-
2
-
-
0040655648
-
Fractional differentiability of nowhere differentiable functions and dimensions
-
Kolwankar K.M., Gangal A.D. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 1996, 6(4):505-513.
-
(1996)
Chaos
, vol.6
, Issue.4
, pp. 505-513
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
3
-
-
77956684069
-
-
Elsevier (North-Holland) Science Publishers, Amsterdam, London, New York
-
Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations North-Holland Mathematical Studies 2006, 204. Elsevier (North-Holland) Science Publishers, Amsterdam, London, New York.
-
(2006)
Theory and Applications of Fractional Differential Equations North-Holland Mathematical Studies
, vol.204
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
4
-
-
51449091068
-
-
Springer, Berlin, Heidelberg, New York
-
Sabatier J., Agrawal O.P., Machado J.A.T. Advances in Fractional Calculus 2007, Springer, Berlin, Heidelberg, New York.
-
(2007)
Advances in Fractional Calculus
-
-
Sabatier, J.1
Agrawal, O.P.2
Machado, J.A.T.3
-
7
-
-
0030671988
-
Hölder exponents of irregular signals and local fractional derivatives
-
Kolwankar K.M., Gangal A.D. Hölder exponents of irregular signals and local fractional derivatives. Pramana 1997, 48(1):49-68.
-
(1997)
Pramana
, vol.48
, Issue.1
, pp. 49-68
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
8
-
-
0001707390
-
Local fractional Fokker-Planck equation
-
Kolwankar K.M., Gangal A.D. Local fractional Fokker-Planck equation. Phys. Rev. Lett. 1998, 80(2):214.
-
(1998)
Phys. Rev. Lett.
, vol.80
, Issue.2
, pp. 214
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
9
-
-
0036028181
-
A fractional calculus approach to the description of stress and strain localization in fractal media
-
Carpinteri A., Cornetti P. A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos Soliton. Fract. 2002, 13(1):85-94.
-
(2002)
Chaos Soliton. Fract.
, vol.13
, Issue.1
, pp. 85-94
-
-
Carpinteri, A.1
Cornetti, P.2
-
10
-
-
0035834542
-
Static-kinematic duality and the principle of virtual work in the mechanics of fractal media
-
Carpinteri A., Chiaia B., Cornetti P. Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput. Methods Appl. Mech. Eng. 2001, 191(1):3-19.
-
(2001)
Comput. Methods Appl. Mech. Eng.
, vol.191
, Issue.1
, pp. 3-19
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
11
-
-
0742324870
-
The elastic problem for fractal media: basic theory and finite element formulation
-
Carpinteri A., Chiaia B., Cornetti P. The elastic problem for fractal media: basic theory and finite element formulation. Comput. Struct. 2004, 82(6):499-508.
-
(2004)
Comput. Struct.
, vol.82
, Issue.6
, pp. 499-508
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
12
-
-
1342264358
-
Calculation of the tensile and flexural strength of disordered materials using fractional calculus
-
Carpinteri A., Cornetti P., Kolwankar K.M. Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos Soliton. Fract. 2004, 21(3):623-632.
-
(2004)
Chaos Soliton. Fract.
, vol.21
, Issue.3
, pp. 623-632
-
-
Carpinteri, A.1
Cornetti, P.2
Kolwankar, K.M.3
-
13
-
-
70350325151
-
On the local fractional derivative
-
Chen Y., Yan Y., Zhang K. On the local fractional derivative. J. Math. Anal. Appl. 2010, 362(1):17-33.
-
(2010)
J. Math. Anal. Appl.
, vol.362
, Issue.1
, pp. 17-33
-
-
Chen, Y.1
Yan, Y.2
Zhang, K.3
-
14
-
-
0035891478
-
About non-differentiable functions
-
Adda F.B., Cresson J. About non-differentiable functions. J. Math. Anal. Appl. 2001, 263(2):721-737.
-
(2001)
J. Math. Anal. Appl.
, vol.263
, Issue.2
, pp. 721-737
-
-
Adda, F.B.1
Cresson, J.2
-
16
-
-
84555221318
-
Local fractional integral transforms
-
Yang X.-J. Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4(1):1-225.
-
(2011)
Prog. Nonlinear Sci.
, vol.4
, Issue.1
, pp. 1-225
-
-
Yang, X.-J.1
-
17
-
-
27744450698
-
Time-space fabric underlying anomalous diffusion
-
Chen W. Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract. 2006, 28(4):923-929.
-
(2006)
Chaos Soliton. Fract.
, vol.28
, Issue.4
, pp. 923-929
-
-
Chen, W.1
-
18
-
-
76449111034
-
Anomalous diffusion modeling by fractal and fractional derivatives
-
Chen W., Sun H., Zhang X., Korovsak D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59(5):1754-1758.
-
(2010)
Comput. Math. Appl.
, vol.59
, Issue.5
, pp. 1754-1758
-
-
Chen, W.1
Sun, H.2
Zhang, X.3
Korovsak, D.4
-
19
-
-
79955145165
-
A new fractal derivation
-
He J.-H. A new fractal derivation. Therm. Sci. 2011, 15(Suppl. 1):145-147.
-
(2011)
Therm. Sci.
, vol.15
, pp. 145-147
-
-
He, J.-H.1
-
20
-
-
84855203771
-
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
-
He J.-H., Elagan S.K., Li Z.-B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376(4):257-259.
-
(2012)
Phys. Lett. A
, vol.376
, Issue.4
, pp. 257-259
-
-
He, J.-H.1
Elagan, S.K.2
Li, Z.-B.3
-
22
-
-
84878016367
-
Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
-
Yang X.-J., Srivastava H.M., He J.-H., Baleanu D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377(28):1696-1700.
-
(2013)
Phys. Lett. A
, vol.377
, Issue.28
, pp. 1696-1700
-
-
Yang, X.-J.1
Srivastava, H.M.2
He, J.-H.3
Baleanu, D.4
-
23
-
-
84939986878
-
Local fractional similarity solution for the diffusion equation defined on Cantor sets
-
Yang X.-J., Baleanu D., Srivastava H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015, 47:54-60.
-
(2015)
Appl. Math. Lett.
, vol.47
, pp. 54-60
-
-
Yang, X.-J.1
Baleanu, D.2
Srivastava, H.M.3
-
24
-
-
85052823296
-
A review of definitions for fractional derivatives and integral
-
Oliveira E.C.D., Machado J.A.T. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 6 pages.
-
(2014)
Math. Probl. Eng.
, pp. 6
-
-
Oliveira, E.C.D.1
Machado, J.A.T.2
-
25
-
-
84920928257
-
Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method
-
Zhang Y. Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method. Abstr. Appl. Anal. 2014, 5 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Zhang, Y.1
-
26
-
-
78649351641
-
Investigation on fractional and fractal derivative relaxation-oscillation models
-
Chen W., Zhang X.-D., Korovsak D. Investigation on fractional and fractal derivative relaxation-oscillation models. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11(1):3-10.
-
(2010)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.11
, Issue.1
, pp. 3-10
-
-
Chen, W.1
Zhang, X.-D.2
Korovsak, D.3
-
27
-
-
84884896550
-
The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar
-
Yang A.-M., Zhang Y.-Z., Long Y. The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar. Therm. Sci. 2013, 17(3):707-713.
-
(2013)
Therm. Sci.
, vol.17
, Issue.3
, pp. 707-713
-
-
Yang, A.-M.1
Zhang, Y.-Z.2
Long, Y.3
-
29
-
-
52349114814
-
Fractional central differences and derivatives
-
Ortigueira M.D. Fractional central differences and derivatives. J. Vib. Control. 2008, 14(9-10):1255-1266.
-
(2008)
J. Vib. Control.
, vol.14
, Issue.9-10
, pp. 1255-1266
-
-
Ortigueira, M.D.1
-
30
-
-
79957894816
-
Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms
-
Ortigueira M.D., Trujillo J.J. Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms. J. Comput. Nonlinear Dyn. 2011, 6(3).
-
(2011)
J. Comput. Nonlinear Dyn.
, vol.6
, Issue.3
-
-
Ortigueira, M.D.1
Trujillo, J.J.2
-
31
-
-
63449116783
-
Fractional derivatives: probability interpretation and frequency response of rational approximations
-
Machado J.A.T. Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(9):3492-3497.
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, Issue.9
, pp. 3492-3497
-
-
Machado, J.A.T.1
-
32
-
-
84878718723
-
Fractional coins and fractional derivatives
-
Machado J.A.T. Fractional coins and fractional derivatives. Abstr. Appl. Anal. 2013, 5 pages.
-
(2013)
Abstr. Appl. Anal.
, pp. 5
-
-
Machado, J.A.T.1
-
34
-
-
84877246956
-
A note on fractional order derivatives and table of fractional derivatives of some special functions
-
Atangana A., Secer A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 2013, 8 pages.
-
(2013)
Abstr. Appl. Anal.
, pp. 8
-
-
Atangana, A.1
Secer, A.2
-
35
-
-
18144429885
-
On the representation of fractional Brownian motion as an integral with respect to dt?
-
Jumarie G. On the representation of fractional Brownian motion as an integral with respect to dt?. Appl. Math. Lett. 2005, 18(7):739-748.
-
(2005)
Appl. Math. Lett.
, vol.18
, Issue.7
, pp. 739-748
-
-
Jumarie, G.1
-
36
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
-
Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51(9):1367-1376.
-
(2006)
Comput. Math. Appl.
, vol.51
, Issue.9
, pp. 1367-1376
-
-
Jumarie, G.1
-
37
-
-
38349194080
-
Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions
-
Jumarie G. Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 2008, 32(5):836-859.
-
(2008)
Appl. Math. Model.
, vol.32
, Issue.5
, pp. 836-859
-
-
Jumarie, G.1
-
38
-
-
57049186538
-
Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions
-
Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions. Appl. Math. Lett. 2009, 22(3):378-385.
-
(2009)
Appl. Math. Lett.
, vol.22
, Issue.3
, pp. 378-385
-
-
Jumarie, G.1
-
39
-
-
79953697124
-
Introduction to fractional integrability and differentiability
-
Li C.-P., Zhao Z.-G. Introduction to fractional integrability and differentiability. Eur. Phys. J. 2011, 193(1):5-26.
-
(2011)
Eur. Phys. J.
, vol.193
, Issue.1
, pp. 5-26
-
-
Li, C.-P.1
Zhao, Z.-G.2
-
40
-
-
84893186929
-
A new definition of fractional derivative
-
Khalil R., Al-Horani M., Yousef A., Sababheh M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264:65-70.
-
(2014)
J. Comput. Appl. Math.
, vol.264
, pp. 65-70
-
-
Khalil, R.1
Al-Horani, M.2
Yousef, A.3
Sababheh, M.4
-
41
-
-
84911406110
-
On conformable fractional calculus
-
Abdeljawad T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279:57-66.
-
(2015)
J. Comput. Appl. Math.
, vol.279
, pp. 57-66
-
-
Abdeljawad, T.1
-
43
-
-
80052268122
-
New approach to a generalized fractional integral
-
Katugampola U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218(3):860-865.
-
(2011)
Appl. Math. Comput.
, vol.218
, Issue.3
, pp. 860-865
-
-
Katugampola, U.N.1
-
44
-
-
85051078999
-
A new definition of fractional derivative without singular kernel
-
Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):73-85.
-
(2015)
Prog. Fract. Differ. Appl.
, vol.1
, Issue.2
, pp. 73-85
-
-
Caputo, M.1
Fabrizio, M.2
-
45
-
-
85017665729
-
Properties of a new fractional derivative without singular kernel
-
Losada J., Nieto J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):87-92.
-
(2015)
Prog. Fract. Differ. Appl.
, vol.1
, Issue.2
, pp. 87-92
-
-
Losada, J.1
Nieto, J.J.2
-
51
-
-
85015950998
-
A brief historical introduction to fractional calculus
-
Debnath L. A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 2004, 35(4):487-501.
-
(2004)
Int. J. Math. Educ. Sci. Technol.
, vol.35
, Issue.4
, pp. 487-501
-
-
Debnath, L.1
-
55
-
-
84891741140
-
On development of fractional calculus during the last fifty years
-
Machado J.A.T., Galhano A.M., Trujillo J.J. On development of fractional calculus during the last fifty years. Scientometrics 2014, 98(1):577-582.
-
(2014)
Scientometrics
, vol.98
, Issue.1
, pp. 577-582
-
-
Machado, J.A.T.1
Galhano, A.M.2
Trujillo, J.J.3
-
56
-
-
79952143317
-
-
Springer Science and Business Media, New York
-
Monje C.A., Chen Y., Vinagre B.M., Xue D., Feliu-Batlle V. Fractional-Order Systems and Controls: Fundamentals and Applications 2010, Springer Science and Business Media, New York.
