-737
    • Adda, F.B.1    Cresson, J.2
  • 15
    • 0036600978 scopus 로고    scopus 로고
    • On calculus of local fractional derivatives
    • Babakhani A., Daftardar-Gejji V. On calculus of local fractional derivatives. J. Math. Anal. Appl. 2002, 270(1):66-79.
    • (2002) J. Math. Anal. Appl. , vol.270 , Issue.1 , pp. 66-79
    • Babakhani, A.1    Daftardar-Gejji, V.2
  • 16
    • 84555221318 scopus 로고    scopus 로고
    • Local fractional integral transforms
    • Yang X.-J. Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4(1):1-225.
    • (2011) Prog. Nonlinear Sci. , vol.4 , Issue.1 , pp. 1-225
    • Yang, X.-J.1
  • 17
    • 27744450698 scopus 로고    scopus 로고
    • Time-space fabric underlying anomalous diffusion
    • Chen W. Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract. 2006, 28(4):923-929.
    • (2006) Chaos Soliton. Fract. , vol.28 , Issue.4 , pp. 923-929
    • Chen, W.1
  • 18
    • 76449111034 scopus 로고    scopus 로고
    • Anomalous diffusion modeling by fractal and fractional derivatives
    • Chen W., Sun H., Zhang X., Korovsak D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59(5):1754-1758.
    • (2010) Comput. Math. Appl. , vol.59 , Issue.5 , pp. 1754-1758
    • Chen, W.1    Sun, H.2    Zhang, X.3    Korovsak, D.4
  • 19
    • 79955145165 scopus 로고    scopus 로고
    • A new fractal derivation
    • He J.-H. A new fractal derivation. Therm. Sci. 2011, 15(Suppl. 1):145-147.
    • (2011) Therm. Sci. , vol.15 , pp. 145-147
    • He, J.-H.1
  • 20
    • 84855203771 scopus 로고    scopus 로고
    • Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
    • He J.-H., Elagan S.K., Li Z.-B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376(4):257-259.
    • (2012) Phys. Lett. A , vol.376 , Issue.4 , pp. 257-259
    • He, J.-H.1    Elagan, S.K.2    Li, Z.-B.3
  • 22
    • 84878016367 scopus 로고    scopus 로고
    • Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
    • Yang X.-J., Srivastava H.M., He J.-H., Baleanu D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377(28):1696-1700.
    • (2013) Phys. Lett. A , vol.377 , Issue.28 , pp. 1696-1700
    • Yang, X.-J.1    Srivastava, H.M.2    He, J.-H.3    Baleanu, D.4
  • 23
    • 84939986878 scopus 로고    scopus 로고
    • Local fractional similarity solution for the diffusion equation defined on Cantor sets
    • Yang X.-J., Baleanu D., Srivastava H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015, 47:54-60.
    • (2015) Appl. Math. Lett. , vol.47 , pp. 54-60
    • Yang, X.-J.1    Baleanu, D.2    Srivastava, H.M.3
  • 24
    • 85052823296 scopus 로고    scopus 로고
    • A review of definitions for fractional derivatives and integral
    • Oliveira E.C.D., Machado J.A.T. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 6 pages.
    • (2014) Math. Probl. Eng. , pp. 6
    • Oliveira, E.C.D.1    Machado, J.A.T.2
  • 25
    • 84920928257 scopus 로고    scopus 로고
    • Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method
    • Zhang Y. Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method. Abstr. Appl. Anal. 2014, 5 pages.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Zhang, Y.1
  • 26
    • 78649351641 scopus 로고    scopus 로고
    • Investigation on fractional and fractal derivative relaxation-oscillation models
    • Chen W., Zhang X.-D., Korovsak D. Investigation on fractional and fractal derivative relaxation-oscillation models. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11(1):3-10.
    • (2010) Int. J. Nonlinear Sci. Numer. Simul. , vol.11 , Issue.1 , pp. 3-10
    • Chen, W.1    Zhang, X.-D.2    Korovsak, D.3
  • 27
    • 84884896550 scopus 로고    scopus 로고
    • The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar
    • Yang A.-M., Zhang Y.-Z., Long Y. The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar. Therm. Sci. 2013, 17(3):707-713.
    • (2013) Therm. Sci. , vol.17 , Issue.3 , pp. 707-713
    • Yang, A.-M.1    Zhang, Y.-Z.2    Long, Y.3
  • 29
    • 52349114814 scopus 로고    scopus 로고
    • Fractional central differences and derivatives
    • Ortigueira M.D. Fractional central differences and derivatives. J. Vib. Control. 2008, 14(9-10):1255-1266.
    • (2008) J. Vib. Control. , vol.14 , Issue.9-10 , pp. 1255-1266
    • Ortigueira, M.D.1
  • 30
    • 79957894816 scopus 로고    scopus 로고
    • Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms
    • Ortigueira M.D., Trujillo J.J. Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms. J. Comput. Nonlinear Dyn. 2011, 6(3).
    • (2011) J. Comput. Nonlinear Dyn. , vol.6 , Issue.3
    • Ortigueira, M.D.1    Trujillo, J.J.2
  • 31
    • 63449116783 scopus 로고    scopus 로고
    • Fractional derivatives: probability interpretation and frequency response of rational approximations
    • Machado J.A.T. Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(9):3492-3497.
    • (2009) Commun. Nonlinear Sci. Numer. Simul. , vol.14 , Issue.9 , pp. 3492-3497
    • Machado, J.A.T.1
  • 32
    • 84878718723 scopus 로고    scopus 로고
    • Fractional coins and fractional derivatives
    • Machado J.A.T. Fractional coins and fractional derivatives. Abstr. Appl. Anal. 2013, 5 pages.
    • (2013) Abstr. Appl. Anal. , pp. 5
    • Machado, J.A.T.1
  • 34
    • 84877246956 scopus 로고    scopus 로고
    • A note on fractional order derivatives and table of fractional derivatives of some special functions
    • Atangana A., Secer A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 2013, 8 pages.
    • (2013) Abstr. Appl. Anal. , pp. 8
    • Atangana, A.1    Secer, A.2
  • 35
    • 18144429885 scopus 로고    scopus 로고
    • On the representation of fractional Brownian motion as an integral with respect to dt?
    • Jumarie G. On the representation of fractional Brownian motion as an integral with respect to dt?. Appl. Math. Lett. 2005, 18(7):739-748.
    • (2005) Appl. Math. Lett. , vol.18 , Issue.7 , pp. 739-748
    • Jumarie, G.1
  • 36
    • 33745742268 scopus 로고    scopus 로고
    • Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
    • Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51(9):1367-1376.
    • (2006) Comput. Math. Appl. , vol.51 , Issue.9 , pp. 1367-1376
    • Jumarie, G.1
  • 37
    • 38349194080 scopus 로고    scopus 로고
    • Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions
    • Jumarie G. Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 2008, 32(5):836-859.
    • (2008) Appl. Math. Model. , vol.32 , Issue.5 , pp. 836-859
    • Jumarie, G.1
  • 38
    • 57049186538 scopus 로고    scopus 로고
    • Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions
    • Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions. Appl. Math. Lett. 2009, 22(3):378-385.
    • (2009) Appl. Math. Lett. , vol.22 , Issue.3 , pp. 378-385
    • Jumarie, G.1
  • 39
    • 79953697124 scopus 로고    scopus 로고
    • Introduction to fractional integrability and differentiability
    • Li C.-P., Zhao Z.-G. Introduction to fractional integrability and differentiability. Eur. Phys. J. 2011, 193(1):5-26.
    • (2011) Eur. Phys. J. , vol.193 , Issue.1 , pp. 5-26
    • Li, C.-P.1    Zhao, Z.-G.2
  • 41
    • 84911406110 scopus 로고    scopus 로고
    • On conformable fractional calculus
    • Abdeljawad T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279:57-66.
    • (2015) J. Comput. Appl. Math. , vol.279 , pp. 57-66
    • Abdeljawad, T.1
  • 43
    • 80052268122 scopus 로고    scopus 로고
    • New approach to a generalized fractional integral
    • Katugampola U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218(3):860-865.
    • (2011) Appl. Math. Comput. , vol.218 , Issue.3 , pp. 860-865
    • Katugampola, U.N.1
  • 44
    • 85051078999 scopus 로고    scopus 로고
    • A new definition of fractional derivative without singular kernel
    • Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):73-85.
    • (2015) Prog. Fract. Differ. Appl. , vol.1 , Issue.2 , pp. 73-85
    • Caputo, M.1    Fabrizio, M.2
  • 45
    • 85017665729 scopus 로고    scopus 로고
    • Properties of a new fractional derivative without singular kernel
    • Losada J., Nieto J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):87-92.
    • (2015) Prog. Fract. Differ. Appl. , vol.1 , Issue.2 , pp. 87-92
    • Losada, J.1    Nieto, J.J.2
  • 47
  • 51
    • 85015950998 scopus 로고    scopus 로고
    • A brief historical introduction to fractional calculus
    • Debnath L. A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 2004, 35(4):487-501.
    • (2004) Int. J. Math. Educ. Sci. Technol. , vol.35 , Issue.4 , pp. 487-501
    • Debnath, L.1
  • 55
    • 84891741140 scopus 로고    scopus 로고
    • On development of fractional calculus during the last fifty years
    • Machado J.A.T., Galhano A.M., Trujillo J.J. On development of fractional calculus during the last fifty years. Scientometrics 2014, 98(1):577-582.
    • (2014) Scientometrics , vol.98 , Issue.1 , pp. 577-582
    • Machado, J.A.T.1    Galhano, A.M.2    Trujillo, J.J.3
  • 70
    • 84883192779 scopus 로고    scopus 로고
    • Generalizations of Hölder's and some related integral inequalities on fractal space
    • Chen G.-S. Generalizations of Hölder's and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 9 pages.
    • (2013) J. Funct. Spaces Appl. , pp. 9
    • Chen, G.-S.1
  • 71
    • 84934914868 scopus 로고    scopus 로고
    • A local fractional integral inequality on fractal space analogous to Anderson's inequality
    • Wei W., Srivastava H.M., Zhang Y., Wang L., Shen P., Zhang J. A local fractional integral inequality on fractal space analogous to Anderson's inequality. Abstr. Appl. Anal. 2014, 7 pages.
    • (2014) Abstr. Appl. Anal. , pp. 7
    • Wei, W.1    Srivastava, H.M.2    Zhang, Y.3    Wang, L.4    Shen, P.5    Zhang, J.6
  • 72
    • 84904654377 scopus 로고    scopus 로고
    • Some further generalizations of Hölder's inequality and related results on fractal space
    • Chen G.-S., Srivastava H.M., Wang P., Wie W. Some further generalizations of Hölder's inequality and related results on fractal space. Abstr. Appl. Anal. 2014, 7 pages.
    • (2014) Abstr. Appl. Anal. , pp. 7
    • Chen, G.-S.1    Srivastava, H.M.2    Wang, P.3    Wie, W.4
  • 73
    • 84920885354 scopus 로고    scopus 로고
    • On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics
    • Zhang Y., Baleanu D., Yang X.-J. On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics. Entropy 2014, 16(12):6254-6262.
    • (2014) Entropy , vol.16 , Issue.12 , pp. 6254-6262
    • Zhang, Y.1    Baleanu, D.2    Yang, X.-J.3
  • 74
    • 84900011952 scopus 로고    scopus 로고
    • Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain
    • Li Y.-Y., Zhao L.Y., Xie G.-N., Baleanu D., Yang X.-J., Zhao K. Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain. Adv. Math. Phys. 2014, 5 pages.
    • (2014) Adv. Math. Phys. , pp. 5
    • Li, Y.-Y.1    Zhao, L.Y.2    Xie, G.-N.3    Baleanu, D.4    Yang, X.-J.5    Zhao, K.6
  • 75
    • 84899418585 scopus 로고    scopus 로고
    • Local fractional variational iteration method for Fokker-Planck equation on a Cantor set
    • Yang X.-J., Baleanu D. Local fractional variational iteration method for Fokker-Planck equation on a Cantor set. Acta Univ. 2013, 23(2):3-8.
    • (2013) Acta Univ. , vol.23 , Issue.2 , pp. 3-8
    • Yang, X.-J.1    Baleanu, D.2
  • 76
    • 85044053149 scopus 로고    scopus 로고
    • Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis
    • Yang X.-J., Baleanu D., Machado J.A.T. Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. Bound. Value Probl. 2013, 1:1-16.