-
(2010)
Fractional-Order Systems and Controls: Fundamentals and Applications
-
-
Monje, C.A.1
Chen, Y.2
Vinagre, B.M.3
Xue, D.4
Feliu-Batlle, V.5
-
57
-
-
84893190028
-
-
World Scientific, Singapore
-
Baleanu D., Diethelm K., Scalas E., Trujillo J.J. Models and Numerical Methods 2012, 3:10-16. World Scientific, Singapore.
-
(2012)
Models and Numerical Methods
, vol.3
, pp. 10-16
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
70
-
-
84883192779
-
Generalizations of Hölder's and some related integral inequalities on fractal space
-
Chen G.-S. Generalizations of Hölder's and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 9 pages.
-
(2013)
J. Funct. Spaces Appl.
, pp. 9
-
-
Chen, G.-S.1
-
71
-
-
84934914868
-
A local fractional integral inequality on fractal space analogous to Anderson's inequality
-
Wei W., Srivastava H.M., Zhang Y., Wang L., Shen P., Zhang J. A local fractional integral inequality on fractal space analogous to Anderson's inequality. Abstr. Appl. Anal. 2014, 7 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 7
-
-
Wei, W.1
Srivastava, H.M.2
Zhang, Y.3
Wang, L.4
Shen, P.5
Zhang, J.6
-
72
-
-
84904654377
-
Some further generalizations of Hölder's inequality and related results on fractal space
-
Chen G.-S., Srivastava H.M., Wang P., Wie W. Some further generalizations of Hölder's inequality and related results on fractal space. Abstr. Appl. Anal. 2014, 7 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 7
-
-
Chen, G.-S.1
Srivastava, H.M.2
Wang, P.3
Wie, W.4
-
73
-
-
84920885354
-
On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics
-
Zhang Y., Baleanu D., Yang X.-J. On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics. Entropy 2014, 16(12):6254-6262.
-
(2014)
Entropy
, vol.16
, Issue.12
, pp. 6254-6262
-
-
Zhang, Y.1
Baleanu, D.2
Yang, X.-J.3
-
74
-
-
84900011952
-
Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain
-
Li Y.-Y., Zhao L.Y., Xie G.-N., Baleanu D., Yang X.-J., Zhao K. Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain. Adv. Math. Phys. 2014, 5 pages.
-
(2014)
Adv. Math. Phys.
, pp. 5
-
-
Li, Y.-Y.1
Zhao, L.Y.2
Xie, G.-N.3
Baleanu, D.4
Yang, X.-J.5
Zhao, K.6
-
75
-
-
84899418585
-
Local fractional variational iteration method for Fokker-Planck equation on a Cantor set
-
Yang X.-J., Baleanu D. Local fractional variational iteration method for Fokker-Planck equation on a Cantor set. Acta Univ. 2013, 23(2):3-8.
-
(2013)
Acta Univ.
, vol.23
, Issue.2
, pp. 3-8
-
-
Yang, X.-J.1
Baleanu, D.2
-
76
-
-
85044053149
-
Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis
-
Yang X.-J., Baleanu D., Machado J.A.T. Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. Bound. Value Probl. 2013, 1:1-16.
-
(2013)
Bound. Value Probl.
, vol.1
, pp. 1-16
-
-
Yang, X.-J.1
Baleanu, D.2
Machado, J.A.T.3
-
77
-
-
84879310679
-
Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method
-
Su W.-H., Baleanu D., Yang X.-J., Jafari H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory Appl. 2013, 1:1-11.
-
(2013)
Fixed Point Theory Appl.
, vol.1
, pp. 1-11
-
-
Su, W.-H.1
Baleanu, D.2
Yang, X.-J.3
Jafari, H.4
-
80
-
-
84890036462
-
Maxwell's equations on Cantor sets: a local fractional approach
-
Zhao Y., Baleanu D., Cattani C., Cheng D.-F., Yang X.-J. Maxwell's equations on Cantor sets: a local fractional approach. Adv. High Energy Phys. 2013, 6 pages.
-
(2013)
Adv. High Energy Phys.
, pp. 6
-
-
Zhao, Y.1
Baleanu, D.2
Cattani, C.3
Cheng, D.-F.4
Yang, X.-J.5
-
81
-
-
84899434153
-
Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws
-
Wang L.-F., Yang X.-J., Baleanu D., Cattani C., Zhao Y. Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws. Abstr. Appl. Anal. 2014, 5 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Wang, L.-F.1
Yang, X.-J.2
Baleanu, D.3
Cattani, C.4
Zhao, Y.5
-
82
-
-
84897554943
-
Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets
-
Yang A.-M., Zhang Y.-Z., Cattani C., Xie G.-N., Rashidi M.M., Zhou Y.-J., ang X.-J. Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets. Abstr. Appl. Anal. 2014, 6 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 6
-
-
Yang, A.-M.1
Zhang, Y.-Z.2
Cattani, C.3
Xie, G.-N.4
Rashidi, M.M.5
Zhou, Y.-J.6
ang, X.-J.7
-
83
-
-
84890267857
-
Transport equations in fractal porous media within fractional complex transform method
-
Yang X.-J., Baleanu D., He J.-H. Transport equations in fractal porous media within fractional complex transform method. Proc. Rom. Acad. Series A 2013, 14(4):287-292.
-
(2013)
Proc. Rom. Acad. Series A
, vol.14
, Issue.4
, pp. 287-292
-
-
Yang, X.-J.1
Baleanu, D.2
He, J.-H.3
-
84
-
-
84881521586
-
Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates
-
Hao Y.-J., Srivastava H.M., Jafari H., Yang X.-J. Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates. Adv. Math. Phys. 2013, 5 pages.
-
(2013)
Adv. Math. Phys.
, pp. 5
-
-
Hao, Y.-J.1
Srivastava, H.M.2
Jafari, H.3
Yang, X.-J.4
-
85
-
-
84903541046
-
Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation
-
Yang X.-J., Hristov J., Srivastava H.M., Ahmad B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr. Appl. Anal. 2014, 10 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 10
-
-
Yang, X.-J.1
Hristov, J.2
Srivastava, H.M.3
Ahmad, B.4
-
86
-
-
84961172616
-
Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
-
Yang X.-J., Machado J.A.T., Hristov J. Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dyn. 2015, 10.1007/s11071-015-2085-2.
-
(2015)
Nonlinear Dyn.
-
-
Yang, X.-J.1
Machado, J.A.T.2
Hristov, J.3
-
87
-
-
84922810016
-
Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow
-
Niu X.-F., Zhang C.-L., Li Z.-B., Zhao Y. Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow. Abstr. Appl. Anal. 2014, 5 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Niu, X.-F.1
Zhang, C.-L.2
Li, Z.-B.3
Zhao, Y.4
-
89
-
-
84938053187
-
Observing diffusion problems defined on Cantor sets in different coordinate systems
-
Yang Y.-J., Baleanu D., Baleanu M.C. Observing diffusion problems defined on Cantor sets in different coordinate systems. Thermal Sci. 2015, 10.2298/TSCI141126065Y.
-
(2015)
Thermal Sci.
-
-
Yang, Y.-J.1
Baleanu, D.2
Baleanu, M.C.3
-
91
-
-
84555221318
-
Local fractional integral transforms
-
Yang X.-J. Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4(1):1-225.
-
(2011)
Prog. Nonlinear Sci.
, vol.4
, Issue.1
, pp. 1-225
-
-
Yang, X.-J.1
-
92
-
-
27744450698
-
Time-space fabric underlying anomalous diffusion
-
Chen W. Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract. 2006, 28(4):923-929.
-
(2006)
Chaos Soliton. Fract.
, vol.28
, Issue.4
, pp. 923-929
-
-
Chen, W.1
-
93
-
-
76449111034
-
Anomalous diffusion modeling by fractal and fractional derivatives
-
Chen W., Sun H., Zhang X., Korovsak D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59(5):1754-1758.
-
(2010)
Comput. Math. Appl.
, vol.59
, Issue.5
, pp. 1754-1758
-
-
Chen, W.1
Sun, H.2
Zhang, X.3
Korovsak, D.4
-
94
-
-
79955145165
-
A new fractal derivation
-
He J.-H. A new fractal derivation. Therm. Sci. 2011, 15(Suppl. 1):145-147.
-
(2011)
Therm. Sci.
, vol.15
, pp. 145-147
-
-
He, J.-H.1
-
95
-
-
84855203771
-
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
-
He J.-H., Elagan S.K., Li Z.-B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376(4):257-259.
-
(2012)
Phys. Lett. A
, vol.376
, Issue.4
, pp. 257-259
-
-
He, J.-H.1
Elagan, S.K.2
Li, Z.-B.3
-
97
-
-
84878016367
-
Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
-
Yang X.-J., Srivastava H.M., He J.-H., Baleanu D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377(28):1696-1700.
-
(2013)
Phys. Lett. A
, vol.377
, Issue.28
, pp. 1696-1700
-
-
Yang, X.-J.1
Srivastava, H.M.2
He, J.-H.3
Baleanu, D.4
-
98
-
-
84939986878
-
Local fractional similarity solution for the diffusion equation defined on Cantor sets
-
Yang X.-J., Baleanu D., Srivastava H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015, 47:54-60.
-
(2015)
Appl. Math. Lett.
, vol.47
, pp. 54-60
-
-
Yang, X.-J.1
Baleanu, D.2
Srivastava, H.M.3
-
99
-
-
85052823296
-
A review of definitions for fractional derivatives and integral
-
Oliveira E.C.D., Machado J.A.T. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 6 pages.
-
(2014)
Math. Probl. Eng.
, pp. 6
-
-
Oliveira, E.C.D.1
Machado, J.A.T.2
-
100
-
-
84920928257
-
Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method
-
Zhang Y. Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method. Abstr. Appl. Anal. 2014, 5 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Zhang, Y.1
-
101
-
-
78649351641
-
Investigation on fractional and fractal derivative relaxation-oscillation models
-
Chen W., Zhang X.-D., Korovsak D. Investigation on fractional and fractal derivative relaxation-oscillation models. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11(1):3-10.
-
(2010)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.11
, Issue.1
, pp. 3-10
-
-
Chen, W.1
Zhang, X.-D.2
Korovsak, D.3
-
102
-
-
84884896550
-
The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar
-
Yang A.-M., Zhang Y.-Z., Long Y. The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar. Therm. Sci. 2013, 17(3):707-713.
-
(2013)
Therm. Sci.
, vol.17
, Issue.3
, pp. 707-713
-
-
Yang, A.-M.1
Zhang, Y.-Z.2
Long, Y.3
-
104
-
-
52349114814
-
Fractional central differences and derivatives
-
Ortigueira M.D. Fractional central differences and derivatives. J. Vib. Control. 2008, 14(9-10):1255-1266.
-
(2008)
J. Vib. Control.
, vol.14
, Issue.9-10
, pp. 1255-1266
-
-
Ortigueira, M.D.1
-
105
-
-
79957894816
-
Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms
-
Ortigueira M.D., Trujillo J.J. Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms. J. Comput. Nonlinear Dyn. 2011, 6(3).
-
(2011)
J. Comput. Nonlinear Dyn.
, vol.6
, Issue.3
-
-
Ortigueira, M.D.1
Trujillo, J.J.2
-
106
-
-
63449116783
-
Fractional derivatives: probability interpretation and frequency response of rational approximations
-
Machado J.A.T. Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(9):3492-3497.
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, Issue.9
, pp. 3492-3497
-
-
Machado, J.A.T.1
-
107
-
-
84878718723
-
Fractional coins and fractional derivatives
-
Machado J.A.T. Fractional coins and fractional derivatives. Abstr. Appl. Anal. 2013, 5 pages.
-
(2013)
Abstr. Appl. Anal.
, pp. 5
-
-
Machado, J.A.T.1
-
109
-
-
84877246956
-
A note on fractional order derivatives and table of fractional derivatives of some special functions
-
Atangana A., Secer A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 2013, 8 pages.
-
(2013)
Abstr. Appl. Anal.
, pp. 8
-
-
Atangana, A.1
Secer, A.2
-
110
-
-
18144429885
-
On the representation of fractional Brownian motion as an integral with respect to dt?
-
Jumarie G. On the representation of fractional Brownian motion as an integral with respect to dt?. Appl. Math. Lett. 2005, 18(7):739-748.
-
(2005)
Appl. Math. Lett.
, vol.18
, Issue.7
, pp. 739-748
-
-
Jumarie, G.1
-
111
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
-
Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51(9):1367-1376.
-
(2006)
Comput. Math. Appl.
, vol.51
, Issue.9
, pp. 1367-1376
-
-
Jumarie, G.1
-
112
-
-
38349194080
-
Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions
-
Jumarie G. Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 2008, 32(5):836-859.
-
(2008)
Appl. Math. Model.
, vol.32
, Issue.5
, pp. 836-859
-
-
Jumarie, G.1
-
113
-
-
57049186538
-
Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions
-
Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions. Appl. Math. Lett. 2009, 22(3):378-385.
-
(2009)
Appl. Math. Lett.
, vol.22
, Issue.3
, pp. 378-385
-
-
Jumarie, G.1
-
114
-
-
79953697124
-
Introduction to fractional integrability and differentiability
-
Li C.-P., Zhao Z.-G. Introduction to fractional integrability and differentiability. Eur. Phys. J. 2011, 193(1):5-26.
-
(2011)
Eur. Phys. J.
, vol.193
, Issue.1
, pp. 5-26
-
-
Li, C.-P.1
Zhao, Z.-G.2
-
115
-
-
84893186929
-
A new definition of fractional derivative
-
Khalil R., Al-Horani M., Yousef A., Sababheh M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264:65-70.
-
(2014)
J. Comput. Appl. Math.
, vol.264
, pp. 65-70
-
-
Khalil, R.1
Al-Horani, M.2
Yousef, A.3
Sababheh, M.4
-
116
-
-
84911406110
-
On conformable fractional calculus
-
Abdeljawad T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279:57-66.
-
(2015)
J. Comput. Appl. Math.
, vol.279
, pp. 57-66
-
-
Abdeljawad, T.1
-
118
-
-
80052268122
-
New approach to a generalized fractional integral
-
Katugampola U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218(3):860-865.
-
(2011)
Appl. Math. Comput.
, vol.218
, Issue.3
, pp. 860-865
-
-
Katugampola, U.N.1
-
119
-
-
85051078999
-
A new definition of fractional derivative without singular kernel
-
Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):73-85.
-
(2015)
Prog. Fract. Differ. Appl.
, vol.1
, Issue.2
, pp. 73-85
-
-
Caputo, M.1
Fabrizio, M.2
-
120
-
-
85017665729
-
Properties of a new fractional derivative without singular kernel
-
Losada J., Nieto J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):87-92.
-
(2015)
Prog. Fract. Differ. Appl.
, vol.1
, Issue.2
, pp. 87-92
-
-
Losada, J.1
Nieto, J.J.2
-
126
-
-
85015950998
-
A brief historical introduction to fractional calculus
-
Debnath L. A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 2004, 35(4):487-501.
-
(2004)
Int. J. Math. Educ. Sci. Technol.
, vol.35
, Issue.4
, pp. 487-501
-
-
Debnath, L.1
-
130
-
-
84891741140
-
On development of fractional calculus during the last fifty years
-
Machado J.A.T., Galhano A.M., Trujillo J.J. On development of fractional calculus during the last fifty years. Scientometrics 2014, 98(1):577-582.
-
(2014)
Scientometrics
, vol.98
, Issue.1
, pp. 577-582
-
-
Machado, J.A.T.1
Galhano, A.M.2
Trujillo, J.J.3
-
131
-
-
79952143317
-
-
Springer Science and Business Media, New York
-
Monje C.A., Chen Y., Vinagre B.M., Xue D., Feliu-Batlle V. Fractional-Order Systems and Controls: Fundamentals and Applications 2010, Springer Science and Business Media, New York.
-
(2010)
Fractional-Order Systems and Controls: Fundamentals and Applications
-
-
Monje, C.A.1
Chen, Y.2
Vinagre, B.M.3
Xue, D.4
Feliu-Batlle, V.5
-
132
-
-
84893190028
-
-
World Scientific, Singapore
-
Baleanu D., Diethelm K., Scalas E., Trujillo J.J. Models and Numerical Methods 2012, 3:10-16. World Scientific, Singapore.
-
(2012)
Models and Numerical Methods
, vol.3
, pp. 10-16
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
145
-
-
84883192779
-
Generalizations of Hölder's and some related integral inequalities on fractal space
-
Chen G.-S. Generalizations of Hölder's and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 9 pages.
-
(2013)
J. Funct. Spaces Appl.
, pp. 9
-
-
Chen, G.-S.1
-
146
-
-
84934914868
-
A local fractional integral inequality on fractal space analogous to Anderson's inequality
-
Wei W., Srivastava H.M., Zhang Y., Wang L., Shen P., Zhang J. A local fractional integral inequality on fractal space analogous to Anderson's inequality. Abstr. Appl. Anal. 2014, 7 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 7
-
-
Wei, W.1
Srivastava, H.M.2
Zhang, Y.3
Wang, L.4
Shen, P.5
Zhang, J.6
-
147
-
-
84904654377
-
Some further generalizations of Hölder's inequality and related results on fractal space
-
Chen G.-S., Srivastava H.M., Wang P., Wie W. Some further generalizations of Hölder's inequality and related results on fractal space. Abstr. Appl. Anal. 2014, 7 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 7
-
-
Chen, G.-S.1
Srivastava, H.M.2
Wang, P.3
Wie, W.4
-
148
-
-
84920885354
-
On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics
-
Zhang Y., Baleanu D., Yang X.-J. On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics. Entropy 2014, 16(12):6254-6262.
-
(2014)
Entropy
, vol.16
, Issue.12
, pp. 6254-6262
-
-
Zhang, Y.1
Baleanu, D.2
Yang, X.-J.3
-
149
-
-
84900011952
-
Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain
-
Li Y.-Y., Zhao L.Y., Xie G.-N., Baleanu D., Yang X.-J., Zhao K. Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain. Adv. Math. Phys. 2014, 5 pages.
-
(2014)
Adv. Math. Phys.
, pp. 5
-
-
Li, Y.-Y.1
Zhao, L.Y.2
Xie, G.-N.3
Baleanu, D.4
Yang, X.-J.5
Zhao, K.6
-
150
-
-
84899418585
-
Local fractional variational iteration method for Fokker-Planck equation on a Cantor set
-
Yang X.-J., Baleanu D. Local fractional variational iteration method for Fokker-Planck equation on a Cantor set. Acta Univ. 2013, 23(2):3-8.
-
(2013)
Acta Univ.
, vol.23
, Issue.2
, pp. 3-8
-
-
Yang, X.-J.1
Baleanu, D.2
-
151
-
-
85044053149
-
Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis
-
Yang X.-J., Baleanu D., Machado J.A.T. Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. Bound. Value Probl. 2013, 1:1-16.
-
(2013)
Bound. Value Probl.
, vol.1
, pp. 1-16
-
-
Yang, X.-J.1
Baleanu, D.2
Machado, J.A.T.3
-
152
-
-
84879310679
-
Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method
-
Su W.-H., Baleanu D., Yang X.-J., Jafari H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory Appl. 2013, 1:1-11.
-
(2013)
Fixed Point Theory Appl.
, vol.1
, pp. 1-11
-
-
Su, W.-H.1
Baleanu, D.2
Yang, X.-J.3
Jafari, H.4
-
155
-
-
84890036462
-
Maxwell's equations on Cantor sets: a local fractional approach
-
Zhao Y., Baleanu D., Cattani C., Cheng D.-F., Yang X.-J. Maxwell's equations on Cantor sets: a local fractional approach. Adv. High Energy Phys. 2013, 6 pages.
-
(2013)
Adv. High Energy Phys.
, pp. 6
-
-
Zhao, Y.1
Baleanu, D.2
Cattani, C.3
Cheng, D.-F.4
Yang, X.-J.5
-
156
-
-
84899434153
-
Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws
-
Wang L.-F., Yang X.-J., Baleanu D., Cattani C., Zhao Y. Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws. Abstr. Appl. Anal. 2014, 5 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Wang, L.-F.1
Yang, X.-J.2
Baleanu, D.3
Cattani, C.4
Zhao, Y.5
-
157
-
-
84897554943
-
Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets
-
Yang A.-M., Zhang Y.-Z., Cattani C., Xie G.-N., Rashidi M.M., Zhou Y.-J., ang X.-J. Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets. Abstr. Appl. Anal. 2014, 6 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 6
-
-
Yang, A.-M.1
Zhang, Y.-Z.2
Cattani, C.3
Xie, G.-N.4
Rashidi, M.M.5
Zhou, Y.-J.6
ang, X.-J.7
-
158
-
-
84890267857
-
Transport equations in fractal porous media within fractional complex transform method
-
Yang X.-J., Baleanu D., He J.-H. Transport equations in fractal porous media within fractional complex transform method. Proc. Rom. Acad. Series A 2013, 14(4):287-292.
-
(2013)
Proc. Rom. Acad. Series A
, vol.14
, Issue.4
, pp. 287-292
-
-
Yang, X.-J.1
Baleanu, D.2
He, J.-H.3
-
159
-
-
84881521586
-
Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates
-
Hao Y.-J., Srivastava H.M., Jafari H., Yang X.-J. Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates. Adv. Math. Phys. 2013, 5 pages.
-
(2013)
Adv. Math. Phys.
, pp. 5
-
-
Hao, Y.-J.1
Srivastava, H.M.2
Jafari, H.3
Yang, X.-J.4
-
160
-
-
84903541046
-
Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation
-
Yang X.-J., Hristov J., Srivastava H.M., Ahmad B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr. Appl. Anal. 2014, 10 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 10
-
-
Yang, X.-J.1
Hristov, J.2
Srivastava, H.M.3
Ahmad, B.4
-
161
-
-
84961172616
-
Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
-
Yang X.-J., Machado J.A.T., Hristov J. Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dyn. 2015, 10.1007/s11071-015-2085-2.
-
(2015)
Nonlinear Dyn.
-
-
Yang, X.-J.1
Machado, J.A.T.2
Hristov, J.3
-
162
-
-
84922810016
-
Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow
-
Niu X.-F., Zhang C.-L., Li Z.-B., Zhao Y. Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow. Abstr. Appl. Anal. 2014, 5 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Niu, X.-F.1
Zhang, C.-L.2
Li, Z.-B.3
Zhao, Y.4
-
164
-
-
84938053187
-
Observing diffusion problems defined on Cantor sets in different coordinate systems
-
Yang Y.-J., Baleanu D., Baleanu M.C. Observing diffusion problems defined on Cantor sets in different coordinate systems. Thermal Sci. 2015, 10.2298/TSCI141126065Y.
-
(2015)
Thermal Sci.
-
-
Yang, Y.-J.1
Baleanu, D.2
Baleanu, M.C.3
-
167
-
-
0003967444
-
-
Cambridge University Press, Cambridge, London, New York
-
Körner T.W. Fourier Analysis 1988, Cambridge University Press, Cambridge, London, New York.
-
(1988)
Fourier Analysis
-
-
Körner, T.W.1
-
172
-
-
84888873847
-
Mappings for special functions on Cantor sets and special integral transforms via local fractional operators
-
Zhao Y., Baleanu D., Baleanu M.C., Cheng D.-F., Yang X.-J. Mappings for special functions on Cantor sets and special integral transforms via local fractional operators. Abstr. Appl. Anal. 2013, 6 pages.
-
(2013)
Abstr. Appl. Anal.
, pp. 6
-
-
Zhao, Y.1
Baleanu, D.2
Baleanu, M.C.3
Cheng, D.-F.4
Yang, X.-J.5
-
173
-
-
84903554974
-
Signal processing for nondifferentiable data defined on Cantor sets: a local fractional Fourier series approach
-
Chen Z.-Y., Cattani C., Zhong W.-P. Signal processing for nondifferentiable data defined on Cantor sets: a local fractional Fourier series approach. Adv. Math. Phys. 2014, 7 pages.
-
(2014)
Adv. Math. Phys.
, pp. 7
-
-
Chen, Z.-Y.1
Cattani, C.2
Zhong, W.-P.3
-
174
-
-
84880177097
-
1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method
-
Yang X.-J., Zhang Y., Yang A.-M. 1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method. Therm. Sci. 2013, 17(3):953-956.
-
(2013)
Therm. Sci.
, vol.17
, Issue.3
, pp. 953-956
-
-
Yang, X.-J.1
Zhang, Y.2
Yang, A.-M.3
-
175
-
-
84955145780
-
On analytical methods for differential equations with local fractional derivative operators, Chapter 4
-
Nova Science Publishers, New York
-
Yang X.-J., Baleanu D., Machado J.A.T., Daou R.A.Z., Moreau X. On analytical methods for differential equations with local fractional derivative operators, Chapter 4. Fractional Calculus: Theory 2014, 65-88. Nova Science Publishers, New York.
-
(2014)
Fractional Calculus: Theory
, pp. 65-88
-
-
Yang, X.-J.1
Baleanu, D.2
Machado, J.A.T.3
Daou, R.A.Z.4
Moreau, X.5
-
176
-
-
84880152493
-
Analysis of fractal wave equations by local fractional Fourier series method
-
Yang Y.-J., Baleanu D., Yang X.-J. Analysis of fractal wave equations by local fractional Fourier series method. Adv. Math. Phys. 2013, 6 pages.
-
(2013)
Adv. Math. Phys.
, pp. 6
-
-
Yang, Y.-J.1
Baleanu, D.2
Yang, X.-J.3
-
177
-
-
84872148874
-
Local fractional Fourier series with application to wave equation in fractal vibrating string
-
Hu M.-S., Agarwal R.P., Yang X.-J. Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstr. Appl. Anal. 2012, 15 pages.
-
(2012)
Abstr. Appl. Anal.