    • (2013) Bound. Value Probl. , vol.1 , pp. 1-16
    • Yang, X.-J.1    Baleanu, D.2    Machado, J.A.T.3
  • 77
    • 84879310679 scopus 로고    scopus 로고
    • Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method
    • Su W.-H., Baleanu D., Yang X.-J., Jafari H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory Appl. 2013, 1:1-11.
    • (2013) Fixed Point Theory Appl. , vol.1 , pp. 1-11
    • Su, W.-H.1    Baleanu, D.2    Yang, X.-J.3    Jafari, H.4
  • 79
  • 81
    • 84899434153 scopus 로고    scopus 로고
    • Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws
    • Wang L.-F., Yang X.-J., Baleanu D., Cattani C., Zhao Y. Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws. Abstr. Appl. Anal. 2014, 5 pages.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Wang, L.-F.1    Yang, X.-J.2    Baleanu, D.3    Cattani, C.4    Zhao, Y.5
  • 83
    • 84890267857 scopus 로고    scopus 로고
    • Transport equations in fractal porous media within fractional complex transform method
    • Yang X.-J., Baleanu D., He J.-H. Transport equations in fractal porous media within fractional complex transform method. Proc. Rom. Acad. Series A 2013, 14(4):287-292.
    • (2013) Proc. Rom. Acad. Series A , vol.14 , Issue.4 , pp. 287-292
    • Yang, X.-J.1    Baleanu, D.2    He, J.-H.3
  • 84
    • 84881521586 scopus 로고    scopus 로고
    • Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates
    • Hao Y.-J., Srivastava H.M., Jafari H., Yang X.-J. Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates. Adv. Math. Phys. 2013, 5 pages.
    • (2013) Adv. Math. Phys. , pp. 5
    • Hao, Y.-J.1    Srivastava, H.M.2    Jafari, H.3    Yang, X.-J.4
  • 85
    • 84903541046 scopus 로고    scopus 로고
    • Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation
    • Yang X.-J., Hristov J., Srivastava H.M., Ahmad B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr. Appl. Anal. 2014, 10 pages.
    • (2014) Abstr. Appl. Anal. , pp. 10
    • Yang, X.-J.1    Hristov, J.2    Srivastava, H.M.3    Ahmad, B.4
  • 86
    • 84961172616 scopus 로고    scopus 로고
    • Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
    • Yang X.-J., Machado J.A.T., Hristov J. Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dyn. 2015, 10.1007/s11071-015-2085-2.
    • (2015) Nonlinear Dyn.
    • Yang, X.-J.1    Machado, J.A.T.2    Hristov, J.3
  • 87
    • 84922810016 scopus 로고    scopus 로고
    • Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow
    • Niu X.-F., Zhang C.-L., Li Z.-B., Zhao Y. Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow. Abstr. Appl. Anal. 2014, 5 pages.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Niu, X.-F.1    Zhang, C.-L.2    Li, Z.-B.3    Zhao, Y.4
  • 89
    • 84938053187 scopus 로고    scopus 로고
    • Observing diffusion problems defined on Cantor sets in different coordinate systems
    • Yang Y.-J., Baleanu D., Baleanu M.C. Observing diffusion problems defined on Cantor sets in different coordinate systems. Thermal Sci. 2015, 10.2298/TSCI141126065Y.
    • (2015) Thermal Sci.
    • Yang, Y.-J.1    Baleanu, D.2    Baleanu, M.C.3
  • 91
    • 84555221318 scopus 로고    scopus 로고
    • Local fractional integral transforms
    • Yang X.-J. Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4(1):1-225.
    • (2011) Prog. Nonlinear Sci. , vol.4 , Issue.1 , pp. 1-225
    • Yang, X.-J.1
  • 92
    • 27744450698 scopus 로고    scopus 로고
    • Time-space fabric underlying anomalous diffusion
    • Chen W. Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract. 2006, 28(4):923-929.
    • (2006) Chaos Soliton. Fract. , vol.28 , Issue.4 , pp. 923-929
    • Chen, W.1
  • 93
    • 76449111034 scopus 로고    scopus 로고
    • Anomalous diffusion modeling by fractal and fractional derivatives
    • Chen W., Sun H., Zhang X., Korovsak D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59(5):1754-1758.
    • (2010) Comput. Math. Appl. , vol.59 , Issue.5 , pp. 1754-1758
    • Chen, W.1    Sun, H.2    Zhang, X.3    Korovsak, D.4
  • 94
    • 79955145165 scopus 로고    scopus 로고
    • A new fractal derivation
    • He J.-H. A new fractal derivation. Therm. Sci. 2011, 15(Suppl. 1):145-147.
    • (2011) Therm. Sci. , vol.15 , pp. 145-147
    • He, J.-H.1
  • 95
    • 84855203771 scopus 로고    scopus 로고
    • Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
    • He J.-H., Elagan S.K., Li Z.-B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376(4):257-259.
    • (2012) Phys. Lett. A , vol.376 , Issue.4 , pp. 257-259
    • He, J.-H.1    Elagan, S.K.2    Li, Z.-B.3
  • 97
    • 84878016367 scopus 로고    scopus 로고
    • Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
    • Yang X.-J., Srivastava H.M., He J.-H., Baleanu D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377(28):1696-1700.
    • (2013) Phys. Lett. A , vol.377 , Issue.28 , pp. 1696-1700
    • Yang, X.-J.1    Srivastava, H.M.2    He, J.-H.3    Baleanu, D.4
  • 98
    • 84939986878 scopus 로고    scopus 로고
    • Local fractional similarity solution for the diffusion equation defined on Cantor sets
    • Yang X.-J., Baleanu D., Srivastava H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015, 47:54-60.
    • (2015) Appl. Math. Lett. , vol.47 , pp. 54-60
    • Yang, X.-J.1    Baleanu, D.2    Srivastava, H.M.3
  • 99
    • 85052823296 scopus 로고    scopus 로고
    • A review of definitions for fractional derivatives and integral
    • Oliveira E.C.D., Machado J.A.T. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 6 pages.
    • (2014) Math. Probl. Eng. , pp. 6
    • Oliveira, E.C.D.1    Machado, J.A.T.2
  • 100
    • 84920928257 scopus 로고    scopus 로고
    • Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method
    • Zhang Y. Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method. Abstr. Appl. Anal. 2014, 5 pages.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Zhang, Y.1
  • 101
    • 78649351641 scopus 로고    scopus 로고
    • Investigation on fractional and fractal derivative relaxation-oscillation models
    • Chen W., Zhang X.-D., Korovsak D. Investigation on fractional and fractal derivative relaxation-oscillation models. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11(1):3-10.
    • (2010) Int. J. Nonlinear Sci. Numer. Simul. , vol.11 , Issue.1 , pp. 3-10
    • Chen, W.1    Zhang, X.-D.2    Korovsak, D.3
  • 102
    • 84884896550 scopus 로고    scopus 로고
    • The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar
    • Yang A.-M., Zhang Y.-Z., Long Y. The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar. Therm. Sci. 2013, 17(3):707-713.
    • (2013) Therm. Sci. , vol.17 , Issue.3 , pp. 707-713
    • Yang, A.-M.1    Zhang, Y.-Z.2    Long, Y.3
  • 104
    • 52349114814 scopus 로고    scopus 로고
    • Fractional central differences and derivatives
    • Ortigueira M.D. Fractional central differences and derivatives. J. Vib. Control. 2008, 14(9-10):1255-1266.
    • (2008) J. Vib. Control. , vol.14 , Issue.9-10 , pp. 1255-1266
    • Ortigueira, M.D.1
  • 105
    • 79957894816 scopus 로고    scopus 로고
    • Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms
    • Ortigueira M.D., Trujillo J.J. Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms. J. Comput. Nonlinear Dyn. 2011, 6(3).
    • (2011) J. Comput. Nonlinear Dyn. , vol.6 , Issue.3
    • Ortigueira, M.D.1    Trujillo, J.J.2
  • 106
    • 63449116783 scopus 로고    scopus 로고
    • Fractional derivatives: probability interpretation and frequency response of rational approximations
    • Machado J.A.T. Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(9):3492-3497.
    • (2009) Commun. Nonlinear Sci. Numer. Simul. , vol.14 , Issue.9 , pp. 3492-3497
    • Machado, J.A.T.1
  • 107
    • 84878718723 scopus 로고    scopus 로고
    • Fractional coins and fractional derivatives
    • Machado J.A.T. Fractional coins and fractional derivatives. Abstr. Appl. Anal. 2013, 5 pages.
    • (2013) Abstr. Appl. Anal. , pp. 5
    • Machado, J.A.T.1
  • 109
    • 84877246956 scopus 로고    scopus 로고
    • A note on fractional order derivatives and table of fractional derivatives of some special functions
    • Atangana A., Secer A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 2013, 8 pages.
    • (2013) Abstr. Appl. Anal. , pp. 8
    • Atangana, A.1    Secer, A.2
  • 110
    • 18144429885 scopus 로고    scopus 로고
    • On the representation of fractional Brownian motion as an integral with respect to dt?
    • Jumarie G. On the representation of fractional Brownian motion as an integral with respect to dt?. Appl. Math. Lett. 2005, 18(7):739-748.
    • (2005) Appl. Math. Lett. , vol.18 , Issue.7 , pp. 739-748
    • Jumarie, G.1
  • 111
    • 33745742268 scopus 로고    scopus 로고
    • Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
    • Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51(9):1367-1376.
    • (2006) Comput. Math. Appl. , vol.51 , Issue.9 , pp. 1367-1376
    • Jumarie, G.1
  • 112
    • 38349194080 scopus 로고    scopus 로고
    • Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions
    • Jumarie G. Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 2008, 32(5):836-859.
    • (2008) Appl. Math. Model. , vol.32 , Issue.5 , pp. 836-859
    • Jumarie, G.1
  • 113
    • 57049186538 scopus 로고    scopus 로고
    • Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions
    • Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions. Appl. Math. Lett. 2009, 22(3):378-385.
    • (2009) Appl. Math. Lett. , vol.22 , Issue.3 , pp. 378-385
    • Jumarie, G.1
  • 114
    • 79953697124 scopus 로고    scopus 로고
    • Introduction to fractional integrability and differentiability
    • Li C.-P., Zhao Z.-G. Introduction to fractional integrability and differentiability. Eur. Phys. J. 2011, 193(1):5-26.
    • (2011) Eur. Phys. J. , vol.193 , Issue.1 , pp. 5-26
    • Li, C.-P.1    Zhao, Z.-G.2
  • 116
    • 84911406110 scopus 로고    scopus 로고
    • On conformable fractional calculus
    • Abdeljawad T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279:57-66.
    • (2015) J. Comput. Appl. Math. , vol.279 , pp. 57-66
    • Abdeljawad, T.1
  • 118
    • 80052268122 scopus 로고    scopus 로고
    • New approach to a generalized fractional integral
    • Katugampola U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218(3):860-865.
    • (2011) Appl. Math. Comput. , vol.218 , Issue.3 , pp. 860-865
    • Katugampola, U.N.1
  • 119
    • 85051078999 scopus 로고    scopus 로고
    • A new definition of fractional derivative without singular kernel
    • Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):73-85.
    • (2015) Prog. Fract. Differ. Appl. , vol.1 , Issue.2 , pp. 73-85
    • Caputo, M.1    Fabrizio, M.2
  • 120
    • 85017665729 scopus 로고    scopus 로고
    • Properties of a new fractional derivative without singular kernel
    • Losada J., Nieto J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):87-92.
    • (2015) Prog. Fract. Differ. Appl. , vol.1 , Issue.2 , pp. 87-92
    • Losada, J.1    Nieto, J.J.2
  • 122
  • 126
    • 85015950998 scopus 로고    scopus 로고
    • A brief historical introduction to fractional calculus
    • Debnath L. A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 2004, 35(4):487-501.
    • (2004) Int. J. Math. Educ. Sci. Technol. , vol.35 , Issue.4 , pp. 487-501
    • Debnath, L.1
  • 130
    • 84891741140 scopus 로고    scopus 로고
    • On development of fractional calculus during the last fifty years
    • Machado J.A.T., Galhano A.M., Trujillo J.J. On development of fractional calculus during the last fifty years. Scientometrics 2014, 98(1):577-582.
    • (2014) Scientometrics , vol.98 , Issue.1 , pp. 577-582
    • Machado, J.A.T.1    Galhano, A.M.2    Trujillo, J.J.3
  • 145
    • 84883192779 scopus 로고    scopus 로고
    • Generalizations of Hölder's and some related integral inequalities on fractal space
    • Chen G.-S. Generalizations of Hölder's and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 9 pages.
    • (2013) J. Funct. Spaces Appl. , pp. 9
    • Chen, G.-S.1
  • 146
    • 84934914868 scopus 로고    scopus 로고
    • A local fractional integral inequality on fractal space analogous to Anderson's inequality
    • Wei W., Srivastava H.M., Zhang Y., Wang L., Shen P., Zhang J. A local fractional integral inequality on fractal space analogous to Anderson's inequality. Abstr. Appl. Anal. 2014, 7 pages.
    • (2014) Abstr. Appl. Anal. , pp. 7
    • Wei, W.1    Srivastava, H.M.2    Zhang, Y.3    Wang, L.4    Shen, P.5    Zhang, J.6
  • 147
    • 84904654377 scopus 로고    scopus 로고
    • Some further generalizations of Hölder's inequality and related results on fractal space
    • Chen G.-S., Srivastava H.M., Wang P., Wie W. Some further generalizations of Hölder's inequality and related results on fractal space. Abstr. Appl. Anal. 2014, 7 pages.
    • (2014) Abstr. Appl. Anal. , pp. 7
    • Chen, G.-S.1    Srivastava, H.M.2    Wang, P.3    Wie, W.4
  • 148
    • 84920885354 scopus 로고    scopus 로고
    • On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics
    • Zhang Y., Baleanu D., Yang X.-J. On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics. Entropy 2014, 16(12):6254-6262.
    • (2014) Entropy , vol.16 , Issue.12 , pp. 6254-6262
    • Zhang, Y.1    Baleanu, D.2    Yang, X.-J.3
  • 149
    • 84900011952 scopus 로고    scopus 로고
    • Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain
    • Li Y.-Y., Zhao L.Y., Xie G.-N., Baleanu D., Yang X.-J., Zhao K. Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain. Adv. Math. Phys. 2014, 5 pages.
    • (2014) Adv. Math. Phys. , pp. 5
    • Li, Y.-Y.1    Zhao, L.Y.2    Xie, G.-N.3    Baleanu, D.4    Yang, X.-J.5    Zhao, K.6
  • 150
    • 84899418585 scopus 로고    scopus 로고
    • Local fractional variational iteration method for Fokker-Planck equation on a Cantor set
    • Yang X.-J., Baleanu D. Local fractional variational iteration method for Fokker-Planck equation on a Cantor set. Acta Univ. 2013, 23(2):3-8.
    • (2013) Acta Univ. , vol.23 , Issue.2 , pp. 3-8
    • Yang, X.-J.1    Baleanu, D.2
  • 151
    • 85044053149 scopus 로고    scopus 로고
    • Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis
    • Yang X.-J., Baleanu D., Machado J.A.T. Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. Bound. Value Probl. 2013, 1:1-16.
    • (2013) Bound. Value Probl. , vol.1 , pp. 1-16
    • Yang, X.-J.1    Baleanu, D.2    Machado, J.A.T.3
  • 152
    • 84879310679 scopus 로고    scopus 로고
    • Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method
    • Su W.-H., Baleanu D., Yang X.-J., Jafari H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory Appl. 2013, 1:1-11.
    • (2013) Fixed Point Theory Appl. , vol.1 , pp. 1-11
    • Su, W.-H.1    Baleanu, D.2    Yang, X.-J.3    Jafari, H.4
  • 154
  • 156
    • 84899434153 scopus 로고    scopus 로고
    • Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws
    • Wang L.-F., Yang X.-J., Baleanu D., Cattani C., Zhao Y. Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws. Abstr. Appl. Anal. 2014, 5 pages.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Wang, L.-F.1    Yang, X.-J.2    Baleanu, D.3    Cattani, C.4    Zhao, Y.5
  • 158
    • 84890267857 scopus 로고    scopus 로고
    • Transport equations in fractal porous media within fractional complex transform method
    • Yang X.-J., Baleanu D., He J.-H. Transport equations in fractal porous media within fractional complex transform method. Proc. Rom. Acad. Series A 2013, 14(4):287-292.
    • (2013) Proc. Rom. Acad. Series A , vol.14 , Issue.4 , pp. 287-292
    • Yang, X.-J.1    Baleanu, D.2    He, J.-H.3
  • 159
    • 84881521586 scopus 로고    scopus 로고
    • Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates
    • Hao Y.-J., Srivastava H.M., Jafari H., Yang X.-J. Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates. Adv. Math. Phys. 2013, 5 pages.
    • (2013) Adv. Math. Phys. , pp. 5
    • Hao, Y.-J.1    Srivastava, H.M.2    Jafari, H.3    Yang, X.-J.4
  • 160
    • 84903541046 scopus 로고    scopus 로고
    • Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation
    • Yang X.-J., Hristov J., Srivastava H.M., Ahmad B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr. Appl. Anal. 2014, 10 pages.
    • (2014) Abstr. Appl. Anal. , pp. 10
    • Yang, X.-J.1    Hristov, J.2    Srivastava, H.M.3    Ahmad, B.4
  • 161
    • 84961172616 scopus 로고    scopus 로고
    • Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
    • Yang X.-J., Machado J.A.T., Hristov J. Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dyn. 2015, 10.1007/s11071-015-2085-2.
    • (2015) Nonlinear Dyn.
    • Yang, X.-J.1    Machado, J.A.T.2    Hristov, J.3
  • 162
    • 84922810016 scopus 로고    scopus 로고
    • Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow
    • Niu X.-F., Zhang C.-L., Li Z.-B., Zhao Y. Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow. Abstr. Appl. Anal. 2014, 5 pages.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Niu, X.-F.1    Zhang, C.-L.2    Li, Z.-B.3    Zhao, Y.4
  • 164
    • 84938053187 scopus 로고    scopus 로고
    • Observing diffusion problems defined on Cantor sets in different coordinate systems
    • Yang Y.-J., Baleanu D., Baleanu M.C. Observing diffusion problems defined on Cantor sets in different coordinate systems. Thermal Sci. 2015, 10.2298/TSCI141126065Y.
    • (2015) Thermal Sci.
    • Yang, Y.-J.1    Baleanu, D.2    Baleanu, M.C.3
  • 167
    • 0003967444 scopus 로고
    • Cambridge University Press, Cambridge, London, New York
    • Körner T.W. Fourier Analysis 1988, Cambridge University Press, Cambridge, London, New York.
    • (1988) Fourier Analysis
    • Körner, T.W.1
  • 172
    • 84888873847 scopus 로고    scopus 로고
    • Mappings for special functions on Cantor sets and special integral transforms via local fractional operators
    • Zhao Y., Baleanu D., Baleanu M.C., Cheng D.-F., Yang X.-J. Mappings for special functions on Cantor sets and special integral transforms via local fractional operators. Abstr. Appl. Anal. 2013, 6 pages.
    • (2013) Abstr. Appl. Anal. , pp. 6
    • Zhao, Y.1    Baleanu, D.2    Baleanu, M.C.3    Cheng, D.-F.4    Yang, X.-J.5
  • 173
    • 84903554974 scopus 로고    scopus 로고
    • Signal processing for nondifferentiable data defined on Cantor sets: a local fractional Fourier series approach
    • Chen Z.-Y., Cattani C., Zhong W.-P. Signal processing for nondifferentiable data defined on Cantor sets: a local fractional Fourier series approach. Adv. Math. Phys. 2014, 7 pages.
    • (2014) Adv. Math. Phys. , pp. 7
    • Chen, Z.-Y.1    Cattani, C.2    Zhong, W.-P.3
  • 174
    • 84880177097 scopus 로고    scopus 로고
    • 1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method
    • Yang X.-J., Zhang Y., Yang A.-M. 1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method. Therm. Sci. 2013, 17(3):953-956.
    • (2013) Therm. Sci. , vol.17 , Issue.3 , pp. 953-956
    • Yang, X.-J.1    Zhang, Y.2    Yang, A.-M.3
  • 175
    • 84955145780 scopus 로고    scopus 로고
    • On analytical methods for differential equations with local fractional derivative operators, Chapter 4
    • Nova Science Publishers, New York
    • Yang X.-J., Baleanu D., Machado J.A.T., Daou R.A.Z., Moreau X. On analytical methods for differential equations with local fractional derivative operators, Chapter 4. Fractional Calculus: Theory 2014, 65-88. Nova Science Publishers, New York.
    • (2014) Fractional Calculus: Theory , pp. 65-88
    • Yang, X.-J.1    Baleanu, D.2    Machado, J.A.T.3    Daou, R.A.Z.4    Moreau, X.5
  • 176
    • 84880152493 scopus 로고    scopus 로고
    • Analysis of fractal wave equations by local fractional Fourier series method
    • Yang Y.-J., Baleanu D., Yang X.-J. Analysis of fractal wave equations by local fractional Fourier series method. Adv. Math. Phys. 2013, 6 pages.
    • (2013) Adv. Math. Phys. , pp. 6
    • Yang, Y.-J.1    Baleanu, D.2    Yang, X.-J.3
  • 177
    • 84872148874 scopus 로고    scopus 로고
    • Local fractional Fourier series with application to wave equation in fractal vibrating string
    • Hu M.-S., Agarwal R.P., Yang X.-J. Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstr. Appl. Anal. 2012, 15 pages.
    • (2012) Abstr. Appl. Anal. , pp. 15
    • Hu, M.-S.1    Agarwal, R.P.2    Yang, X.-J.3
  • 178
    • 84950149175 scopus 로고    scopus 로고
    • Local fractional Fourier series method for solving nonlinear equations with local fractional operators
    • Yang Y.-J., Wang S.-Q. Local fractional Fourier series method for solving nonlinear equations with local fractional operators. Math. Probl. Eng. 2015, 2015:1-9.
    • (2015) Math. Probl. Eng. , vol.2015 , pp. 1-9
    • Yang, Y.-J.1    Wang, S.-Q.2
  • 179
    • 84893184829 scopus 로고    scopus 로고
    • Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative
    • Wang S.-Q., Yang Y.-J., Jassim H.K. Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative. Abstr. Appl. Anal. 2014, 7 pages.
    • (2014) Abstr. Appl. Anal. , pp. 7
    • Wang, S.-Q.1    Yang, Y.-J.2    Jassim, H.K.3
  • 181
    • 0040655648 scopus 로고    scopus 로고
    • Fractional differentiability of nowhere differentiable functions and dimensions
    • Kolwankar K.M., Gangal A.D. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 1996, 6(4):505-513.
    • (1996) Chaos , vol.6 , Issue.4 , pp. 505-513
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 186
    • 0030671988 scopus 로고    scopus 로고
    • Hölder exponents of irregular signals and local fractional derivatives
    • Kolwankar K.M., Gangal A.D. Hölder exponents of irregular signals and local fractional derivatives. Pramana 1997, 48(1):49-68.
    • (1997) Pramana , vol.48 , Issue.1 , pp. 49-68
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 187
    • 0001707390 scopus 로고    scopus 로고
    • Local fractional Fokker-Planck equation
    • Kolwankar K.M., Gangal A.D. Local fractional Fokker-Planck equation. Phys. Rev. Lett. 1998, 80(2):214.
    • (1998) Phys. Rev. Lett. , vol.80 , Issue.2 , pp. 214
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 188
    • 0036028181 scopus 로고    scopus 로고
    • A fractional calculus approach to the description of stress and strain localization in fractal media
    • Carpinteri A., Cornetti P. A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos Soliton. Fract. 2002, 13(1):85-94.
    • (2002) Chaos Soliton. Fract. , vol.13 , Issue.1 , pp. 85-94
    • Carpinteri, A.1    Cornetti, P.2
  • 189
    • 0035834542 scopus 로고    scopus 로고
    • Static-kinematic duality and the principle of virtual work in the mechanics of fractal media
    • Carpinteri A., Chiaia B., Cornetti P. Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput. Methods Appl. Mech. Eng. 2001, 191(1):3-19.