, pp. 15
-
-
Hu, M.-S.1
Agarwal, R.P.2
Yang, X.-J.3
-
178
-
-
84950149175
-
Local fractional Fourier series method for solving nonlinear equations with local fractional operators
-
Yang Y.-J., Wang S.-Q. Local fractional Fourier series method for solving nonlinear equations with local fractional operators. Math. Probl. Eng. 2015, 2015:1-9.
-
(2015)
Math. Probl. Eng.
, vol.2015
, pp. 1-9
-
-
Yang, Y.-J.1
Wang, S.-Q.2
-
179
-
-
84893184829
-
Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative
-
Wang S.-Q., Yang Y.-J., Jassim H.K. Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative. Abstr. Appl. Anal. 2014, 7 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 7
-
-
Wang, S.-Q.1
Yang, Y.-J.2
Jassim, H.K.3
-
181
-
-
0040655648
-
Fractional differentiability of nowhere differentiable functions and dimensions
-
Kolwankar K.M., Gangal A.D. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 1996, 6(4):505-513.
-
(1996)
Chaos
, vol.6
, Issue.4
, pp. 505-513
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
182
-
-
77956684069
-
-
Elsevier (North-Holland) Science Publishers, Amsterdam, London, New York
-
Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations North-Holland Mathematical Studies 2006, 204. Elsevier (North-Holland) Science Publishers, Amsterdam, London, New York.
-
(2006)
Theory and Applications of Fractional Differential Equations North-Holland Mathematical Studies
, vol.204
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
183
-
-
51449091068
-
-
Springer, Berlin, Heidelberg, New York
-
Sabatier J., Agrawal O.P., Machado J.A.T. Advances in Fractional Calculus 2007, Springer, Berlin, Heidelberg, New York.
-
(2007)
Advances in Fractional Calculus
-
-
Sabatier, J.1
Agrawal, O.P.2
Machado, J.A.T.3
-
186
-
-
0030671988
-
Hölder exponents of irregular signals and local fractional derivatives
-
Kolwankar K.M., Gangal A.D. Hölder exponents of irregular signals and local fractional derivatives. Pramana 1997, 48(1):49-68.
-
(1997)
Pramana
, vol.48
, Issue.1
, pp. 49-68
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
187
-
-
0001707390
-
Local fractional Fokker-Planck equation
-
Kolwankar K.M., Gangal A.D. Local fractional Fokker-Planck equation. Phys. Rev. Lett. 1998, 80(2):214.
-
(1998)
Phys. Rev. Lett.
, vol.80
, Issue.2
, pp. 214
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
188
-
-
0036028181
-
A fractional calculus approach to the description of stress and strain localization in fractal media
-
Carpinteri A., Cornetti P. A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos Soliton. Fract. 2002, 13(1):85-94.
-
(2002)
Chaos Soliton. Fract.
, vol.13
, Issue.1
, pp. 85-94
-
-
Carpinteri, A.1
Cornetti, P.2
-
189
-
-
0035834542
-
Static-kinematic duality and the principle of virtual work in the mechanics of fractal media
-
Carpinteri A., Chiaia B., Cornetti P. Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput. Methods Appl. Mech. Eng. 2001, 191(1):3-19.
-
(2001)
Comput. Methods Appl. Mech. Eng.
, vol.191
, Issue.1
, pp. 3-19
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
190
-
-
0742324870
-
The elastic problem for fractal media: basic theory and finite element formulation
-
Carpinteri A., Chiaia B., Cornetti P. The elastic problem for fractal media: basic theory and finite element formulation. Comput. Struct. 2004, 82(6):499-508.
-
(2004)
Comput. Struct.
, vol.82
, Issue.6
, pp. 499-508
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
191
-
-
1342264358
-
Calculation of the tensile and flexural strength of disordered materials using fractional calculus
-
Carpinteri A., Cornetti P., Kolwankar K.M. Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos Soliton. Fract. 2004, 21(3):623-632.
-
(2004)
Chaos Soliton. Fract.
, vol.21
, Issue.3
, pp. 623-632
-
-
Carpinteri, A.1
Cornetti, P.2
Kolwankar, K.M.3
-
192
-
-
70350325151
-
On the local fractional derivative
-
Chen Y., Yan Y., Zhang K. On the local fractional derivative. J. Math. Anal. Appl. 2010, 362(1):17-33.
-
(2010)
J. Math. Anal. Appl.
, vol.362
, Issue.1
, pp. 17-33
-
-
Chen, Y.1
Yan, Y.2
Zhang, K.3
-
193
-
-
0035891478
-
About non-differentiable functions
-
Adda F.B., Cresson J. About non-differentiable functions. J. Math. Anal. Appl. 2001, 263(2):721-737.
-
(2001)
J. Math. Anal. Appl.
, vol.263
, Issue.2
, pp. 721-737
-
-
Adda, F.B.1
Cresson, J.2
-
195
-
-
84555221318
-
Local fractional integral transforms
-
Yang X.-J. Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4(1):1-225.
-
(2011)
Prog. Nonlinear Sci.
, vol.4
, Issue.1
, pp. 1-225
-
-
Yang, X.-J.1
-
196
-
-
27744450698
-
Time-space fabric underlying anomalous diffusion
-
Chen W. Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract. 2006, 28(4):923-929.
-
(2006)
Chaos Soliton. Fract.
, vol.28
, Issue.4
, pp. 923-929
-
-
Chen, W.1
-
197
-
-
76449111034
-
Anomalous diffusion modeling by fractal and fractional derivatives
-
Chen W., Sun H., Zhang X., Korovsak D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59(5):1754-1758.
-
(2010)
Comput. Math. Appl.
, vol.59
, Issue.5
, pp. 1754-1758
-
-
Chen, W.1
Sun, H.2
Zhang, X.3
Korovsak, D.4
-
198
-
-
79955145165
-
A new fractal derivation
-
He J.-H. A new fractal derivation. Therm. Sci. 2011, 15(Suppl. 1):145-147.
-
(2011)
Therm. Sci.
, vol.15
, pp. 145-147
-
-
He, J.-H.1
-
199
-
-
84855203771
-
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
-
He J.-H., Elagan S.K., Li Z.-B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376(4):257-259.
-
(2012)
Phys. Lett. A
, vol.376
, Issue.4
, pp. 257-259
-
-
He, J.-H.1
Elagan, S.K.2
Li, Z.-B.3
-
201
-
-
84878016367
-
Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
-
Yang X.-J., Srivastava H.M., He J.-H., Baleanu D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377(28):1696-1700.
-
(2013)
Phys. Lett. A
, vol.377
, Issue.28
, pp. 1696-1700
-
-
Yang, X.-J.1
Srivastava, H.M.2
He, J.-H.3
Baleanu, D.4
-
202
-
-
84939986878
-
Local fractional similarity solution for the diffusion equation defined on Cantor sets
-
Yang X.-J., Baleanu D., Srivastava H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015, 47:54-60.
-
(2015)
Appl. Math. Lett.
, vol.47
, pp. 54-60
-
-
Yang, X.-J.1
Baleanu, D.2
Srivastava, H.M.3
-
203
-
-
85052823296
-
A review of definitions for fractional derivatives and integral
-
Oliveira E.C.D., Machado J.A.T. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 6 pages.
-
(2014)
Math. Probl. Eng.
, pp. 6
-
-
Oliveira, E.C.D.1
Machado, J.A.T.2
-
204
-
-
84920928257
-
Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method
-
Zhang Y. Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method. Abstr. Appl. Anal. 2014, 5 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Zhang, Y.1
-
205
-
-
78649351641
-
Investigation on fractional and fractal derivative relaxation-oscillation models
-
Chen W., Zhang X.-D., Korovsak D. Investigation on fractional and fractal derivative relaxation-oscillation models. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11(1):3-10.
-
(2010)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.11
, Issue.1
, pp. 3-10
-
-
Chen, W.1
Zhang, X.-D.2
Korovsak, D.3
-
206
-
-
84884896550
-
The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar
-
Yang A.-M., Zhang Y.-Z., Long Y. The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar. Therm. Sci. 2013, 17(3):707-713.
-
(2013)
Therm. Sci.
, vol.17
, Issue.3
, pp. 707-713
-
-
Yang, A.-M.1
Zhang, Y.-Z.2
Long, Y.3
-
208
-
-
52349114814
-
Fractional central differences and derivatives
-
Ortigueira M.D. Fractional central differences and derivatives. J. Vib. Control. 2008, 14(9-10):1255-1266.
-
(2008)
J. Vib. Control.
, vol.14
, Issue.9-10
, pp. 1255-1266
-
-
Ortigueira, M.D.1
-
209
-
-
79957894816
-
Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms
-
Ortigueira M.D., Trujillo J.J. Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms. J. Comput. Nonlinear Dyn. 2011, 6(3).
-
(2011)
J. Comput. Nonlinear Dyn.
, vol.6
, Issue.3
-
-
Ortigueira, M.D.1
Trujillo, J.J.2
-
210
-
-
63449116783
-
Fractional derivatives: probability interpretation and frequency response of rational approximations
-
Machado J.A.T. Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(9):3492-3497.
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, Issue.9
, pp. 3492-3497
-
-
Machado, J.A.T.1
-
211
-
-
84878718723
-
Fractional coins and fractional derivatives
-
Machado J.A.T. Fractional coins and fractional derivatives. Abstr. Appl. Anal. 2013, 5 pages.
-
(2013)
Abstr. Appl. Anal.
, pp. 5
-
-
Machado, J.A.T.1
-
213
-
-
84877246956
-
A note on fractional order derivatives and table of fractional derivatives of some special functions
-
Atangana A., Secer A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 2013, 8 pages.
-
(2013)
Abstr. Appl. Anal.
, pp. 8
-
-
Atangana, A.1
Secer, A.2
-
214
-
-
18144429885
-
On the representation of fractional Brownian motion as an integral with respect to dt?
-
Jumarie G. On the representation of fractional Brownian motion as an integral with respect to dt?. Appl. Math. Lett. 2005, 18(7):739-748.
-
(2005)
Appl. Math. Lett.
, vol.18
, Issue.7
, pp. 739-748
-
-
Jumarie, G.1
-
215
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
-
Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51(9):1367-1376.
-
(2006)
Comput. Math. Appl.
, vol.51
, Issue.9
, pp. 1367-1376
-
-
Jumarie, G.1
-
216
-
-
38349194080
-
Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions
-
Jumarie G. Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 2008, 32(5):836-859.
-
(2008)
Appl. Math. Model.
, vol.32
, Issue.5
, pp. 836-859
-
-
Jumarie, G.1
-
217
-
-
57049186538
-
Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions
-
Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions. Appl. Math. Lett. 2009, 22(3):378-385.
-
(2009)
Appl. Math. Lett.
, vol.22
, Issue.3
, pp. 378-385
-
-
Jumarie, G.1
-
218
-
-
79953697124
-
Introduction to fractional integrability and differentiability
-
Li C.-P., Zhao Z.-G. Introduction to fractional integrability and differentiability. Eur. Phys. J. 2011, 193(1):5-26.
-
(2011)
Eur. Phys. J.
, vol.193
, Issue.1
, pp. 5-26
-
-
Li, C.-P.1
Zhao, Z.-G.2
-
219
-
-
84893186929
-
A new definition of fractional derivative
-
Khalil R., Al-Horani M., Yousef A., Sababheh M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264:65-70.
-
(2014)
J. Comput. Appl. Math.
, vol.264
, pp. 65-70
-
-
Khalil, R.1
Al-Horani, M.2
Yousef, A.3
Sababheh, M.4
-
220
-
-
84911406110
-
On conformable fractional calculus
-
Abdeljawad T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279:57-66.
-
(2015)
J. Comput. Appl. Math.
, vol.279
, pp. 57-66
-
-
Abdeljawad, T.1
-
222
-
-
80052268122
-
New approach to a generalized fractional integral
-
Katugampola U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218(3):860-865.
-
(2011)
Appl. Math. Comput.
, vol.218
, Issue.3
, pp. 860-865
-
-
Katugampola, U.N.1
-
223
-
-
85051078999
-
A new definition of fractional derivative without singular kernel
-
Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):73-85.
-
(2015)
Prog. Fract. Differ. Appl.
, vol.1
, Issue.2
, pp. 73-85
-
-
Caputo, M.1
Fabrizio, M.2
-
224
-
-
85017665729
-
Properties of a new fractional derivative without singular kernel
-
Losada J., Nieto J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):87-92.
-
(2015)
Prog. Fract. Differ. Appl.
, vol.1
, Issue.2
, pp. 87-92
-
-
Losada, J.1
Nieto, J.J.2
-
230
-
-
85015950998
-
A brief historical introduction to fractional calculus
-
Debnath L. A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 2004, 35(4):487-501.
-
(2004)
Int. J. Math. Educ. Sci. Technol.
, vol.35
, Issue.4
, pp. 487-501
-
-
Debnath, L.1
-
234
-
-
84891741140
-
On development of fractional calculus during the last fifty years
-
Machado J.A.T., Galhano A.M., Trujillo J.J. On development of fractional calculus during the last fifty years. Scientometrics 2014, 98(1):577-582.