    • (2001) Comput. Methods Appl. Mech. Eng. , vol.191 , Issue.1 , pp. 3-19
    • Carpinteri, A.1    Chiaia, B.2    Cornetti, P.3
  • 190
    • 0742324870 scopus 로고    scopus 로고
    • The elastic problem for fractal media: basic theory and finite element formulation
    • Carpinteri A., Chiaia B., Cornetti P. The elastic problem for fractal media: basic theory and finite element formulation. Comput. Struct. 2004, 82(6):499-508.
    • (2004) Comput. Struct. , vol.82 , Issue.6 , pp. 499-508
    • Carpinteri, A.1    Chiaia, B.2    Cornetti, P.3
  • 191
    • 1342264358 scopus 로고    scopus 로고
    • Calculation of the tensile and flexural strength of disordered materials using fractional calculus
    • Carpinteri A., Cornetti P., Kolwankar K.M. Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos Soliton. Fract. 2004, 21(3):623-632.
    • (2004) Chaos Soliton. Fract. , vol.21 , Issue.3 , pp. 623-632
    • Carpinteri, A.1    Cornetti, P.2    Kolwankar, K.M.3
  • 192
    • 70350325151 scopus 로고    scopus 로고
    • On the local fractional derivative
    • Chen Y., Yan Y., Zhang K. On the local fractional derivative. J. Math. Anal. Appl. 2010, 362(1):17-33.
    • (2010) J. Math. Anal. Appl. , vol.362 , Issue.1 , pp. 17-33
    • Chen, Y.1    Yan, Y.2    Zhang, K.3
  • 193
    • 0035891478 scopus 로고    scopus 로고
    • About non-differentiable functions
    • Adda F.B., Cresson J. About non-differentiable functions. J. Math. Anal. Appl. 2001, 263(2):721-737.
    • (2001) J. Math. Anal. Appl. , vol.263 , Issue.2 , pp. 721-737
    • Adda, F.B.1    Cresson, J.2
  • 194
    • 0036600978 scopus 로고    scopus 로고
    • On calculus of local fractional derivatives
    • Babakhani A., Daftardar-Gejji V. On calculus of local fractional derivatives. J. Math. Anal. Appl. 2002, 270(1):66-79.
    • (2002) J. Math. Anal. Appl. , vol.270 , Issue.1 , pp. 66-79
    • Babakhani, A.1    Daftardar-Gejji, V.2
  • 195
    • 84555221318 scopus 로고    scopus 로고
    • Local fractional integral transforms
    • Yang X.-J. Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4(1):1-225.
    • (2011) Prog. Nonlinear Sci. , vol.4 , Issue.1 , pp. 1-225
    • Yang, X.-J.1
  • 196
    • 27744450698 scopus 로고    scopus 로고
    • Time-space fabric underlying anomalous diffusion
    • Chen W. Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract. 2006, 28(4):923-929.
    • (2006) Chaos Soliton. Fract. , vol.28 , Issue.4 , pp. 923-929
    • Chen, W.1
  • 197
    • 76449111034 scopus 로고    scopus 로고
    • Anomalous diffusion modeling by fractal and fractional derivatives
    • Chen W., Sun H., Zhang X., Korovsak D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59(5):1754-1758.
    • (2010) Comput. Math. Appl. , vol.59 , Issue.5 , pp. 1754-1758
    • Chen, W.1    Sun, H.2    Zhang, X.3    Korovsak, D.4
  • 198
    • 79955145165 scopus 로고    scopus 로고
    • A new fractal derivation
    • He J.-H. A new fractal derivation. Therm. Sci. 2011, 15(Suppl. 1):145-147.
    • (2011) Therm. Sci. , vol.15 , pp. 145-147
    • He, J.-H.1
  • 199
    • 84855203771 scopus 로고    scopus 로고
    • Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
    • He J.-H., Elagan S.K., Li Z.-B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376(4):257-259.
    • (2012) Phys. Lett. A , vol.376 , Issue.4 , pp. 257-259
    • He, J.-H.1    Elagan, S.K.2    Li, Z.-B.3
  • 201
    • 84878016367 scopus 로고    scopus 로고
    • Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
    • Yang X.-J., Srivastava H.M., He J.-H., Baleanu D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377(28):1696-1700.
    • (2013) Phys. Lett. A , vol.377 , Issue.28 , pp. 1696-1700
    • Yang, X.-J.1    Srivastava, H.M.2    He, J.-H.3    Baleanu, D.4
  • 202
    • 84939986878 scopus 로고    scopus 로고
    • Local fractional similarity solution for the diffusion equation defined on Cantor sets
    • Yang X.-J., Baleanu D., Srivastava H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015, 47:54-60.
    • (2015) Appl. Math. Lett. , vol.47 , pp. 54-60
    • Yang, X.-J.1    Baleanu, D.2    Srivastava, H.M.3
  • 203
    • 85052823296 scopus 로고    scopus 로고
    • A review of definitions for fractional derivatives and integral
    • Oliveira E.C.D., Machado J.A.T. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 6 pages.
    • (2014) Math. Probl. Eng. , pp. 6
    • Oliveira, E.C.D.1    Machado, J.A.T.2
  • 204
    • 84920928257 scopus 로고    scopus 로고
    • Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method
    • Zhang Y. Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method. Abstr. Appl. Anal. 2014, 5 pages.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Zhang, Y.1
  • 205
    • 78649351641 scopus 로고    scopus 로고
    • Investigation on fractional and fractal derivative relaxation-oscillation models
    • Chen W., Zhang X.-D., Korovsak D. Investigation on fractional and fractal derivative relaxation-oscillation models. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11(1):3-10.
    • (2010) Int. J. Nonlinear Sci. Numer. Simul. , vol.11 , Issue.1 , pp. 3-10
    • Chen, W.1    Zhang, X.-D.2    Korovsak, D.3
  • 206
    • 84884896550 scopus 로고    scopus 로고
    • The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar
    • Yang A.-M., Zhang Y.-Z., Long Y. The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar. Therm. Sci. 2013, 17(3):707-713.
    • (2013) Therm. Sci. , vol.17 , Issue.3 , pp. 707-713
    • Yang, A.-M.1    Zhang, Y.-Z.2    Long, Y.3
  • 208
    • 52349114814 scopus 로고    scopus 로고
    • Fractional central differences and derivatives
    • Ortigueira M.D. Fractional central differences and derivatives. J. Vib. Control. 2008, 14(9-10):1255-1266.
    • (2008) J. Vib. Control. , vol.14 , Issue.9-10 , pp. 1255-1266
    • Ortigueira, M.D.1
  • 209
    • 79957894816 scopus 로고    scopus 로고
    • Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms
    • Ortigueira M.D., Trujillo J.J. Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms. J. Comput. Nonlinear Dyn. 2011, 6(3).
    • (2011) J. Comput. Nonlinear Dyn. , vol.6 , Issue.3
    • Ortigueira, M.D.1    Trujillo, J.J.2
  • 210
    • 63449116783 scopus 로고    scopus 로고
    • Fractional derivatives: probability interpretation and frequency response of rational approximations
    • Machado J.A.T. Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(9):3492-3497.
    • (2009) Commun. Nonlinear Sci. Numer. Simul. , vol.14 , Issue.9 , pp. 3492-3497
    • Machado, J.A.T.1
  • 211
    • 84878718723 scopus 로고    scopus 로고
    • Fractional coins and fractional derivatives
    • Machado J.A.T. Fractional coins and fractional derivatives. Abstr. Appl. Anal. 2013, 5 pages.
    • (2013) Abstr. Appl. Anal. , pp. 5
    • Machado, J.A.T.1
  • 213
    • 84877246956 scopus 로고    scopus 로고
    • A note on fractional order derivatives and table of fractional derivatives of some special functions
    • Atangana A., Secer A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 2013, 8 pages.
    • (2013) Abstr. Appl. Anal. , pp. 8
    • Atangana, A.1    Secer, A.2
  • 214
    • 18144429885 scopus 로고    scopus 로고
    • On the representation of fractional Brownian motion as an integral with respect to dt?
    • Jumarie G. On the representation of fractional Brownian motion as an integral with respect to dt?. Appl. Math. Lett. 2005, 18(7):739-748.
    • (2005) Appl. Math. Lett. , vol.18 , Issue.7 , pp. 739-748
    • Jumarie, G.1
  • 215
    • 33745742268 scopus 로고    scopus 로고
    • Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
    • Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51(9):1367-1376.
    • (2006) Comput. Math. Appl. , vol.51 , Issue.9 , pp. 1367-1376
    • Jumarie, G.1
  • 216
    • 38349194080 scopus 로고    scopus 로고
    • Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions
    • Jumarie G. Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 2008, 32(5):836-859.
    • (2008) Appl. Math. Model. , vol.32 , Issue.5 , pp. 836-859
    • Jumarie, G.1
  • 217
    • 57049186538 scopus 로고    scopus 로고
    • Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions
    • Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions. Appl. Math. Lett. 2009, 22(3):378-385.
    • (2009) Appl. Math. Lett. , vol.22 , Issue.3 , pp. 378-385
    • Jumarie, G.1
  • 218
    • 79953697124 scopus 로고    scopus 로고
    • Introduction to fractional integrability and differentiability
    • Li C.-P., Zhao Z.-G. Introduction to fractional integrability and differentiability. Eur. Phys. J. 2011, 193(1):5-26.
    • (2011) Eur. Phys. J. , vol.193 , Issue.1 , pp. 5-26
    • Li, C.-P.1    Zhao, Z.-G.2
  • 220
    • 84911406110 scopus 로고    scopus 로고
    • On conformable fractional calculus
    • Abdeljawad T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279:57-66.
    • (2015) J. Comput. Appl. Math. , vol.279 , pp. 57-66
    • Abdeljawad, T.1
  • 222
    • 80052268122 scopus 로고    scopus 로고
    • New approach to a generalized fractional integral
    • Katugampola U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218(3):860-865.
    • (2011) Appl. Math. Comput. , vol.218 , Issue.3 , pp. 860-865
    • Katugampola, U.N.1
  • 223
    • 85051078999 scopus 로고    scopus 로고
    • A new definition of fractional derivative without singular kernel
    • Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):73-85.
    • (2015) Prog. Fract. Differ. Appl. , vol.1 , Issue.2 , pp. 73-85
    • Caputo, M.1    Fabrizio, M.2
  • 224
    • 85017665729 scopus 로고    scopus 로고
    • Properties of a new fractional derivative without singular kernel
    • Losada J., Nieto J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):87-92.
    • (2015) Prog. Fract. Differ. Appl. , vol.1 , Issue.2 , pp. 87-92
    • Losada, J.1    Nieto, J.J.2
  • 226
  • 230
    • 85015950998 scopus 로고    scopus 로고
    • A brief historical introduction to fractional calculus
    • Debnath L. A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 2004, 35(4):487-501.
    • (2004) Int. J. Math. Educ. Sci. Technol. , vol.35 , Issue.4 , pp. 487-501
    • Debnath, L.1
  • 234
    • 84891741140 scopus 로고    scopus 로고
    • On development of fractional calculus during the last fifty years
    • Machado J.A.T., Galhano A.M., Trujillo J.J. On development of fractional calculus during the last fifty years. Scientometrics 2014, 98(1):577-582.
    • (2014) Scientometrics , vol.98 , Issue.1 , pp. 577-582
    • Machado, J.A.T.1    Galhano, A.M.2    Trujillo, J.J.3
  • 249
    • 84883192779 scopus 로고    scopus 로고
    • Generalizations of Hölder's and some related integral inequalities on fractal space
    • Chen G.-S. Generalizations of Hölder's and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 9 pages.
    • (2013) J. Funct. Spaces Appl. , pp. 9
    • Chen, G.-S.1
  • 250
    • 84934914868 scopus 로고    scopus 로고
    • A local fractional integral inequality on fractal space analogous to Anderson's inequality
    • Wei W., Srivastava H.M., Zhang Y., Wang L., Shen P., Zhang J. A local fractional integral inequality on fractal space analogous to Anderson's inequality. Abstr. Appl. Anal. 2014, 7 pages.
    • (2014) Abstr. Appl. Anal. , pp. 7
    • Wei, W.1    Srivastava, H.M.2    Zhang, Y.3    Wang, L.4    Shen, P.5    Zhang, J.6
  • 251
    • 84904654377 scopus 로고    scopus 로고
    • Some further generalizations of Hölder's inequality and related results on fractal space
    • Chen G.-S., Srivastava H.M., Wang P., Wie W. Some further generalizations of Hölder's inequality and related results on fractal space. Abstr. Appl. Anal. 2014, 7 pages.