-
(2014)
Scientometrics
, vol.98
, Issue.1
, pp. 577-582
-
-
Machado, J.A.T.1
Galhano, A.M.2
Trujillo, J.J.3
-
235
-
-
79952143317
-
-
Springer Science and Business Media, New York
-
Monje C.A., Chen Y., Vinagre B.M., Xue D., Feliu-Batlle V. Fractional-Order Systems and Controls: Fundamentals and Applications 2010, Springer Science and Business Media, New York.
-
(2010)
Fractional-Order Systems and Controls: Fundamentals and Applications
-
-
Monje, C.A.1
Chen, Y.2
Vinagre, B.M.3
Xue, D.4
Feliu-Batlle, V.5
-
236
-
-
84893190028
-
-
World Scientific, Singapore
-
Baleanu D., Diethelm K., Scalas E., Trujillo J.J. Models and Numerical Methods 2012, 3:10-16. World Scientific, Singapore.
-
(2012)
Models and Numerical Methods
, vol.3
, pp. 10-16
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
249
-
-
84883192779
-
Generalizations of Hölder's and some related integral inequalities on fractal space
-
Chen G.-S. Generalizations of Hölder's and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 9 pages.
-
(2013)
J. Funct. Spaces Appl.
, pp. 9
-
-
Chen, G.-S.1
-
250
-
-
84934914868
-
A local fractional integral inequality on fractal space analogous to Anderson's inequality
-
Wei W., Srivastava H.M., Zhang Y., Wang L., Shen P., Zhang J. A local fractional integral inequality on fractal space analogous to Anderson's inequality. Abstr. Appl. Anal. 2014, 7 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 7
-
-
Wei, W.1
Srivastava, H.M.2
Zhang, Y.3
Wang, L.4
Shen, P.5
Zhang, J.6
-
251
-
-
84904654377
-
Some further generalizations of Hölder's inequality and related results on fractal space
-
Chen G.-S., Srivastava H.M., Wang P., Wie W. Some further generalizations of Hölder's inequality and related results on fractal space. Abstr. Appl. Anal. 2014, 7 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 7
-
-
Chen, G.-S.1
Srivastava, H.M.2
Wang, P.3
Wie, W.4
-
252
-
-
84920885354
-
On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics
-
Zhang Y., Baleanu D., Yang X.-J. On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics. Entropy 2014, 16(12):6254-6262.
-
(2014)
Entropy
, vol.16
, Issue.12
, pp. 6254-6262
-
-
Zhang, Y.1
Baleanu, D.2
Yang, X.-J.3
-
253
-
-
84900011952
-
Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain
-
Li Y.-Y., Zhao L.Y., Xie G.-N., Baleanu D., Yang X.-J., Zhao K. Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain. Adv. Math. Phys. 2014, 5 pages.
-
(2014)
Adv. Math. Phys.
, pp. 5
-
-
Li, Y.-Y.1
Zhao, L.Y.2
Xie, G.-N.3
Baleanu, D.4
Yang, X.-J.5
Zhao, K.6
-
254
-
-
84899418585
-
Local fractional variational iteration method for Fokker-Planck equation on a Cantor set
-
Yang X.-J., Baleanu D. Local fractional variational iteration method for Fokker-Planck equation on a Cantor set. Acta Univ. 2013, 23(2):3-8.
-
(2013)
Acta Univ.
, vol.23
, Issue.2
, pp. 3-8
-
-
Yang, X.-J.1
Baleanu, D.2
-
255
-
-
85044053149
-
Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis
-
Yang X.-J., Baleanu D., Machado J.A.T. Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. Bound. Value Probl. 2013, 1:1-16.
-
(2013)
Bound. Value Probl.
, vol.1
, pp. 1-16
-
-
Yang, X.-J.1
Baleanu, D.2
Machado, J.A.T.3
-
256
-
-
84879310679
-
Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method
-
Su W.-H., Baleanu D., Yang X.-J., Jafari H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory Appl. 2013, 1:1-11.
-
(2013)
Fixed Point Theory Appl.
, vol.1
, pp. 1-11
-
-
Su, W.-H.1
Baleanu, D.2
Yang, X.-J.3
Jafari, H.4
-
259
-
-
84890036462
-
Maxwell's equations on Cantor sets: a local fractional approach
-
Zhao Y., Baleanu D., Cattani C., Cheng D.-F., Yang X.-J. Maxwell's equations on Cantor sets: a local fractional approach. Adv. High Energy Phys. 2013, 6 pages.
-
(2013)
Adv. High Energy Phys.
, pp. 6
-
-
Zhao, Y.1
Baleanu, D.2
Cattani, C.3
Cheng, D.-F.4
Yang, X.-J.5
-
260
-
-
84899434153
-
Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws
-
Wang L.-F., Yang X.-J., Baleanu D., Cattani C., Zhao Y. Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws. Abstr. Appl. Anal. 2014, 5 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Wang, L.-F.1
Yang, X.-J.2
Baleanu, D.3
Cattani, C.4
Zhao, Y.5
-
261
-
-
84897554943
-
Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets
-
Yang A.-M., Zhang Y.-Z., Cattani C., Xie G.-N., Rashidi M.M., Zhou Y.-J., ang X.-J. Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets. Abstr. Appl. Anal. 2014, 6 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 6
-
-
Yang, A.-M.1
Zhang, Y.-Z.2
Cattani, C.3
Xie, G.-N.4
Rashidi, M.M.5
Zhou, Y.-J.6
ang, X.-J.7
-
262
-
-
84890267857
-
Transport equations in fractal porous media within fractional complex transform method
-
Yang X.-J., Baleanu D., He J.-H. Transport equations in fractal porous media within fractional complex transform method. Proc. Rom. Acad. Series A 2013, 14(4):287-292.
-
(2013)
Proc. Rom. Acad. Series A
, vol.14
, Issue.4
, pp. 287-292
-
-
Yang, X.-J.1
Baleanu, D.2
He, J.-H.3
-
263
-
-
84881521586
-
Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates
-
Hao Y.-J., Srivastava H.M., Jafari H., Yang X.-J. Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates. Adv. Math. Phys. 2013, 5 pages.
-
(2013)
Adv. Math. Phys.
, pp. 5
-
-
Hao, Y.-J.1
Srivastava, H.M.2
Jafari, H.3
Yang, X.-J.4
-
264
-
-
84903541046
-
Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation
-
Yang X.-J., Hristov J., Srivastava H.M., Ahmad B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr. Appl. Anal. 2014, 10 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 10
-
-
Yang, X.-J.1
Hristov, J.2
Srivastava, H.M.3
Ahmad, B.4
-
265
-
-
84961172616
-
Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
-
Yang X.-J., Machado J.A.T., Hristov J. Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dyn. 2015, 10.1007/s11071-015-2085-2.
-
(2015)
Nonlinear Dyn.
-
-
Yang, X.-J.1
Machado, J.A.T.2
Hristov, J.3
-
266
-
-
84922810016
-
Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow
-
Niu X.-F., Zhang C.-L., Li Z.-B., Zhao Y. Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow. Abstr. Appl. Anal. 2014, 5 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Niu, X.-F.1
Zhang, C.-L.2
Li, Z.-B.3
Zhao, Y.4
-
268
-
-
84938053187
-
Observing diffusion problems defined on Cantor sets in different coordinate systems
-
Yang Y.-J., Baleanu D., Baleanu M.C. Observing diffusion problems defined on Cantor sets in different coordinate systems. Thermal Sci. 2015, 10.2298/TSCI141126065Y.
-
(2015)
Thermal Sci.
-
-
Yang, Y.-J.1
Baleanu, D.2
Baleanu, M.C.3
-
271
-
-
0003967444
-
-
Cambridge University Press, Cambridge, London, New York
-
Körner T.W. Fourier Analysis 1988, Cambridge University Press, Cambridge, London, New York.
-
(1988)
Fourier Analysis
-
-
Körner, T.W.1
-
276
-
-
84888873847
-
Mappings for special functions on Cantor sets and special integral transforms via local fractional operators
-
Zhao Y., Baleanu D., Baleanu M.C., Cheng D.-F., Yang X.-J. Mappings for special functions on Cantor sets and special integral transforms via local fractional operators. Abstr. Appl. Anal. 2013, 6 pages.
-
(2013)
Abstr. Appl. Anal.
, pp. 6
-
-
Zhao, Y.1
Baleanu, D.2
Baleanu, M.C.3
Cheng, D.-F.4
Yang, X.-J.5
-
277
-
-
84903554974
-
Signal processing for nondifferentiable data defined on Cantor sets: a local fractional Fourier series approach
-
Chen Z.-Y., Cattani C., Zhong W.-P. Signal processing for nondifferentiable data defined on Cantor sets: a local fractional Fourier series approach. Adv. Math. Phys. 2014, 7 pages.
-
(2014)
Adv. Math. Phys.
, pp. 7
-
-
Chen, Z.-Y.1
Cattani, C.2
Zhong, W.-P.3
-
278
-
-
84880177097
-
1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method
-
Yang X.-J., Zhang Y., Yang A.-M. 1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method. Therm. Sci. 2013, 17(3):953-956.
-
(2013)
Therm. Sci.
, vol.17
, Issue.3
, pp. 953-956
-
-
Yang, X.-J.1
Zhang, Y.2
Yang, A.-M.3
-
279
-
-
84955145780
-
On analytical methods for differential equations with local fractional derivative operators, Chapter 4
-
Nova Science Publishers, New York
-
Yang X.-J., Baleanu D., Machado J.A.T., Daou R.A.Z., Moreau X. On analytical methods for differential equations with local fractional derivative operators, Chapter 4. Fractional Calculus: Theory 2014, 65-88. Nova Science Publishers, New York.
-
(2014)
Fractional Calculus: Theory
, pp. 65-88
-
-
Yang, X.-J.1
Baleanu, D.2
Machado, J.A.T.3
Daou, R.A.Z.4
Moreau, X.5
-
280
-
-
84880152493
-
Analysis of fractal wave equations by local fractional Fourier series method
-
Yang Y.-J., Baleanu D., Yang X.-J. Analysis of fractal wave equations by local fractional Fourier series method. Adv. Math. Phys. 2013, 6 pages.
-
(2013)
Adv. Math. Phys.
, pp. 6
-
-
Yang, Y.-J.1
Baleanu, D.2
Yang, X.-J.3
-
281
-
-
84872148874
-
Local fractional Fourier series with application to wave equation in fractal vibrating string
-
Hu M.-S., Agarwal R.P., Yang X.-J. Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstr. Appl. Anal. 2012, 15 pages.
-
(2012)
Abstr. Appl. Anal.
, pp. 15
-
-
Hu, M.-S.1
Agarwal, R.P.2
Yang, X.-J.3
-
282
-
-
84950149175
-
Local fractional Fourier series method for solving nonlinear equations with local fractional operators
-
Yang Y.-J., Wang S.-Q. Local fractional Fourier series method for solving nonlinear equations with local fractional operators. Math. Probl. Eng. 2015, 2015:1-9.
-
(2015)
Math. Probl. Eng.
, vol.2015
, pp. 1-9
-
-
Yang, Y.-J.1
Wang, S.-Q.2
-
283
-
-
84893184829
-
Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative
-
Wang S.-Q., Yang Y.-J., Jassim H.K. Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative. Abstr. Appl. Anal. 2014, 7 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 7
-
-
Wang, S.-Q.1
Yang, Y.-J.2
Jassim, H.K.3
-
284
-
-
84857467321
-
Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral
-
Zhong W.-P., Gao F., Shen X.-M. Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral. Adv. Mater. Res. 2012, 461:306-310.
-
(2012)
Adv. Mater. Res.
, vol.461
, pp. 306-310
-
-
Zhong, W.-P.1
Gao, F.2
Shen, X.-M.3
-
285
-
-
84869494625
-
Asymptotic methods for solitary solutions and compactions
-
He J.-H. Asymptotic methods for solitary solutions and compactions. Abstr. Appl. Anal. 2012, 130 pages.
-
(2012)
Abstr. Appl. Anal.
, pp. 130
-
-
He, J.-H.1
-
286
-
-
84863346618
-
A novel approach to processing fractal signals using the Yang-Fourier transforms
-
Yang X.-J., Liao M.-K., Chen J.-W. A novel approach to processing fractal signals using the Yang-Fourier transforms. Proc. Eng. 2012, 29:2950-2954.
-
(2012)
Proc. Eng.
, vol.29
, pp. 2950-2954
-
-
Yang, X.-J.1
Liao, M.-K.2
Chen, J.-W.3
-
287
-
-
84555221318
-
Local fractional integral transforms
-
Yang X.-J. Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4(1):1-225.
-
(2011)
Prog. Nonlinear Sci.
, vol.4
, Issue.1
, pp. 1-225
-
-
Yang, X.-J.1
-
288
-
-
27744450698
-
Time-space fabric underlying anomalous diffusion
-
Chen W. Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract. 2006, 28(4):923-929.
-
(2006)
Chaos Soliton. Fract.