    • (2014) Abstr. Appl. Anal. , pp. 7
    • Chen, G.-S.1    Srivastava, H.M.2    Wang, P.3    Wie, W.4
  • 252
    • 84920885354 scopus 로고    scopus 로고
    • On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics
    • Zhang Y., Baleanu D., Yang X.-J. On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics. Entropy 2014, 16(12):6254-6262.
    • (2014) Entropy , vol.16 , Issue.12 , pp. 6254-6262
    • Zhang, Y.1    Baleanu, D.2    Yang, X.-J.3
  • 253
    • 84900011952 scopus 로고    scopus 로고
    • Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain
    • Li Y.-Y., Zhao L.Y., Xie G.-N., Baleanu D., Yang X.-J., Zhao K. Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain. Adv. Math. Phys. 2014, 5 pages.
    • (2014) Adv. Math. Phys. , pp. 5
    • Li, Y.-Y.1    Zhao, L.Y.2    Xie, G.-N.3    Baleanu, D.4    Yang, X.-J.5    Zhao, K.6
  • 254
    • 84899418585 scopus 로고    scopus 로고
    • Local fractional variational iteration method for Fokker-Planck equation on a Cantor set
    • Yang X.-J., Baleanu D. Local fractional variational iteration method for Fokker-Planck equation on a Cantor set. Acta Univ. 2013, 23(2):3-8.
    • (2013) Acta Univ. , vol.23 , Issue.2 , pp. 3-8
    • Yang, X.-J.1    Baleanu, D.2
  • 255
    • 85044053149 scopus 로고    scopus 로고
    • Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis
    • Yang X.-J., Baleanu D., Machado J.A.T. Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. Bound. Value Probl. 2013, 1:1-16.
    • (2013) Bound. Value Probl. , vol.1 , pp. 1-16
    • Yang, X.-J.1    Baleanu, D.2    Machado, J.A.T.3
  • 256
    • 84879310679 scopus 로고    scopus 로고
    • Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method
    • Su W.-H., Baleanu D., Yang X.-J., Jafari H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory Appl. 2013, 1:1-11.
    • (2013) Fixed Point Theory Appl. , vol.1 , pp. 1-11
    • Su, W.-H.1    Baleanu, D.2    Yang, X.-J.3    Jafari, H.4
  • 258
  • 260
    • 84899434153 scopus 로고    scopus 로고
    • Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws
    • Wang L.-F., Yang X.-J., Baleanu D., Cattani C., Zhao Y. Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws. Abstr. Appl. Anal. 2014, 5 pages.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Wang, L.-F.1    Yang, X.-J.2    Baleanu, D.3    Cattani, C.4    Zhao, Y.5
  • 262
    • 84890267857 scopus 로고    scopus 로고
    • Transport equations in fractal porous media within fractional complex transform method
    • Yang X.-J., Baleanu D., He J.-H. Transport equations in fractal porous media within fractional complex transform method. Proc. Rom. Acad. Series A 2013, 14(4):287-292.
    • (2013) Proc. Rom. Acad. Series A , vol.14 , Issue.4 , pp. 287-292
    • Yang, X.-J.1    Baleanu, D.2    He, J.-H.3
  • 263
    • 84881521586 scopus 로고    scopus 로고
    • Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates
    • Hao Y.-J., Srivastava H.M., Jafari H., Yang X.-J. Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates. Adv. Math. Phys. 2013, 5 pages.
    • (2013) Adv. Math. Phys. , pp. 5
    • Hao, Y.-J.1    Srivastava, H.M.2    Jafari, H.3    Yang, X.-J.4
  • 264
    • 84903541046 scopus 로고    scopus 로고
    • Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation
    • Yang X.-J., Hristov J., Srivastava H.M., Ahmad B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr. Appl. Anal. 2014, 10 pages.
    • (2014) Abstr. Appl. Anal. , pp. 10
    • Yang, X.-J.1    Hristov, J.2    Srivastava, H.M.3    Ahmad, B.4
  • 265
    • 84961172616 scopus 로고    scopus 로고
    • Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
    • Yang X.-J., Machado J.A.T., Hristov J. Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dyn. 2015, 10.1007/s11071-015-2085-2.
    • (2015) Nonlinear Dyn.
    • Yang, X.-J.1    Machado, J.A.T.2    Hristov, J.3
  • 266
    • 84922810016 scopus 로고    scopus 로고
    • Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow
    • Niu X.-F., Zhang C.-L., Li Z.-B., Zhao Y. Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow. Abstr. Appl. Anal. 2014, 5 pages.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Niu, X.-F.1    Zhang, C.-L.2    Li, Z.-B.3    Zhao, Y.4
  • 268
    • 84938053187 scopus 로고    scopus 로고
    • Observing diffusion problems defined on Cantor sets in different coordinate systems
    • Yang Y.-J., Baleanu D., Baleanu M.C. Observing diffusion problems defined on Cantor sets in different coordinate systems. Thermal Sci. 2015, 10.2298/TSCI141126065Y.
    • (2015) Thermal Sci.
    • Yang, Y.-J.1    Baleanu, D.2    Baleanu, M.C.3
  • 271
    • 0003967444 scopus 로고
    • Cambridge University Press, Cambridge, London, New York
    • Körner T.W. Fourier Analysis 1988, Cambridge University Press, Cambridge, London, New York.
    • (1988) Fourier Analysis
    • Körner, T.W.1
  • 276
    • 84888873847 scopus 로고    scopus 로고
    • Mappings for special functions on Cantor sets and special integral transforms via local fractional operators
    • Zhao Y., Baleanu D., Baleanu M.C., Cheng D.-F., Yang X.-J. Mappings for special functions on Cantor sets and special integral transforms via local fractional operators. Abstr. Appl. Anal. 2013, 6 pages.
    • (2013) Abstr. Appl. Anal. , pp. 6
    • Zhao, Y.1    Baleanu, D.2    Baleanu, M.C.3    Cheng, D.-F.4    Yang, X.-J.5
  • 277
    • 84903554974 scopus 로고    scopus 로고
    • Signal processing for nondifferentiable data defined on Cantor sets: a local fractional Fourier series approach
    • Chen Z.-Y., Cattani C., Zhong W.-P. Signal processing for nondifferentiable data defined on Cantor sets: a local fractional Fourier series approach. Adv. Math. Phys. 2014, 7 pages.
    • (2014) Adv. Math. Phys. , pp. 7
    • Chen, Z.-Y.1    Cattani, C.2    Zhong, W.-P.3
  • 278
    • 84880177097 scopus 로고    scopus 로고
    • 1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method
    • Yang X.-J., Zhang Y., Yang A.-M. 1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method. Therm. Sci. 2013, 17(3):953-956.
    • (2013) Therm. Sci. , vol.17 , Issue.3 , pp. 953-956
    • Yang, X.-J.1    Zhang, Y.2    Yang, A.-M.3
  • 279
    • 84955145780 scopus 로고    scopus 로고
    • On analytical methods for differential equations with local fractional derivative operators, Chapter 4
    • Nova Science Publishers, New York
    • Yang X.-J., Baleanu D., Machado J.A.T., Daou R.A.Z., Moreau X. On analytical methods for differential equations with local fractional derivative operators, Chapter 4. Fractional Calculus: Theory 2014, 65-88. Nova Science Publishers, New York.
    • (2014) Fractional Calculus: Theory , pp. 65-88
    • Yang, X.-J.1    Baleanu, D.2    Machado, J.A.T.3    Daou, R.A.Z.4    Moreau, X.5
  • 280
    • 84880152493 scopus 로고    scopus 로고
    • Analysis of fractal wave equations by local fractional Fourier series method
    • Yang Y.-J., Baleanu D., Yang X.-J. Analysis of fractal wave equations by local fractional Fourier series method. Adv. Math. Phys. 2013, 6 pages.
    • (2013) Adv. Math. Phys. , pp. 6
    • Yang, Y.-J.1    Baleanu, D.2    Yang, X.-J.3
  • 281
    • 84872148874 scopus 로고    scopus 로고
    • Local fractional Fourier series with application to wave equation in fractal vibrating string
    • Hu M.-S., Agarwal R.P., Yang X.-J. Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstr. Appl. Anal. 2012, 15 pages.
    • (2012) Abstr. Appl. Anal. , pp. 15
    • Hu, M.-S.1    Agarwal, R.P.2    Yang, X.-J.3
  • 282
    • 84950149175 scopus 로고    scopus 로고
    • Local fractional Fourier series method for solving nonlinear equations with local fractional operators
    • Yang Y.-J., Wang S.-Q. Local fractional Fourier series method for solving nonlinear equations with local fractional operators. Math. Probl. Eng. 2015, 2015:1-9.
    • (2015) Math. Probl. Eng. , vol.2015 , pp. 1-9
    • Yang, Y.-J.1    Wang, S.-Q.2
  • 283
    • 84893184829 scopus 로고    scopus 로고
    • Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative
    • Wang S.-Q., Yang Y.-J., Jassim H.K. Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative. Abstr. Appl. Anal. 2014, 7 pages.
    • (2014) Abstr. Appl. Anal. , pp. 7
    • Wang, S.-Q.1    Yang, Y.-J.2    Jassim, H.K.3
  • 284
    • 84857467321 scopus 로고    scopus 로고
    • Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral
    • Zhong W.-P., Gao F., Shen X.-M. Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral. Adv. Mater. Res. 2012, 461:306-310.
    • (2012) Adv. Mater. Res. , vol.461 , pp. 306-310
    • Zhong, W.-P.1    Gao, F.2    Shen, X.-M.3
  • 285
    • 84869494625 scopus 로고    scopus 로고
    • Asymptotic methods for solitary solutions and compactions
    • He J.-H. Asymptotic methods for solitary solutions and compactions. Abstr. Appl. Anal. 2012, 130 pages.
    • (2012) Abstr. Appl. Anal. , pp. 130
    • He, J.-H.1
  • 286
    • 84863346618 scopus 로고    scopus 로고
    • A novel approach to processing fractal signals using the Yang-Fourier transforms
    • Yang X.-J., Liao M.-K., Chen J.-W. A novel approach to processing fractal signals using the Yang-Fourier transforms. Proc. Eng. 2012, 29:2950-2954.
    • (2012) Proc. Eng. , vol.29 , pp. 2950-2954
    • Yang, X.-J.1    Liao, M.-K.2    Chen, J.-W.3
  • 287
    • 84555221318 scopus 로고    scopus 로고
    • Local fractional integral transforms
    • Yang X.-J. Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4(1):1-225.
    • (2011) Prog. Nonlinear Sci. , vol.4 , Issue.1 , pp. 1-225
    • Yang, X.-J.1
  • 288
    • 27744450698 scopus 로고    scopus 로고
    • Time-space fabric underlying anomalous diffusion
    • Chen W. Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract. 2006, 28(4):923-929.
    • (2006) Chaos Soliton. Fract. , vol.28 , Issue.4 , pp. 923-929
    • Chen, W.1
  • 289
    • 76449111034 scopus 로고    scopus 로고
    • Anomalous diffusion modeling by fractal and fractional derivatives
    • Chen W., Sun H., Zhang X., Korovsak D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59(5):1754-1758.
    • (2010) Comput. Math. Appl. , vol.59 , Issue.5 , pp. 1754-1758
    • Chen, W.1    Sun, H.2    Zhang, X.3    Korovsak, D.4
  • 290
    • 79955145165 scopus 로고    scopus 로고
    • A new fractal derivation
    • He J.-H. A new fractal derivation. Therm. Sci. 2011, 15(Suppl. 1):145-147.
    • (2011) Therm. Sci. , vol.15 , pp. 145-147
    • He, J.-H.1
  • 291
    • 84855203771 scopus 로고    scopus 로고
    • Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
    • He J.-H., Elagan S.K., Li Z.-B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376(4):257-259.
    • (2012) Phys. Lett. A , vol.376 , Issue.4 , pp. 257-259
    • He, J.-H.1    Elagan, S.K.2    Li, Z.-B.3
  • 295
    • 84902506005 scopus 로고    scopus 로고
    • Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform
    • Zhang Y.-Z., Yang A.-M., Long Y. Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform. Therm. Sci. 2014, 18(2):677-681.
    • (2014) Therm. Sci. , vol.18 , Issue.2 , pp. 677-681
    • Zhang, Y.-Z.1    Yang, A.-M.2    Long, Y.3
  • 296
    • 84884850577 scopus 로고    scopus 로고
    • Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem
    • Liu C.-F., Kong S.-S., Yuan S.-J. Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem. Therm. Sci. 2013, 17(3):715-721.
    • (2013) Therm. Sci. , vol.17 , Issue.3 , pp. 715-721
    • Liu, C.-F.1    Kong, S.-S.2    Yuan, S.-J.3
  • 297
    • 84893195631 scopus 로고    scopus 로고
    • The Yang-Laplace transform for solving the IVPs with local fractional derivative
    • Zhao C.-G., Yang A.-M., Jafari H., Haghbin A. The Yang-Laplace transform for solving the IVPs with local fractional derivative. Abstr. Appl. Anal. 2014, 5 pages.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Zhao, C.-G.1    Yang, A.-M.2    Jafari, H.3    Haghbin, A.4
  • 298
    • 84904598246 scopus 로고    scopus 로고
    • Local fractional Laplace variational iteration method for fractal vehicular traffic flow
    • Li Y., Wang L.-F., Zeng S.-D., Zhao Y. Local fractional Laplace variational iteration method for fractal vehicular traffic flow. Adv. Math. Phys. 2014, 7 pages.
    • (2014) Adv. Math. Phys. , pp. 7
    • Li, Y.1    Wang, L.-F.2    Zeng, S.-D.3    Zhao, Y.4
  • 299
    • 84904652069 scopus 로고    scopus 로고
    • Local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivative
    • Yang A.-M., Li J., Srivastava H.M., Xie G.-N., Yang X.-J. Local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivative. Discrete Dyn Nat Soc 2014, 8 pages.
    • (2014) Discrete Dyn Nat Soc , pp. 8
    • Yang, A.-M.1    Li, J.2    Srivastava, H.M.3    Xie, G.-N.4    Yang, X.-J.5
  • 300
    • 85133603722 scopus 로고    scopus 로고
    • Local fractional Z-transforms with applications to signals on Cantor sets
    • Yan S.-P., Jafari H., Jassim H.K. Local fractional Z-transforms with applications to signals on Cantor sets. Adv. Math. Phys. 2014, 7 pages.
    • (2014) Adv. Math. Phys. , pp. 7
    • Yan, S.-P.1    Jafari, H.2    Jassim, H.K.3
  • 301
    • 84939986878 scopus 로고    scopus 로고
    • Local fractional similarity solution for the diffusion equation defined on Cantor sets
    • Yang X.-J., Baleanu D., Srivastava H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015, 47:54-60.
    • (2015) Appl. Math. Lett. , vol.47 , pp. 54-60
    • Yang, X.-J.1    Baleanu, D.2    Srivastava, H.M.3
  • 303
    • 0040655648 scopus 로고    scopus 로고
    • Fractional differentiability of nowhere differentiable functions and dimensions
    • Kolwankar K.M., Gangal A.D. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 1996, 6(4):505-513.
    • (1996) Chaos , vol.6 , Issue.4 , pp. 505-513
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 308
    • 0030671988 scopus 로고    scopus 로고
    • Hölder exponents of irregular signals and local fractional derivatives
    • Kolwankar K.M., Gangal A.D. Hölder exponents of irregular signals and local fractional derivatives. Pramana 1997, 48(1):49-68.
    • (1997) Pramana , vol.48 , Issue.1 , pp. 49-68
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 309
    • 0001707390 scopus 로고    scopus 로고
    • Local fractional Fokker-Planck equation
    • Kolwankar K.M., Gangal A.D. Local fractional Fokker-Planck equation. Phys. Rev. Lett. 1998, 80(2):214.
    • (1998) Phys. Rev. Lett. , vol.80 , Issue.2 , pp. 214
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 310
    • 0036028181 scopus 로고    scopus 로고
    • A fractional calculus approach to the description of stress and strain localization in fractal media
    • Carpinteri A., Cornetti P. A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos Soliton. Fract. 2002, 13(1):85-94.
    • (2002) Chaos Soliton. Fract. , vol.13 , Issue.1 , pp. 85-94
    • Carpinteri, A.1    Cornetti, P.2
  • 311
    • 0035834542 scopus 로고    scopus 로고
    • Static-kinematic duality and the principle of virtual work in the mechanics of fractal media
    • Carpinteri A., Chiaia B., Cornetti P. Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput. Methods Appl. Mech. Eng. 2001, 191(1):3-19.
    • (2001) Comput. Methods Appl. Mech. Eng. , vol.191 , Issue.1 , pp. 3-19
    • Carpinteri, A.1    Chiaia, B.2    Cornetti, P.3
  • 312
    • 0742324870 scopus 로고    scopus 로고
    • The elastic problem for fractal media: basic theory and finite element formulation
    • Carpinteri A., Chiaia B., Cornetti P. The elastic problem for fractal media: basic theory and finite element formulation. Comput. Struct. 2004, 82(6):499-508.
    • (2004) Comput. Struct. , vol.82 , Issue.6 , pp. 499-508
    • Carpinteri, A.1    Chiaia, B.2    Cornetti, P.3
  • 313
    • 1342264358 scopus 로고    scopus 로고
    • Calculation of the tensile and flexural strength of disordered materials using fractional calculus
    • Carpinteri A., Cornetti P., Kolwankar K.M. Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos Soliton. Fract. 2004, 21(3):623-632.
    • (2004) Chaos Soliton. Fract. , vol.21 , Issue.3 , pp. 623-632
    • Carpinteri, A.1    Cornetti, P.2    Kolwankar, K.M.3
  • 314
    • 70350325151 scopus 로고    scopus 로고
    • On the local fractional derivative
    • Chen Y., Yan Y., Zhang K. On the local fractional derivative. J. Math. Anal. Appl. 2010, 362(1):17-33.
    • (2010) J. Math. Anal. Appl. , vol.362 , Issue.1 , pp. 17-33
    • Chen, Y.1    Yan, Y.2    Zhang, K.3
  • 315
    • 0035891478 scopus 로고    scopus 로고
    • About non-differentiable functions
    • Adda F.B., Cresson J. About non-differentiable functions. J. Math. Anal. Appl. 2001, 263(2):721-737.
    • (2001) J. Math. Anal. Appl. , vol.263 , Issue.2 , pp. 721-737
    • Adda, F.B.1    Cresson, J.2
  • 316
    • 0036600978 scopus 로고    scopus 로고
    • On calculus of local fractional derivatives
    • Babakhani A., Daftardar-Gejji V. On calculus of local fractional derivatives. J. Math. Anal. Appl. 2002, 270(1):66-79.
    • (2002) J. Math. Anal. Appl. , vol.270 , Issue.1 , pp. 66-79
    • Babakhani, A.1    Daftardar-Gejji, V.2
  • 317
    • 84555221318 scopus 로고    scopus 로고
    • Local fractional integral transforms
    • Yang X.-J. Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4(1):1-225.
    • (2011) Prog. Nonlinear Sci. , vol.4 , Issue.1 , pp. 1-225
    • Yang, X.-J.1
  • 318
    • 27744450698 scopus 로고    scopus 로고
    • Time-space fabric underlying anomalous diffusion
    • Chen W. Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract. 2006, 28(4):923-929.
    • (2006) Chaos Soliton. Fract. , vol.28 , Issue.4 , pp. 923-929
    • Chen, W.1
  • 319
    • 76449111034 scopus 로고    scopus 로고
    • Anomalous diffusion modeling by fractal and fractional derivatives
    • Chen W., Sun H., Zhang X., Korovsak D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59(5):1754-1758.
    • (2010) Comput. Math. Appl. , vol.59 , Issue.5 , pp. 1754-1758
    • Chen, W.1    Sun, H.2    Zhang, X.3    Korovsak, D.4
  • 320
    • 79955145165 scopus 로고    scopus 로고
    • A new fractal derivation
    • He J.-H. A new fractal derivation. Therm. Sci. 2011, 15(Suppl. 1):145-147.
    • (2011) Therm. Sci. , vol.15 , pp. 145-147
    • He, J.-H.1
  • 321
    • 84855203771 scopus 로고    scopus 로고
    • Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
    • He J.-H., Elagan S.K., Li Z.-B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376(4):257-259.
    • (2012) Phys. Lett. A , vol.376 , Issue.4 , pp. 257-259
    • He, J.-H.1    Elagan, S.K.2    Li, Z.-B.3
  • 323
    • 84878016367 scopus 로고    scopus 로고
    • Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
    • Yang X.-J., Srivastava H.M., He J.-H., Baleanu D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377(28):1696-1700.
    • (2013) Phys. Lett. A , vol.377 , Issue.28 , pp. 1696-1700
    • Yang, X.-J.1    Srivastava, H.M.2    He, J.-H.3    Baleanu, D.4
  • 324
    • 84939986878 scopus 로고    scopus 로고
    • Local fractional similarity solution for the diffusion equation defined on Cantor sets
    • Yang X.-J., Baleanu D., Srivastava H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015, 47:54-60.
    • (2015) Appl. Math. Lett. , vol.47 , pp. 54-60
    • Yang, X.-J.1    Baleanu, D.2    Srivastava, H.M.3
  • 325
    • 84903649851 scopus 로고    scopus 로고
    • A review of definitions for fractional derivatives and integral
    • Oliveira E.C.D., Machado J.A.T. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 6 pages. Article ID 238459.
    • (2014) Math. Probl. Eng. , pp. 6
    • Oliveira, E.C.D.1    Machado, J.A.T.2
  • 326
    • 84920928257 scopus 로고    scopus 로고
    • Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method
    • Zhang Y. Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method. Abstr. Appl. Anal. 2014, 5 pages. Article ID 912464.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Zhang, Y.1
  • 327
    • 78649351641 scopus 로고    scopus 로고
    • Investigation on fractional and fractal derivative relaxation-oscillation models
    • Chen W., Zhang X.-D., Korovsak D. Investigation on fractional and fractal derivative relaxation-oscillation models. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11(1):3-10.
    • (2010) Int. J. Nonlinear Sci. Numer. Simul. , vol.11 , Issue.1 , pp. 3-10
    • Chen, W.1    Zhang, X.-D.2    Korovsak, D.3
  • 328
    • 84884896550 scopus 로고    scopus 로고
    • The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar
    • Yang A.-M., Zhang Y.-Z., Long Y. The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar. Therm. Sci. 2013, 17(3):707-713.
    • (2013) Therm. Sci. , vol.17 , Issue.3 , pp. 707-713
    • Yang, A.-M.1    Zhang, Y.-Z.2    Long, Y.3
  • 330
    • 52349114814 scopus 로고    scopus 로고
    • Fractional central differences and derivatives
    • Ortigueira M.D. Fractional central differences and derivatives. J. Vib. Control. 2008, 14(9-10):1255-1266.
    • (2008) J. Vib. Control. , vol.14 , Issue.9-10 , pp. 1255-1266
    • Ortigueira, M.D.1
  • 331
    • 79957894816 scopus 로고    scopus 로고
    • Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms
    • Ortigueira M.D., Trujillo J.J. Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms. J. Comput. Nonlinear Dyn. 2011, 6(3). Article ID 034501.
    • (2011) J. Comput. Nonlinear Dyn. , vol.6 , Issue.3
    • Ortigueira, M.D.1    Trujillo, J.J.2
  • 332
    • 63449116783 scopus 로고    scopus 로고
    • Fractional derivatives: probability interpretation and frequency response of rational approximations
    • Machado J.A.T. Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(9):3492-3497.
    • (2009) Commun. Nonlinear Sci. Numer. Simul. , vol.14 , Issue.9 , pp. 3492-3497
    • Machado, J.A.T.1
  • 333
    • 84878718723 scopus 로고    scopus 로고
    • Fractional coins and fractional derivatives
    • Machado J.A.T. Fractional coins and fractional derivatives. Abstr. Appl. Anal. 2013, 5 pages. Article ID 205097.
    • (2013) Abstr. Appl. Anal. , pp. 5
    • Machado, J.A.T.1
  • 335
    • 84877246956 scopus 로고    scopus 로고
    • A note on fractional order derivatives and table of fractional derivatives of some special functions
    • Atangana A., Secer A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 2013, 8 pages. Article ID 279681.