, vol.28
, Issue.4
, pp. 923-929
-
-
Chen, W.1
-
289
-
-
76449111034
-
Anomalous diffusion modeling by fractal and fractional derivatives
-
Chen W., Sun H., Zhang X., Korovsak D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59(5):1754-1758.
-
(2010)
Comput. Math. Appl.
, vol.59
, Issue.5
, pp. 1754-1758
-
-
Chen, W.1
Sun, H.2
Zhang, X.3
Korovsak, D.4
-
290
-
-
79955145165
-
A new fractal derivation
-
He J.-H. A new fractal derivation. Therm. Sci. 2011, 15(Suppl. 1):145-147.
-
(2011)
Therm. Sci.
, vol.15
, pp. 145-147
-
-
He, J.-H.1
-
291
-
-
84855203771
-
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
-
He J.-H., Elagan S.K., Li Z.-B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376(4):257-259.
-
(2012)
Phys. Lett. A
, vol.376
, Issue.4
, pp. 257-259
-
-
He, J.-H.1
Elagan, S.K.2
Li, Z.-B.3
-
293
-
-
84897488365
-
Local fractional Z-transforms with applications to signals on Cantor sets
-
Liu K., Hu R.-J., Cattani C., Xie G.-N., Yang X.-J., Zhao Y. Local fractional Z-transforms with applications to signals on Cantor sets. Abstr. Appl. Anal. 2014, 6 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 6
-
-
Liu, K.1
Hu, R.-J.2
Cattani, C.3
Xie, G.-N.4
Yang, X.-J.5
Zhao, Y.6
-
295
-
-
84902506005
-
Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform
-
Zhang Y.-Z., Yang A.-M., Long Y. Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform. Therm. Sci. 2014, 18(2):677-681.
-
(2014)
Therm. Sci.
, vol.18
, Issue.2
, pp. 677-681
-
-
Zhang, Y.-Z.1
Yang, A.-M.2
Long, Y.3
-
296
-
-
84884850577
-
Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem
-
Liu C.-F., Kong S.-S., Yuan S.-J. Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem. Therm. Sci. 2013, 17(3):715-721.
-
(2013)
Therm. Sci.
, vol.17
, Issue.3
, pp. 715-721
-
-
Liu, C.-F.1
Kong, S.-S.2
Yuan, S.-J.3
-
297
-
-
84893195631
-
The Yang-Laplace transform for solving the IVPs with local fractional derivative
-
Zhao C.-G., Yang A.-M., Jafari H., Haghbin A. The Yang-Laplace transform for solving the IVPs with local fractional derivative. Abstr. Appl. Anal. 2014, 5 pages.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Zhao, C.-G.1
Yang, A.-M.2
Jafari, H.3
Haghbin, A.4
-
298
-
-
84904598246
-
Local fractional Laplace variational iteration method for fractal vehicular traffic flow
-
Li Y., Wang L.-F., Zeng S.-D., Zhao Y. Local fractional Laplace variational iteration method for fractal vehicular traffic flow. Adv. Math. Phys. 2014, 7 pages.
-
(2014)
Adv. Math. Phys.
, pp. 7
-
-
Li, Y.1
Wang, L.-F.2
Zeng, S.-D.3
Zhao, Y.4
-
299
-
-
84904652069
-
Local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivative
-
Yang A.-M., Li J., Srivastava H.M., Xie G.-N., Yang X.-J. Local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivative. Discrete Dyn Nat Soc 2014, 8 pages.
-
(2014)
Discrete Dyn Nat Soc
, pp. 8
-
-
Yang, A.-M.1
Li, J.2
Srivastava, H.M.3
Xie, G.-N.4
Yang, X.-J.5
-
300
-
-
85133603722
-
Local fractional Z-transforms with applications to signals on Cantor sets
-
Yan S.-P., Jafari H., Jassim H.K. Local fractional Z-transforms with applications to signals on Cantor sets. Adv. Math. Phys. 2014, 7 pages.
-
(2014)
Adv. Math. Phys.
, pp. 7
-
-
Yan, S.-P.1
Jafari, H.2
Jassim, H.K.3
-
301
-
-
84939986878
-
Local fractional similarity solution for the diffusion equation defined on Cantor sets
-
Yang X.-J., Baleanu D., Srivastava H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015, 47:54-60.
-
(2015)
Appl. Math. Lett.
, vol.47
, pp. 54-60
-
-
Yang, X.-J.1
Baleanu, D.2
Srivastava, H.M.3
-
303
-
-
0040655648
-
Fractional differentiability of nowhere differentiable functions and dimensions
-
Kolwankar K.M., Gangal A.D. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 1996, 6(4):505-513.
-
(1996)
Chaos
, vol.6
, Issue.4
, pp. 505-513
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
304
-
-
77956684069
-
-
Elsevier (North-Holland) Science Publishers, Amsterdam, London, New York
-
Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations North-Holland Mathematical Studies 2006, 204. Elsevier (North-Holland) Science Publishers, Amsterdam, London, New York.
-
(2006)
Theory and Applications of Fractional Differential Equations North-Holland Mathematical Studies
, vol.204
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
305
-
-
51449091068
-
-
Springer, Berlin, Heidelberg, New York
-
Sabatier J., Agrawal O.P., Machado J.A.T. Advances in Fractional Calculus 2007, Springer, Berlin, Heidelberg, New York.
-
(2007)
Advances in Fractional Calculus
-
-
Sabatier, J.1
Agrawal, O.P.2
Machado, J.A.T.3
-
308
-
-
0030671988
-
Hölder exponents of irregular signals and local fractional derivatives
-
Kolwankar K.M., Gangal A.D. Hölder exponents of irregular signals and local fractional derivatives. Pramana 1997, 48(1):49-68.
-
(1997)
Pramana
, vol.48
, Issue.1
, pp. 49-68
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
309
-
-
0001707390
-
Local fractional Fokker-Planck equation
-
Kolwankar K.M., Gangal A.D. Local fractional Fokker-Planck equation. Phys. Rev. Lett. 1998, 80(2):214.
-
(1998)
Phys. Rev. Lett.
, vol.80
, Issue.2
, pp. 214
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
310
-
-
0036028181
-
A fractional calculus approach to the description of stress and strain localization in fractal media
-
Carpinteri A., Cornetti P. A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos Soliton. Fract. 2002, 13(1):85-94.
-
(2002)
Chaos Soliton. Fract.
, vol.13
, Issue.1
, pp. 85-94
-
-
Carpinteri, A.1
Cornetti, P.2
-
311
-
-
0035834542
-
Static-kinematic duality and the principle of virtual work in the mechanics of fractal media
-
Carpinteri A., Chiaia B., Cornetti P. Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput. Methods Appl. Mech. Eng. 2001, 191(1):3-19.
-
(2001)
Comput. Methods Appl. Mech. Eng.
, vol.191
, Issue.1
, pp. 3-19
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
312
-
-
0742324870
-
The elastic problem for fractal media: basic theory and finite element formulation
-
Carpinteri A., Chiaia B., Cornetti P. The elastic problem for fractal media: basic theory and finite element formulation. Comput. Struct. 2004, 82(6):499-508.
-
(2004)
Comput. Struct.
, vol.82
, Issue.6
, pp. 499-508
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
313
-
-
1342264358
-
Calculation of the tensile and flexural strength of disordered materials using fractional calculus
-
Carpinteri A., Cornetti P., Kolwankar K.M. Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos Soliton. Fract. 2004, 21(3):623-632.
-
(2004)
Chaos Soliton. Fract.
, vol.21
, Issue.3
, pp. 623-632
-
-
Carpinteri, A.1
Cornetti, P.2
Kolwankar, K.M.3
-
314
-
-
70350325151
-
On the local fractional derivative
-
Chen Y., Yan Y., Zhang K. On the local fractional derivative. J. Math. Anal. Appl. 2010, 362(1):17-33.
-
(2010)
J. Math. Anal. Appl.
, vol.362
, Issue.1
, pp. 17-33
-
-
Chen, Y.1
Yan, Y.2
Zhang, K.3
-
315
-
-
0035891478
-
About non-differentiable functions
-
Adda F.B., Cresson J. About non-differentiable functions. J. Math. Anal. Appl. 2001, 263(2):721-737.
-
(2001)
J. Math. Anal. Appl.
, vol.263
, Issue.2
, pp. 721-737
-
-
Adda, F.B.1
Cresson, J.2
-
317
-
-
84555221318
-
Local fractional integral transforms
-
Yang X.-J. Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4(1):1-225.
-
(2011)
Prog. Nonlinear Sci.
, vol.4
, Issue.1
, pp. 1-225
-
-
Yang, X.-J.1
-
318
-
-
27744450698
-
Time-space fabric underlying anomalous diffusion
-
Chen W. Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract. 2006, 28(4):923-929.
-
(2006)
Chaos Soliton. Fract.
, vol.28
, Issue.4
, pp. 923-929
-
-
Chen, W.1
-
319
-
-
76449111034
-
Anomalous diffusion modeling by fractal and fractional derivatives
-
Chen W., Sun H., Zhang X., Korovsak D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59(5):1754-1758.
-
(2010)
Comput. Math. Appl.
, vol.59
, Issue.5
, pp. 1754-1758
-
-
Chen, W.1
Sun, H.2
Zhang, X.3
Korovsak, D.4
-
320
-
-
79955145165
-
A new fractal derivation
-
He J.-H. A new fractal derivation. Therm. Sci. 2011, 15(Suppl. 1):145-147.
-
(2011)
Therm. Sci.
, vol.15
, pp. 145-147
-
-
He, J.-H.1
-
321
-
-
84855203771
-
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
-
He J.-H., Elagan S.K., Li Z.-B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376(4):257-259.
-
(2012)
Phys. Lett. A
, vol.376
, Issue.4
, pp. 257-259
-
-
He, J.-H.1
Elagan, S.K.2
Li, Z.-B.3
-
323
-
-
84878016367
-
Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
-
Yang X.-J., Srivastava H.M., He J.-H., Baleanu D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377(28):1696-1700.
-
(2013)
Phys. Lett. A
, vol.377
, Issue.28
, pp. 1696-1700
-
-
Yang, X.-J.1
Srivastava, H.M.2
He, J.-H.3
Baleanu, D.4
-
324
-
-
84939986878
-
Local fractional similarity solution for the diffusion equation defined on Cantor sets
-
Yang X.-J., Baleanu D., Srivastava H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015, 47:54-60.
-
(2015)
Appl. Math. Lett.
, vol.47
, pp. 54-60
-
-
Yang, X.-J.1
Baleanu, D.2
Srivastava, H.M.3
-
325
-
-
84903649851
-
A review of definitions for fractional derivatives and integral
-
Oliveira E.C.D., Machado J.A.T. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 6 pages. Article ID 238459.
-
(2014)
Math. Probl. Eng.
, pp. 6
-
-
Oliveira, E.C.D.1
Machado, J.A.T.2
-
326
-
-
84920928257
-
Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method
-
Zhang Y. Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method. Abstr. Appl. Anal. 2014, 5 pages. Article ID 912464.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Zhang, Y.1
-
327
-
-
78649351641
-
Investigation on fractional and fractal derivative relaxation-oscillation models
-
Chen W., Zhang X.-D., Korovsak D. Investigation on fractional and fractal derivative relaxation-oscillation models. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11(1):3-10.
-
(2010)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.11
, Issue.1
, pp. 3-10
-
-
Chen, W.1
Zhang, X.-D.2
Korovsak, D.3
-
328
-
-
84884896550
-
The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar
-
Yang A.-M., Zhang Y.-Z., Long Y. The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar. Therm. Sci. 2013, 17(3):707-713.
-
(2013)
Therm. Sci.
, vol.17
, Issue.3
, pp. 707-713
-
-
Yang, A.-M.1
Zhang, Y.-Z.2
Long, Y.3
-
330
-
-
52349114814
-
Fractional central differences and derivatives
-
Ortigueira M.D. Fractional central differences and derivatives. J. Vib. Control. 2008, 14(9-10):1255-1266.
-
(2008)
J. Vib. Control.
, vol.14
, Issue.9-10
, pp. 1255-1266
-
-
Ortigueira, M.D.1
-
331
-
-
79957894816
-
Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms
-
Ortigueira M.D., Trujillo J.J. Generalized Grünwald-Letnikov fractional derivative and its Laplace and Fourier transforms. J. Comput. Nonlinear Dyn. 2011, 6(3). Article ID 034501.
-
(2011)
J. Comput. Nonlinear Dyn.
, vol.6
, Issue.3
-
-
Ortigueira, M.D.1
Trujillo, J.J.2
-
332
-
-
63449116783
-
Fractional derivatives: probability interpretation and frequency response of rational approximations
-
Machado J.A.T. Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14(9):3492-3497.
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, Issue.9
, pp. 3492-3497
-
-
Machado, J.A.T.1
-
333
-
-
84878718723
-
Fractional coins and fractional derivatives
-
Machado J.A.T. Fractional coins and fractional derivatives. Abstr. Appl. Anal. 2013, 5 pages. Article ID 205097.
-
(2013)
Abstr. Appl. Anal.
, pp. 5
-
-
Machado, J.A.T.1
-
335
-
-
84877246956
-
A note on fractional order derivatives and table of fractional derivatives of some special functions
-
Atangana A., Secer A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 2013, 8 pages. Article ID 279681.
-
(2013)
Abstr. Appl. Anal.
, pp. 8
-
-
Atangana, A.1
Secer, A.2
-
336
-
-
18144429885
-
On the representation of fractional Brownian motion as an integral with respect to dt?
-
Jumarie G. On the representation of fractional Brownian motion as an integral with respect to dt?. Appl. Math. Lett. 2005, 18(7):739-748.
-
(2005)
Appl. Math. Lett.
, vol.18
, Issue.7
, pp. 739-748
-
-
Jumarie, G.1
-
337
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
-
Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51(9):1367-1376.
-
(2006)
Comput. Math. Appl.
, vol.51
, Issue.9
, pp. 1367-1376
-
-
Jumarie, G.1
-
338
-
-
38349194080
-
Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions
-
Jumarie G. Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 2008, 32(5):836-859.
-
(2008)
Appl. Math. Model.
, vol.32
, Issue.5
, pp. 836-859
-
-
Jumarie, G.1
-
339
-
-
57049186538
-
Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions
-
Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions. Appl. Math. Lett. 2009, 22(3):378-385.
-
(2009)
Appl. Math. Lett.
, vol.22
, Issue.3
, pp. 378-385
-
-
Jumarie, G.1
-
340
-
-
79953697124
-
Introduction to fractional integrability and differentiability
-
Li C.-P., Zhao Z.-G. Introduction to fractional integrability and differentiability. Eur. Phys. J. 2011, 193(1):5-26.
-
(2011)
Eur. Phys. J.
, vol.193
, Issue.1
, pp. 5-26
-
-
Li, C.-P.1
Zhao, Z.-G.2
-
341
-
-
84893186929
-
A new definition of fractional derivative
-
Khalil R., Al-Horani M., Yousef A., Sababheh M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264:65-70.
-
(2014)
J. Comput. Appl. Math.
, vol.264
, pp. 65-70
-
-
Khalil, R.1
Al-Horani, M.2
Yousef, A.3
Sababheh, M.4
-
342
-
-
84911406110
-
On conformable fractional calculus
-
Abdeljawad T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279:57-66.
-
(2015)
J. Comput. Appl. Math.
, vol.279
, pp. 57-66
-
-
Abdeljawad, T.1
-
344
-
-
80052268122
-
New approach to a generalized fractional integral
-
Katugampola U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218(3):860-865.
-
(2011)
Appl. Math. Comput.
, vol.218
, Issue.3
, pp. 860-865
-
-
Katugampola, U.N.1
-
345
-
-
85051078999
-
A new definition of fractional derivative without singular kernel
-
Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):73-85.
-
(2015)
Prog. Fract. Differ. Appl.
, vol.1
, Issue.2
, pp. 73-85
-
-
Caputo, M.1
Fabrizio, M.2
-
346
-
-
85017665729
-
Properties of a new fractional derivative without singular kernel
-
Losada J., Nieto J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1(2):87-92.
-
(2015)
Prog. Fract. Differ. Appl.
, vol.1
, Issue.2
, pp. 87-92
-
-
Losada, J.1
Nieto, J.J.2
-
352
-
-
85015950998
-
A brief historical introduction to fractional calculus
-
Debnath L. A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 2004, 35(4):487-501.
-
(2004)
Int. J. Math. Educ. Sci. Technol.
, vol.35
, Issue.4
, pp. 487-501
-
-
Debnath, L.1
-
356
-
-
84891741140
-
On development of fractional calculus during the last fifty years
-
Machado J.A.T., Galhano A.M., Trujillo J.J. On development of fractional calculus during the last fifty years. Scientometrics 2014, 98(1):577-582.
-
(2014)
Scientometrics
, vol.98
, Issue.1
, pp. 577-582
-
-
Machado, J.A.T.1
Galhano, A.M.2
Trujillo, J.J.3
-
357
-
-
79952143317
-
-
Springer Science and Business Media, New York
-
Monje C.A., Chen Y., Vinagre B.M., Xue D., Feliu-Batlle V. Fractional-Order Systems and Controls: Fundamentals and Applications 2010, Springer Science and Business Media, New York.
-
(2010)
Fractional-Order Systems and Controls: Fundamentals and Applications
-
-
Monje, C.A.1
Chen, Y.2
Vinagre, B.M.3
Xue, D.4
Feliu-Batlle, V.5
-
358
-
-
84893190028
-
-
World Scientific, Singapore
-
Baleanu D., Diethelm K., Scalas E., Trujillo J.J. Models and Numerical Methods 2012, 3:10-16. World Scientific, Singapore.
-
(2012)
Models and Numerical Methods
, vol.3
, pp. 10-16
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
371
-
-
84883192779
-
Generalizations of Hölder's and some related integral inequalities on fractal space
-
Chen G.-S. Generalizations of Hölder's and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 9 pages. Article ID 198405.
-
(2013)
J. Funct. Spaces Appl.
, pp. 9
-
-
Chen, G.-S.1
-
372
-
-
84934914868
-
A local fractional integral inequality on fractal space analogous to Anderson's inequality
-
Wei W., Srivastava H.M., Zhang Y., Wang L., Shen P., Zhang J. A local fractional integral inequality on fractal space analogous to Anderson's inequality. Abstr. Appl. Anal. 2014, 7 pages. Article ID 797561.
-
(2014)
Abstr. Appl. Anal.
, pp. 7
-
-
Wei, W.1
Srivastava, H.M.2
Zhang, Y.3
Wang, L.4
Shen, P.5
Zhang, J.6
-
373
-
-
84904654377
-
Some further generalizations of Hölder's inequality and related results on fractal space
-
Chen G.-S., Srivastava H.M., Wang P., Wie W. Some further generalizations of Hölder's inequality and related results on fractal space. Abstr. Appl. Anal. 2014, 7 pages. Article ID 832802.
-
(2014)
Abstr. Appl. Anal.
, pp. 7
-
-
Chen, G.-S.1
Srivastava, H.M.2
Wang, P.3
Wie, W.4
-
374
-
-
84920885354
-
On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics
-
Zhang Y., Baleanu D., Yang X.-J. On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics. Entropy 2014, 16(12):6254-6262.
-
(2014)
Entropy
, vol.16
, Issue.12
, pp. 6254-6262
-
-
Zhang, Y.1
Baleanu, D.2
Yang, X.-J.3
-
375
-
-
84900011952
-
Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain
-
Li Y.-Y., Zhao L.Y., Xie G.-N., Baleanu D., Yang X.-J., Zhao K. Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain. Adv. Math. Phys. 2014, 5 pages. Article ID 590574.
-
(2014)
Adv. Math. Phys.
, pp. 5
-
-
Li, Y.-Y.1
Zhao, L.Y.2
Xie, G.-N.3
Baleanu, D.4
Yang, X.-J.5
Zhao, K.6
-
376
-
-
84899418585
-
Local fractional variational iteration method for Fokker-Planck equation on a Cantor set
-
Yang X.-J., Baleanu D. Local fractional variational iteration method for Fokker-Planck equation on a Cantor set. Acta Univ. 2013, 23(2):3-8.
-
(2013)
Acta Univ.
, vol.23
, Issue.2
, pp. 3-8
-
-
Yang, X.-J.1
Baleanu, D.2
-
377
-
-
85044053149
-
Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis
-
Yang X.-J., Baleanu D., Machado J.A.T. Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. Bound. Value Probl. 2013, 1:1-16.
-
(2013)
Bound. Value Probl.
, vol.1
, pp. 1-16
-
-
Yang, X.-J.1
Baleanu, D.2
Machado, J.A.T.3
-
378
-
-
84879310679
-
Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method
-
Su W.-H., Baleanu D., Yang X.-J., Jafari H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory Appl. 2013, 1:1-11.
-
(2013)
Fixed Point Theory Appl.
, vol.1
, pp. 1-11
-
-
Su, W.-H.1
Baleanu, D.2
Yang, X.-J.3
Jafari, H.4
-
381
-
-
84890036462
-
Maxwell's equations on Cantor sets: a local fractional approach
-
Zhao Y., Baleanu D., Cattani C., Cheng D.-F., Yang X.-J. Maxwell's equations on Cantor sets: a local fractional approach. Adv. High Energy Phys. 2013, 6 pages. Article ID 686371.
-
(2013)
Adv. High Energy Phys.
, pp. 6
-
-
Zhao, Y.1
Baleanu, D.2
Cattani, C.3
Cheng, D.-F.4
Yang, X.-J.5
-
382
-
-
84899434153
-
Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws
-
Wang L.-F., Yang X.-J., Baleanu D., Cattani C., Zhao Y. Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws. Abstr. Appl. Anal. 2014, 5 pages. Article ID 635760.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Wang, L.-F.1
Yang, X.-J.2
Baleanu, D.3
Cattani, C.4
Zhao, Y.5
-
383
-
-
84897554943
-
Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets
-
Yang A.-M., Zhang Y.-Z., Cattani C., Xie G.-N., Rashidi M.M., Zhou Y.-J., ang X.-J. Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets. Abstr. Appl. Anal. 2014, 6 pages. Article ID 372741.
-
(2014)
Abstr. Appl. Anal.
, pp. 6
-
-
Yang, A.-M.1
Zhang, Y.-Z.2
Cattani, C.3
Xie, G.-N.4
Rashidi, M.M.5
Zhou, Y.-J.6
ang, X.-J.7
-
384
-
-
84890267857
-
Transport equations in fractal porous media within fractional complex transform method
-
Yang X.-J., Baleanu D., He J.-H. Transport equations in fractal porous media within fractional complex transform method. Proc. Rom. Acad. Series A 2013, 14(4):287-292.
-
(2013)
Proc. Rom. Acad. Series A
, vol.14
, Issue.4
, pp. 287-292
-
-
Yang, X.-J.1
Baleanu, D.2
He, J.-H.3
-
385
-
-
84881521586
-
Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates
-
Hao Y.-J., Srivastava H.M., Jafari H., Yang X.-J. Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates. Adv. Math. Phys. 2013, 5 pages. Article ID 754248.
-
(2013)
Adv. Math. Phys.
, pp. 5
-
-
Hao, Y.-J.1
Srivastava, H.M.2
Jafari, H.3
Yang, X.-J.4
-
386
-
-
84903541046
-
Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation
-
Yang X.-J., Hristov J., Srivastava H.M., Ahmad B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr. Appl. Anal. 2014, 10 pages. Article ID 278672.
-
(2014)
Abstr. Appl. Anal.
, pp. 10
-
-
Yang, X.-J.1
Hristov, J.2
Srivastava, H.M.3
Ahmad, B.4
-
387
-
-
84961172616
-
Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
-
Yang X.-J., Machado J.A.T., Hristov J. Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dyn. 2015, 10.1007/s11071-015-2085-2.
-
(2015)
Nonlinear Dyn.
-
-
Yang, X.-J.1
Machado, J.A.T.2
Hristov, J.3
-
388
-
-
84922810016
-
Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow
-
Niu X.-F., Zhang C.-L., Li Z.-B., Zhao Y. Local fractional derivative boundary value problems for Tricomi equation arising in fractal transonic flow. Abstr. Appl. Anal. 2014, 5 pages. Article ID 872318.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Niu, X.-F.1
Zhang, C.-L.2
Li, Z.-B.3
Zhao, Y.4
-
390
-
-
84938053187
-
Observing diffusion problems defined on Cantor sets in different coordinate systems
-
Yang Y.-J., Baleanu D., Baleanu M.C. Observing diffusion problems defined on Cantor sets in different coordinate systems. Thermal Sci. 2015, 10.2298/TSCI141126065Y.
-
(2015)
Thermal Sci.
-
-
Yang, Y.-J.1
Baleanu, D.2
Baleanu, M.C.3
-
393
-
-
0003967444
-
-
Cambridge University Press, Cambridge, London, New York
-
Körner T.W. Fourier Analysis 1988, Cambridge University Press, Cambridge, London, New York.
-
(1988)
Fourier Analysis
-
-
Körner, T.W.1
-
398
-
-
84888873847
-
Mappings for special functions on Cantor sets and special integral transforms via local fractional operators
-
Zhao Y., Baleanu D., Baleanu M.C., Cheng D.-F., Yang X.-J. Mappings for special functions on Cantor sets and special integral transforms via local fractional operators. Abstr. Appl. Anal. 2013, 6 pages. Article ID 316978.
-
(2013)
Abstr. Appl. Anal.
, pp. 6
-
-
Zhao, Y.1
Baleanu, D.2
Baleanu, M.C.3
Cheng, D.-F.4
Yang, X.-J.5
-
399
-
-
84903554974
-
Signal processing for nondifferentiable data defined on Cantor sets: a local fractional Fourier series approach
-
Chen Z.-Y., Cattani C., Zhong W.-P. Signal processing for nondifferentiable data defined on Cantor sets: a local fractional Fourier series approach. Adv. Math. Phys. 2014, 7 pages. Article ID 561434.