    • (2013) Abstr. Appl. Anal. , pp. 8
    • Atangana, A.1    Secer, A.2
  • 336
    • 18144429885 scopus 로고    scopus 로고
    • On the representation of fractional Brownian motion as an integral with respect to dt?
    • Jumarie G. On the representation of fractional Brownian motion as an integral with respect to dt?. Appl. Math. Lett. 2005, 18(7):739-748.
    • (2005) Appl. Math. Lett. , vol.18 , Issue.7 , pp. 739-748
    • Jumarie, G.1
  • 337
    • 33745742268 scopus 로고    scopus 로고
    • Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
    • Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51(9):1367-1376.
    • (2006) Comput. Math. Appl. , vol.51 , Issue.9 , pp. 1367-1376
    • Jumarie, G.1
  • 338
    • 38349194080 scopus 로고    scopus 로고
    • Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions
    • Jumarie G. Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 2008, 32(5):836-859.
    • (2008) Appl. Math. Model. , vol.32 , Issue.5 , pp. 836-859
    • Jumarie, G.1
  • 339
    • 57049186538 scopus 로고    scopus 로고
    • Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions
    • Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions. Appl. Math. Lett. 2009, 22(3):378-385.
    • (2009) Appl. Math. Lett. , vol.22 , Issue.3 , pp. 378-385
    • Jumarie, G.1
  • 340
    • 79953697124 scopus 로고    scopus 로고
    • Introduction to fractional integrability and differentiability
    • Li C.-P., Zhao Z.-G. Introduction to fractional integrability and differentiability. Eur. Phys. J. 2011, 193(1):5-26.
    • (2011) Eur. Phys. J. , vol.193 , Issue.1 , pp. 5-26
    • Li, C.-P.1    Zhao, Z.-G.2
  • 342
    • 84911406110 scopus 로고    scopus 로고
    • On conformable fractional calculus
    • Abdeljawad T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279:57-66.
    • (2015) J. Comput. Appl. Math. , vol.279 , pp. 57-66
    • Abdeljawad, T.1
  • 344
    • 80052268122 scopus 로고    scopus 로고
    • New approach to a generalized fractional integral
    • Katugampola U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218(3):860-865.
    • (2011) Appl. Math. Comput. , vol.218 , Issue.3 , pp. 860-865
    • Katugampola, U.N.1
  • 345
    • 85051078999 scopus 로고    scopus 로고
    • A new definition of fractional derivative without singular kernel
    • Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):73-85.
    • (2015) Prog. Fract. Differ. Appl. , vol.1 , Issue.2 , pp. 73-85
    • Caputo, M.1    Fabrizio, M.2
  • 346
    • 85017665729 scopus 로고    scopus 로고
    • Properties of a new fractional derivative without singular kernel
    • Losada J., Nieto J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):87-92.
    • (2015) Prog. Fract. Differ. Appl. , vol.1 , Issue.2 , pp. 87-92
    • Losada, J.1    Nieto, J.J.2
  • 348
  • 352
    • 85015950998 scopus 로고    scopus 로고
    • A brief historical introduction to fractional calculus
    • Debnath L. A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 2004, 35(4):487-501.
    • (2004) Int. J. Math. Educ. Sci. Technol. , vol.35 , Issue.4 , pp. 487-501
    • Debnath, L.1
  • 356
    • 84891741140 scopus 로고    scopus 로고
    • On development of fractional calculus during the last fifty years
    • Machado J.A.T., Galhano A.M., Trujillo J.J. On development of fractional calculus during the last fifty years. Scientometrics 2014, 98(1):577-582.
    • (2014) Scientometrics , vol.98 , Issue.1 , pp. 577-582
    • Machado, J.A.T.1    Galhano, A.M.2    Trujillo, J.J.3
  • 371
    • 84883192779 scopus 로고    scopus 로고
    • Generalizations of Hölder's and some related integral inequalities on fractal space
    • Chen G.-S. Generalizations of Hölder's and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 9 pages. Article ID 198405.
    • (2013) J. Funct. Spaces Appl. , pp. 9
    • Chen, G.-S.1
  • 372
    • 84934914868 scopus 로고    scopus 로고
    • A local fractional integral inequality on fractal space analogous to Anderson's inequality
    • Wei W., Srivastava H.M., Zhang Y., Wang L., Shen P., Zhang J. A local fractional integral inequality on fractal space analogous to Anderson's inequality. Abstr. Appl. Anal. 2014, 7 pages. Article ID 797561.
    • (2014) Abstr. Appl. Anal. , pp. 7
    • Wei, W.1    Srivastava, H.M.2    Zhang, Y.3    Wang, L.4    Shen, P.5    Zhang, J.6
  • 373
    • 84904654377 scopus 로고    scopus 로고
    • Some further generalizations of Hölder's inequality and related results on fractal space
    • Chen G.-S., Srivastava H.M., Wang P., Wie W. Some further generalizations of Hölder's inequality and related results on fractal space. Abstr. Appl. Anal. 2014, 7 pages. Article ID 832802.
    • (2014) Abstr. Appl. Anal. , pp. 7
    • Chen, G.-S.1    Srivastava, H.M.2    Wang, P.3    Wie, W.4
  • 374
    • 84920885354 scopus 로고    scopus 로고
    • On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics
    • Zhang Y., Baleanu D., Yang X.-J. On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics. Entropy 2014, 16(12):6254-6262.
    • (2014) Entropy , vol.16 , Issue.12 , pp. 6254-6262
    • Zhang, Y.1    Baleanu, D.2    Yang, X.-J.3
  • 375
    • 84900011952 scopus 로고    scopus 로고
    • Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain
    • Li Y.-Y., Zhao L.Y., Xie G.-N., Baleanu D., Yang X.-J., Zhao K. Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain. Adv. Math. Phys. 2014, 5 pages. Article ID 590574.
    • (2014) Adv. Math. Phys. , pp. 5
    • Li, Y.-Y.1    Zhao, L.Y.2    Xie, G.-N.3    Baleanu, D.4    Yang, X.-J.5    Zhao, K.6
  • 376
    • 84899418585 scopus 로고    scopus 로고
    • Local fractional variational iteration method for Fokker-Planck equation on a Cantor set
    • Yang X.-J., Baleanu D. Local fractional variational iteration method for Fokker-Planck equation on a Cantor set. Acta Univ. 2013, 23(2):3-8.
    • (2013) Acta Univ. , vol.23 , Issue.2 , pp. 3-8
    • Yang, X.-J.1    Baleanu, D.2
  • 377
    • 85044053149 scopus 로고    scopus 로고
    • Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis
    • Yang X.-J., Baleanu D., Machado J.A.T. Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. Bound. Value Probl. 2013, 1:1-16.
    • (2013) Bound. Value Probl. , vol.1 , pp. 1-16
    • Yang, X.-J.1    Baleanu, D.2    Machado, J.A.T.3
  • 378
    • 84879310679 scopus 로고    scopus 로고
    • Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method
    • Su W.-H., Baleanu D., Yang X.-J., Jafari H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory Appl. 2013, 1:1-11.
    • (2013) Fixed Point Theory Appl. , vol.1 , pp. 1-11
    • Su, W.-H.1    Baleanu, D.2    Yang, X.-J.3    Jafari, H.4
  • 379
    • 84880084367 scopus 로고    scopus 로고
    • Systems of Navier-Stokes equations on Cantor sets
    • Yang X.-J., Baleanu D., Machado J.A.T. Systems of Navier-Stokes equations on Cantor sets. Math. Probl. Eng. 2013, 8 pages. Article ID 769724.
    • (2013) Math. Probl. Eng. , pp. 8
    • Yang, X.-J.1    Baleanu, D.2    Machado, J.A.T.3
  • 380
  • 382
    • 84899434153 scopus 로고    scopus 로고
    • Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws
    • Wang L.-F., Yang X.-J., Baleanu D., Cattani C., Zhao Y. Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws. Abstr. Appl. Anal. 2014, 5 pages. Article ID 635760.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Wang, L.-F.1    Yang, X.-J.2    Baleanu, D.3    Cattani, C.4    Zhao, Y.5
  • 384
    • 84890267857 scopus 로고    scopus 로고
    • Transport equations in fractal porous media within fractional complex transform method
    • Yang X.-J., Baleanu D., He J.-H. Transport equations in fractal porous media within fractional complex transform method. Proc. Rom. Acad. Series A 2013, 14(4):287-292.
    • (2013) Proc. Rom. Acad. Series A , vol.14 , Issue.4 , pp. 287-292
    • Yang, X.-J.1    Baleanu, D.2    He, J.-H.3
  • 385
    • 84881521586 scopus 로고    scopus 로고
    • Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates
    • Hao Y.-J., Srivastava H.M., Jafari H., Yang X.-J. Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates. Adv. Math. Phys. 2013, 5 pages. Article ID 754248.
    • (2013) Adv. Math. Phys. , pp. 5
    • Hao, Y.-J.1    Srivastava, H.M.2    Jafari, H.3    Yang, X.-J.4
  • 386
    • 84903541046 scopus 로고    scopus 로고
    • Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation
    • Yang X.-J., Hristov J., Srivastava H.M., Ahmad B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr. Appl. Anal. 2014, 10 pages. Article ID 278672.
    • (2014) Abstr. Appl. Anal. , pp. 10
    • Yang, X.-J.1    Hristov, J.2    Srivastava, H.M.3    Ahmad, B.4
  • 387
    • 84961172616 scopus 로고    scopus 로고
    • Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
    • Yang X.-J., Machado J.A.T., Hristov J. Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dyn. 2015, 10.1007/s11071-015-2085-2.
    • (2015) Nonlinear Dyn.
    • Yang, X.-J.1    Machado, J.A.T.2    Hristov, J.3
  • 388
    • 84922810016 scopus 로고    scopus 로고
    • Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow
    • Niu X.-F., Zhang C.-L., Li Z.-B., Zhao Y. Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow. Abstr. Appl. Anal. 2014, 5 pages. Article ID 872318.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Niu, X.-F.1    Zhang, C.-L.2    Li, Z.-B.3    Zhao, Y.4
  • 390
    • 84938053187 scopus 로고    scopus 로고
    • Observing diffusion problems defined on Cantor sets in different coordinate systems
    • Yang Y.-J., Baleanu D., Baleanu M.C. Observing diffusion problems defined on Cantor sets in different coordinate systems. Thermal Sci. 2015, 10.2298/TSCI141126065Y.
    • (2015) Thermal Sci.
    • Yang, Y.-J.1    Baleanu, D.2    Baleanu, M.C.3
  • 393
    • 0003967444 scopus 로고
    • Cambridge University Press, Cambridge, London, New York
    • Körner T.W. Fourier Analysis 1988, Cambridge University Press, Cambridge, London, New York.
    • (1988) Fourier Analysis
    • Körner, T.W.1
  • 398
    • 84888873847 scopus 로고    scopus 로고
    • Mappings for special functions on Cantor sets and special integral transforms via local fractional operators
    • Zhao Y., Baleanu D., Baleanu M.C., Cheng D.-F., Yang X.-J. Mappings for special functions on Cantor sets and special integral transforms via local fractional operators. Abstr. Appl. Anal. 2013, 6 pages. Article ID 316978.
    • (2013) Abstr. Appl. Anal. , pp. 6
    • Zhao, Y.1    Baleanu, D.2    Baleanu, M.C.3    Cheng, D.-F.4    Yang, X.-J.5
  • 399
    • 84903554974 scopus 로고    scopus 로고
    • Signal processing for nondifferentiable data defined on Cantor sets: a local fractional Fourier series approach
    • Chen Z.-Y., Cattani C., Zhong W.-P. Signal processing for nondifferentiable data defined on Cantor sets: a local fractional Fourier series approach. Adv. Math. Phys. 2014, 7 pages. Article ID 561434.
    • (2014) Adv. Math. Phys. , pp. 7
    • Chen, Z.-Y.1    Cattani, C.2    Zhong, W.-P.3
  • 400
    • 84880177097 scopus 로고    scopus 로고
    • 1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method
    • Yang X.-J., Zhang Y., Yang A.-M. 1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method. Therm. Sci. 2013, 17(3):953-956.