-
(2014)
Adv. Math. Phys.
, pp. 7
-
-
Chen, Z.-Y.1
Cattani, C.2
Zhong, W.-P.3
-
400
-
-
84880177097
-
1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method
-
Yang X.-J., Zhang Y., Yang A.-M. 1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method. Therm. Sci. 2013, 17(3):953-956.
-
(2013)
Therm. Sci.
, vol.17
, Issue.3
, pp. 953-956
-
-
Yang, X.-J.1
Zhang, Y.2
Yang, A.-M.3
-
401
-
-
84955145780
-
On analytical methods for differential equations with local fractional derivative operators, Chapter 4
-
Nova Science Publishers, New York
-
Yang X.-J., Baleanu D., Machado J.A.T., Daou R.A.Z., Moreau X. On analytical methods for differential equations with local fractional derivative operators, Chapter 4. Fractional Calculus: Theory 2014, 65-88. Nova Science Publishers, New York.
-
(2014)
Fractional Calculus: Theory
, pp. 65-88
-
-
Yang, X.-J.1
Baleanu, D.2
Machado, J.A.T.3
Daou, R.A.Z.4
Moreau, X.5
-
402
-
-
84880152493
-
Analysis of fractal wave equations by local fractional Fourier series method
-
Yang Y.-J., Baleanu D., Yang X.-J. Analysis of fractal wave equations by local fractional Fourier series method. Adv. Math. Phys. 2013, 6 pages. Article ID 632309.
-
(2013)
Adv. Math. Phys.
, pp. 6
-
-
Yang, Y.-J.1
Baleanu, D.2
Yang, X.-J.3
-
403
-
-
84872148874
-
Local fractional Fourier series with application to wave equation in fractal vibrating string
-
Hu M.-S., Agarwal R.P., Yang X.-J. Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstr. Appl. Anal. 2012, 15 pages. Article ID 567401.
-
(2012)
Abstr. Appl. Anal.
, pp. 15
-
-
Hu, M.-S.1
Agarwal, R.P.2
Yang, X.-J.3
-
404
-
-
84950149175
-
Local fractional Fourier series method for solving nonlinear equations with local fractional operators
-
Yang Y.-J., Wang S.-Q. Local fractional Fourier series method for solving nonlinear equations with local fractional operators. Math. Probl. Eng. 2015, 2015:1-9. Article ID 481905.
-
(2015)
Math. Probl. Eng.
, vol.2015
, pp. 1-9
-
-
Yang, Y.-J.1
Wang, S.-Q.2
-
405
-
-
84893184829
-
Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative
-
Wang S.-Q., Yang Y.-J., Jassim H.K. Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative. Abstr. Appl. Anal. 2014, 7 pages. Article ID 176395.
-
(2014)
Abstr. Appl. Anal.
, pp. 7
-
-
Wang, S.-Q.1
Yang, Y.-J.2
Jassim, H.K.3
-
406
-
-
84857467321
-
Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral
-
Zhong W.-P., Gao F., Shen X.-M. Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral. Adv. Mater. Res. 2012, 461:306-310.
-
(2012)
Adv. Mater. Res.
, vol.461
, pp. 306-310
-
-
Zhong, W.-P.1
Gao, F.2
Shen, X.-M.3
-
407
-
-
84869494625
-
Asymptotic methods for solitary solutions and compactions
-
He J.-H. Asymptotic methods for solitary solutions and compactions. Abstr. Appl. Anal. 2012, 130 pages. Article ID 916793.
-
(2012)
Abstr. Appl. Anal.
, pp. 130
-
-
He, J.-H.1
-
408
-
-
84863346618
-
A novel approach to processing fractal signals using the Yang-Fourier transforms
-
Yang X.-J., Liao M.-K., Chen J.-W. A novel approach to processing fractal signals using the Yang-Fourier transforms. Proc. Eng. 2012, 29:2950-2954.
-
(2012)
Proc. Eng.
, vol.29
, pp. 2950-2954
-
-
Yang, X.-J.1
Liao, M.-K.2
Chen, J.-W.3
-
409
-
-
84897488365
-
Local fractional Z-transforms with applications to signals on Cantor sets
-
Liu K., Hu R.-J., Cattani C., Xie G.-N., Yang X.-J., Zhao Y. Local fractional Z-transforms with applications to signals on Cantor sets. Abstr. Appl. Anal. 2014, 6 pages. Article ID 638648.
-
(2014)
Abstr. Appl. Anal.
, pp. 6
-
-
Liu, K.1
Hu, R.-J.2
Cattani, C.3
Xie, G.-N.4
Yang, X.-J.5
Zhao, Y.6
-
411
-
-
84902506005
-
Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform
-
Zhang Y.-Z., Yang A.-M., Long Y. Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform. Therm. Sci. 2014, 18(2):677-681.
-
(2014)
Therm. Sci.
, vol.18
, Issue.2
, pp. 677-681
-
-
Zhang, Y.-Z.1
Yang, A.-M.2
Long, Y.3
-
412
-
-
84884850577
-
Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem
-
Liu C.-F., Kong S.-S., Yuan S.-J. Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem. Therm. Sci. 2013, 17(3):715-721.
-
(2013)
Therm. Sci.
, vol.17
, Issue.3
, pp. 715-721
-
-
Liu, C.-F.1
Kong, S.-S.2
Yuan, S.-J.3
-
413
-
-
84893195631
-
The Yang-Laplace transform for solving the IVPs with local fractional derivative
-
Zhao C.-G., Yang A.-M., Jafari H., Haghbin A. The Yang-Laplace transform for solving the IVPs with local fractional derivative. Abstr. Appl. Anal. 2014, 5 pages. Article ID 386459.
-
(2014)
Abstr. Appl. Anal.
, pp. 5
-
-
Zhao, C.-G.1
Yang, A.-M.2
Jafari, H.3
Haghbin, A.4
-
414
-
-
84904598246
-
Local fractional Laplace variational iteration method for fractal vehicular traffic flow
-
Li Y., Wang L.-F., Zeng S.-D., Zhao Y. Local fractional Laplace variational iteration method for fractal vehicular traffic flow. Adv. Math. Phys. 2014, 7 pages. Article ID 649318.
-
(2014)
Adv. Math. Phys.
, pp. 7
-
-
Li, Y.1
Wang, L.-F.2
Zeng, S.-D.3
Zhao, Y.4
-
415
-
-
84904652069
-
Local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivative
-
Yang A.-M., Li J., Srivastava H.M., Xie G.-N., Yang X.-J. Local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivative. Discrete Dyn Nat Soc 2014, 8 pages. Article ID 365981.
-
(2014)
Discrete Dyn Nat Soc
, pp. 8
-
-
Yang, A.-M.1
Li, J.2
Srivastava, H.M.3
Xie, G.-N.4
Yang, X.-J.5
-
416
-
-
84904673270
-
Local fractional Z-transforms with applications to signals on Cantor sets
-
Yan S.-P., Jafari H., Jassim H.K. Local fractional Z-transforms with applications to signals on Cantor sets. Adv. Math. Phys. 2014, 7 pages. Article ID 161580.
-
(2014)
Adv. Math. Phys.
, pp. 7
-
-
Yan, S.-P.1
Jafari, H.2
Jassim, H.K.3
-
417
-
-
0000092673
-
Variational iteration method: a kind of non-linear analytical technique: some examples
-
He J.-H. Variational iteration method: a kind of non-linear analytical technique: some examples. Int. J. Nonlinear Mech. 1999, 34(4):699-708.
-
(1999)
Int. J. Nonlinear Mech.
, vol.34
, Issue.4
, pp. 699-708
-
-
He, J.-H.1
-
418
-
-
34250668369
-
Variational iteration method: some recent results and new interpretations
-
He J.-H. Variational iteration method: some recent results and new interpretations. J. Comput. Appl. Math. 2007, 207(1):3-17.
-
(2007)
J. Comput. Appl. Math.
, vol.207
, Issue.1
, pp. 3-17
-
-
He, J.-H.1
-
419
-
-
84879324154
-
Fractal heat conduction problem solved by local fractional variation iteration method
-
Yang X.-J., Baleanu D. Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 2013, 17(2):625-628.
-
(2013)
Therm. Sci.
, vol.17
, Issue.2
, pp. 625-628
-
-
Yang, X.-J.1
Baleanu, D.2
-
420
-
-
84884837318
-
Local fractional variational iteration method for fractal heat transfer in silk cocoon hierarchy
-
He J.-H. Local fractional variational iteration method for fractal heat transfer in silk cocoon hierarchy. Nonlinear Sci. Lett. A 2013, 4(1):15-20.
-
(2013)
Nonlinear Sci. Lett. A
, vol.4
, Issue.1
, pp. 15-20
-
-
He, J.-H.1
-
421
-
-
84939890949
-
A tutorial review on fractal spacetime and fractional calculus
-
He J.-H. A tutorial review on fractal spacetime and fractional calculus. Int. J. Theor. Phys. 2014, 53(11):3698-3718.
-
(2014)
Int. J. Theor. Phys.
, vol.53
, Issue.11
, pp. 3698-3718
-
-
He, J.-H.1
-
422
-
-
84896885697
-
Local fractional variational iteration method for diffusion and wave equations on Cantor sets
-
Yang X.-J., Baleanu D., Khan Y., Mohyud-Din S.T. Local fractional variational iteration method for diffusion and wave equations on Cantor sets. Rom. J. Phys. 2014, 59(1-2):36-48.
-
(2014)
Rom. J. Phys.
, vol.59
, Issue.1-2
, pp. 36-48
-
-
Yang, X.-J.1
Baleanu, D.2
Khan, Y.3
Mohyud-Din, S.T.4
-
423
-
-
84928410965
-
Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on Cantor sets
-
Baleanu D., Srivastava H.M., Yang X.-J. Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on Cantor sets. Prog. Fract. Differ. Appl. 2015, 1(1):1-10.
-
(2015)
Prog. Fract. Differ. Appl.
, vol.1
, Issue.1
, pp. 1-10
-
-
Baleanu, D.1
Srivastava, H.M.2
Yang, X.-J.3
-
424
-
-
84899999398
-
Local fractional variational iteration method for local fractional Poisson equations in two independent variables
-
Chen L., Zhao Y., Jafari H., Machado J.A.T., Yang X.-J. Local fractional variational iteration method for local fractional Poisson equations in two independent variables. Abstr. Appl. Anal. 2014, 7 pages. Article ID 484323.
-
(2014)
Abstr. Appl. Anal.
, pp. 7
-
-
Chen, L.1
Zhao, Y.2
Jafari, H.3
Machado, J.A.T.4
Yang, X.-J.5
-
425
-
-
84879310679
-
Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method
-
Su W.-H., Baleanu D., Yang X.-J., Jafari H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory Appl. 2013, 1:1-11.
-
(2013)
Fixed Point Theory Appl.
, vol.1
, pp. 1-11
-
-
Su, W.-H.1
Baleanu, D.2
Yang, X.-J.3
Jafari, H.4
-
426
-
-
84893201036
-
Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators
-
Baleanu D., Machado J.A.T., Cattani C., Baleanu M.C., Yang X.-J. Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators. Abstr. Appl. Anal. 2014, 6 pages. Article ID 535048.
-
(2014)
Abstr. Appl. Anal.
, pp. 6
-
-
Baleanu, D.1
Machado, J.A.T.2
Cattani, C.3
Baleanu, M.C.4
Yang, X.-J.5
-
427
-
-
0021504145
-
Convergent series solution of nonlinear equations
-
Adomian G. Convergent series solution of nonlinear equations. J. Comput. Appl. Math. 1984, 11(2):225-230.
-
(1984)
J. Comput. Appl. Math.
, vol.11
, Issue.2
, pp. 225-230
-
-
Adomian, G.1
-
429
-
-
84878993985
-
Approximate solutions for diffusion equations on Cantor space-time
-
Yang X.-J., Baleanu D., Zhong W.-P. Approximate solutions for diffusion equations on Cantor space-time. Proc. Rom. Acad. Series A 2013, 14(2):127-133.
-
(2013)
Proc. Rom. Acad. Series A
, vol.14
, Issue.2
, pp. 127-133
-
-
Yang, X.-J.1
Baleanu, D.2
Zhong, W.-P.3
-
430
-
-
84893776985
-
Analytical solutions of the one-dimensional heat equations arising in fractal transient conduction with local fractional derivative
-
Yang A.-M., Cattani C., Jafari H., Yang X.-J. Analytical solutions of the one-dimensional heat equations arising in fractal transient conduction with local fractional derivative. Abstr. Appl. Anal. 2013, 5 pages. Article ID 462535.
-
(2013)
Abstr. Appl. Anal.
, pp. 5
-
-
Yang, A.-M.1
Cattani, C.2
Jafari, H.3
Yang, X.-J.4
|