    • (2013) Therm. Sci. , vol.17 , Issue.3 , pp. 953-956
    • Yang, X.-J.1    Zhang, Y.2    Yang, A.-M.3
  • 401
    • 84955145780 scopus 로고    scopus 로고
    • On analytical methods for differential equations with local fractional derivative operators, Chapter 4
    • Nova Science Publishers, New York
    • Yang X.-J., Baleanu D., Machado J.A.T., Daou R.A.Z., Moreau X. On analytical methods for differential equations with local fractional derivative operators, Chapter 4. Fractional Calculus: Theory 2014, 65-88. Nova Science Publishers, New York.
    • (2014) Fractional Calculus: Theory , pp. 65-88
    • Yang, X.-J.1    Baleanu, D.2    Machado, J.A.T.3    Daou, R.A.Z.4    Moreau, X.5
  • 402
    • 84880152493 scopus 로고    scopus 로고
    • Analysis of fractal wave equations by local fractional Fourier series method
    • Yang Y.-J., Baleanu D., Yang X.-J. Analysis of fractal wave equations by local fractional Fourier series method. Adv. Math. Phys. 2013, 6 pages. Article ID 632309.
    • (2013) Adv. Math. Phys. , pp. 6
    • Yang, Y.-J.1    Baleanu, D.2    Yang, X.-J.3
  • 403
    • 84872148874 scopus 로고    scopus 로고
    • Local fractional Fourier series with application to wave equation in fractal vibrating string
    • Hu M.-S., Agarwal R.P., Yang X.-J. Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstr. Appl. Anal. 2012, 15 pages. Article ID 567401.
    • (2012) Abstr. Appl. Anal. , pp. 15
    • Hu, M.-S.1    Agarwal, R.P.2    Yang, X.-J.3
  • 404
    • 84950149175 scopus 로고    scopus 로고
    • Local fractional Fourier series method for solving nonlinear equations with local fractional operators
    • Yang Y.-J., Wang S.-Q. Local fractional Fourier series method for solving nonlinear equations with local fractional operators. Math. Probl. Eng. 2015, 2015:1-9. Article ID 481905.
    • (2015) Math. Probl. Eng. , vol.2015 , pp. 1-9
    • Yang, Y.-J.1    Wang, S.-Q.2
  • 405
    • 84893184829 scopus 로고    scopus 로고
    • Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative
    • Wang S.-Q., Yang Y.-J., Jassim H.K. Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative. Abstr. Appl. Anal. 2014, 7 pages. Article ID 176395.
    • (2014) Abstr. Appl. Anal. , pp. 7
    • Wang, S.-Q.1    Yang, Y.-J.2    Jassim, H.K.3
  • 406
    • 84857467321 scopus 로고    scopus 로고
    • Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral
    • Zhong W.-P., Gao F., Shen X.-M. Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral. Adv. Mater. Res. 2012, 461:306-310.
    • (2012) Adv. Mater. Res. , vol.461 , pp. 306-310
    • Zhong, W.-P.1    Gao, F.2    Shen, X.-M.3
  • 407
    • 84869494625 scopus 로고    scopus 로고
    • Asymptotic methods for solitary solutions and compactions
    • He J.-H. Asymptotic methods for solitary solutions and compactions. Abstr. Appl. Anal. 2012, 130 pages. Article ID 916793.
    • (2012) Abstr. Appl. Anal. , pp. 130
    • He, J.-H.1
  • 408
    • 84863346618 scopus 로고    scopus 로고
    • A novel approach to processing fractal signals using the Yang-Fourier transforms
    • Yang X.-J., Liao M.-K., Chen J.-W. A novel approach to processing fractal signals using the Yang-Fourier transforms. Proc. Eng. 2012, 29:2950-2954.
    • (2012) Proc. Eng. , vol.29 , pp. 2950-2954
    • Yang, X.-J.1    Liao, M.-K.2    Chen, J.-W.3
  • 409
  • 411
    • 84902506005 scopus 로고    scopus 로고
    • Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform
    • Zhang Y.-Z., Yang A.-M., Long Y. Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform. Therm. Sci. 2014, 18(2):677-681.
    • (2014) Therm. Sci. , vol.18 , Issue.2 , pp. 677-681
    • Zhang, Y.-Z.1    Yang, A.-M.2    Long, Y.3
  • 412
    • 84884850577 scopus 로고    scopus 로고
    • Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem
    • Liu C.-F., Kong S.-S., Yuan S.-J. Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem. Therm. Sci. 2013, 17(3):715-721.
    • (2013) Therm. Sci. , vol.17 , Issue.3 , pp. 715-721
    • Liu, C.-F.1    Kong, S.-S.2    Yuan, S.-J.3
  • 413
    • 84893195631 scopus 로고    scopus 로고
    • The Yang-Laplace transform for solving the IVPs with local fractional derivative
    • Zhao C.-G., Yang A.-M., Jafari H., Haghbin A. The Yang-Laplace transform for solving the IVPs with local fractional derivative. Abstr. Appl. Anal. 2014, 5 pages. Article ID 386459.
    • (2014) Abstr. Appl. Anal. , pp. 5
    • Zhao, C.-G.1    Yang, A.-M.2    Jafari, H.3    Haghbin, A.4
  • 414
    • 84904598246 scopus 로고    scopus 로고
    • Local fractional Laplace variational iteration method for fractal vehicular traffic flow
    • Li Y., Wang L.-F., Zeng S.-D., Zhao Y. Local fractional Laplace variational iteration method for fractal vehicular traffic flow. Adv. Math. Phys. 2014, 7 pages. Article ID 649318.
    • (2014) Adv. Math. Phys. , pp. 7
    • Li, Y.1    Wang, L.-F.2    Zeng, S.-D.3    Zhao, Y.4
  • 415
    • 84904652069 scopus 로고    scopus 로고
    • Local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivative
    • Yang A.-M., Li J., Srivastava H.M., Xie G.-N., Yang X.-J. Local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivative. Discrete Dyn Nat Soc 2014, 8 pages. Article ID 365981.
    • (2014) Discrete Dyn Nat Soc , pp. 8
    • Yang, A.-M.1    Li, J.2    Srivastava, H.M.3    Xie, G.-N.4    Yang, X.-J.5
  • 416
    • 84904673270 scopus 로고    scopus 로고
    • Local fractional Z-transforms with applications to signals on Cantor sets
    • Yan S.-P., Jafari H., Jassim H.K. Local fractional Z-transforms with applications to signals on Cantor sets. Adv. Math. Phys. 2014, 7 pages. Article ID 161580.
    • (2014) Adv. Math. Phys. , pp. 7
    • Yan, S.-P.1    Jafari, H.2    Jassim, H.K.3
  • 417
    • 0000092673 scopus 로고    scopus 로고
    • Variational iteration method: a kind of non-linear analytical technique: some examples
    • He J.-H. Variational iteration method: a kind of non-linear analytical technique: some examples. Int. J. Nonlinear Mech. 1999, 34(4):699-708.
    • (1999) Int. J. Nonlinear Mech. , vol.34 , Issue.4 , pp. 699-708
    • He, J.-H.1
  • 418
    • 34250668369 scopus 로고    scopus 로고
    • Variational iteration method: some recent results and new interpretations
    • He J.-H. Variational iteration method: some recent results and new interpretations. J. Comput. Appl. Math. 2007, 207(1):3-17.
    • (2007) J. Comput. Appl. Math. , vol.207 , Issue.1 , pp. 3-17
    • He, J.-H.1
  • 419
    • 84879324154 scopus 로고    scopus 로고
    • Fractal heat conduction problem solved by local fractional variation iteration method
    • Yang X.-J., Baleanu D. Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 2013, 17(2):625-628.
    • (2013) Therm. Sci. , vol.17 , Issue.2 , pp. 625-628
    • Yang, X.-J.1    Baleanu, D.2
  • 420
    • 84884837318 scopus 로고    scopus 로고
    • Local fractional variational iteration method for fractal heat transfer in silk cocoon hierarchy
    • He J.-H. Local fractional variational iteration method for fractal heat transfer in silk cocoon hierarchy. Nonlinear Sci. Lett. A 2013, 4(1):15-20.
    • (2013) Nonlinear Sci. Lett. A , vol.4 , Issue.1 , pp. 15-20
    • He, J.-H.1
  • 421
    • 84939890949 scopus 로고    scopus 로고
    • A tutorial review on fractal spacetime and fractional calculus
    • He J.-H. A tutorial review on fractal spacetime and fractional calculus. Int. J. Theor. Phys. 2014, 53(11):3698-3718.
    • (2014) Int. J. Theor. Phys. , vol.53 , Issue.11 , pp. 3698-3718
    • He, J.-H.1
  • 422
    • 84896885697 scopus 로고    scopus 로고
    • Local fractional variational iteration method for diffusion and wave equations on Cantor sets
    • Yang X.-J., Baleanu D., Khan Y., Mohyud-Din S.T. Local fractional variational iteration method for diffusion and wave equations on Cantor sets. Rom. J. Phys. 2014, 59(1-2):36-48.
    • (2014) Rom. J. Phys. , vol.59 , Issue.1-2 , pp. 36-48
    • Yang, X.-J.1    Baleanu, D.2    Khan, Y.3    Mohyud-Din, S.T.4
  • 423
    • 84928410965 scopus 로고    scopus 로고
    • Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on Cantor sets
    • Baleanu D., Srivastava H.M., Yang X.-J. Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on Cantor sets. Prog. Fract. Differ. Appl. 2015, 1(1):1-10.
    • (2015) Prog. Fract. Differ. Appl. , vol.1 , Issue.1 , pp. 1-10
    • Baleanu, D.1    Srivastava, H.M.2    Yang, X.-J.3
  • 424
    • 84899999398 scopus 로고    scopus 로고
    • Local fractional variational iteration method for local fractional Poisson equations in two independent variables
    • Chen L., Zhao Y., Jafari H., Machado J.A.T., Yang X.-J. Local fractional variational iteration method for local fractional Poisson equations in two independent variables. Abstr. Appl. Anal. 2014, 7 pages. Article ID 484323.
    • (2014) Abstr. Appl. Anal. , pp. 7
    • Chen, L.1    Zhao, Y.2    Jafari, H.3    Machado, J.A.T.4    Yang, X.-J.5
  • 425
    • 84879310679 scopus 로고    scopus 로고
    • Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method
    • Su W.-H., Baleanu D., Yang X.-J., Jafari H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory Appl. 2013, 1:1-11.
    • (2013) Fixed Point Theory Appl. , vol.1 , pp. 1-11
    • Su, W.-H.1    Baleanu, D.2    Yang, X.-J.3    Jafari, H.4
  • 426
    • 84893201036 scopus 로고    scopus 로고
    • Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators
    • Baleanu D., Machado J.A.T., Cattani C., Baleanu M.C., Yang X.-J. Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators. Abstr. Appl. Anal. 2014, 6 pages. Article ID 535048.
    • (2014) Abstr. Appl. Anal. , pp. 6
    • Baleanu, D.1    Machado, J.A.T.2    Cattani, C.3    Baleanu, M.C.4    Yang, X.-J.5
  • 427
    • 0021504145 scopus 로고
    • Convergent series solution of nonlinear equations
    • Adomian G. Convergent series solution of nonlinear equations. J. Comput. Appl. Math. 1984, 11(2):225-230.
    • (1984) J. Comput. Appl. Math. , vol.11 , Issue.2 , pp. 225-230
    • Adomian, G.1
  • 429
    • 84878993985 scopus 로고    scopus 로고
    • Approximate solutions for diffusion equations on Cantor space-time
    • Yang X.-J., Baleanu D., Zhong W.-P. Approximate solutions for diffusion equations on Cantor space-time. Proc. Rom. Acad. Series A 2013, 14(2):127-133.
    • (2013) Proc. Rom. Acad. Series A , vol.14 , Issue.2 , pp. 127-133
    • Yang, X.-J.1    Baleanu, D.2    Zhong, W.-P.3
  • 430
    • 84893776985 scopus 로고    scopus 로고
    • Analytical solutions of the one-dimensional heat equations arising in fractal transient conduction with local fractional derivative
    • Yang A.-M., Cattani C., Jafari H., Yang X.-J. Analytical solutions of the one-dimensional heat equations arising in fractal transient conduction with local fractional derivative. Abstr. Appl. Anal. 2013, 5 pages. Article ID 462535.
    • (2013) Abstr. Appl. Anal. , pp. 5
    • Yang, A.-M.1    Cattani, C.2    Jafari, H.3    Yang, X.-J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.