-
2
-
-
33846361348
-
Interaction of "solitons" in a collisionless plasma and the recurrence of initial states
-
2-s2.0-33846361348 10.1103/PhysRevLett.15.240
-
Zabusky N. J., Kruskal M. D., Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Physical Review Letters 1965 15 6 240 243 2-s2.0-33846361348 10.1103/PhysRevLett.15.240
-
(1965)
Physical Review Letters
, vol.15
, Issue.6
, pp. 240-243
-
-
Zabusky, N.J.1
Kruskal, M.D.2
-
3
-
-
0001524186
-
On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary wave
-
Korteweg D. J., de Vires G., On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary wave. Philosophical Magazine 1895 539 422 443
-
(1895)
Philosophical Magazine
, vol.539
, pp. 422-443
-
-
Korteweg, D.J.1
De Vires, G.2
-
4
-
-
36049057587
-
Method for solving the Korteweg-deVries equation
-
2-s2.0-36049057587 10.1103/PhysRevLett.19.1095
-
Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., Method for solving the Korteweg-deVries equation. Physical Review Letters 1967 19 19 1095 1097 2-s2.0-36049057587 10.1103/PhysRevLett.19.1095
-
(1967)
Physical Review Letters
, vol.19
, Issue.19
, pp. 1095-1097
-
-
Gardner, C.S.1
Greene, J.M.2
Kruskal, M.D.3
Miura, R.M.4
-
5
-
-
84871831215
-
Soliton perturbation
-
New York, NY, USA Springer
-
He J.-H., Meyers R., Soliton perturbation. Encyclopedia of Complexity and Systems Science 2009 9 New York, NY, USA Springer 8453 8457
-
(2009)
Encyclopedia of Complexity and Systems Science
, vol.9
, pp. 8453-8457
-
-
He, J.-H.1
Meyers, R.2
-
6
-
-
84871848014
-
Solitons and compactons
-
New York, NY, USA Springer
-
He J.-H., Zhu S. D., Meyers R., Solitons and compactons. Encyclopedia of Complexity and Systems Science 2009 9 New York, NY, USA Springer 8457 8464
-
(2009)
Encyclopedia of Complexity and Systems Science
, vol.9
, pp. 8457-8464
-
-
He, J.-H.1
Zhu, S.D.2
Meyers, R.3
-
7
-
-
33645972898
-
Some asymptotic methods for strongly nonlinear equations
-
DOI 10.1142/S0217979206033796, PII S0217979206033796
-
He J.-H., Some asymptotic methods for strongly nonlinear equations. International Journal of Modern Physics B 2006 20 10 1141 1199 10.1142/S0217979206033796 2220565 ZBL1102.34039 (Pubitemid 43599585)
-
(2006)
International Journal of Modern Physics B
, vol.20
, Issue.10
, pp. 1141-1199
-
-
He, J.-H.1
-
8
-
-
50949112266
-
An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering
-
2-s2.0-50949112266 10.1142/S0217979208048668
-
He J. H., An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering. International Journal of Modern Physics B 2008 22 21 3487 3578 2-s2.0-50949112266 10.1142/ S0217979208048668
-
(2008)
International Journal of Modern Physics B
, vol.22
, Issue.21
, pp. 3487-3578
-
-
He, J.H.1
-
9
-
-
33746584753
-
Addendum: New interpretation of homotopy perturbation method
-
DOI 10.1142/S0217979206034819, PII S0217979206034819
-
He J.-H., New interpretation of homotopy perturbation method. Addendum: some asymptotic methods for strongly nonlinear equations. International Journal of Modern Physics B 2006 20 18 2561 2568 10.1142/S0217979206034819 2251264 (Pubitemid 44154678)
-
(2006)
International Journal of Modern Physics B
, vol.20
, Issue.18
, pp. 2561-2568
-
-
He, J.-H.1
-
10
-
-
12044253199
-
Compactons: Solitons with finite wavelength
-
2-s2.0-12044253199 10.1103/PhysRevLett.70.564
-
Rosenau P., Hyman J. M., Compactons: solitons with finite wavelength. Physical Review Letters 1993 70 5 564 567 2-s2.0-12044253199 10.1103/PhysRevLett.70.564
-
(1993)
Physical Review Letters
, vol.70
, Issue.5
, pp. 564-567
-
-
Rosenau, P.1
Hyman, J.M.2
-
11
-
-
79957967241
-
3 films
-
2-s2.0-79957967241 10.1002/adfm.201001979
-
3 films. Advanced Functional Materials 2011 21 11 2072 2079 2-s2.0-79957967241 10.1002/adfm.201001979
-
(2011)
Advanced Functional Materials
, vol.21
, Issue.11
, pp. 2072-2079
-
-
Walia, S.1
Weber, R.2
Latham, K.3
Petersen, P.4
Abrahamson, J.T.5
Strano, M.S.6
Kalantar-Zadeh, K.7
-
12
-
-
0029159554
-
A nonsteady-state analytical model to predict gaseous emissions of volatile organic compounds from landfills
-
2-s2.0-0029159554 10.1016/0304-3894(94)00088-X
-
Lin J. S., Hildemann L. M., A nonsteady-state analytical model to predict gaseous emissions of volatile organic compounds from landfills. Journal of Hazardous Materials 1995 40 3 271 295 2-s2.0-0029159554 10.1016/0304-3894(94) 00088-X
-
(1995)
Journal of Hazardous Materials
, vol.40
, Issue.3
, pp. 271-295
-
-
Lin, J.S.1
Hildemann, L.M.2
-
13
-
-
84655167881
-
A nonlinear mathematical model of the corneal shape
-
10.1016/j.nonrwa.2011.11.014
-
Okrasiński W., Płociniczak Ł., A nonlinear mathematical model of the corneal shape. Nonlinear Analysis: Real World Applications 2012 13 3 1498 1505 10.1016/j.nonrwa.2011.11.014
-
(2012)
Nonlinear Analysis: Real World Applications
, vol.13
, Issue.3
, pp. 1498-1505
-
-
Okrasiński, W.1
Płociniczak, Ł.2
-
14
-
-
84861956040
-
A remark on a nonlinear mathematical model of the corneal shape
-
10.1016/j.nonrwa.2012.04.014
-
He J.-H., A remark on a nonlinear mathematical model of the corneal shape. Nonlinear Analysis: Real World Applications 2012 13 6 2863 2865 10.1016/j.nonrwa.2012.04.014
-
(2012)
Nonlinear Analysis: Real World Applications
, vol.13
, Issue.6
, pp. 2863-2865
-
-
He, J.-H.1
-
15
-
-
28044436277
-
Exploring the connection between quasistationary and squared eigenfunction expansion techniques in soliton perturbation theory
-
DOI 10.1016/j.na.2005.02.034, PII S0362546X05001902
-
Herman R. L., Exploring the connection between quasistationary and squared eigenfunction expansion techniques in soliton perturbation theory. Nonlinear Analysis: Theory, Methods & Applications 2005 63 5-7 e2473 e2482 2-s2.0-28044436277 10.1016/j.na.2005.02.034 (Pubitemid 41691393)
-
(2005)
Nonlinear Analysis, Theory, Methods and Applications
, vol.63
, Issue.5-7
-
-
Herman, R.L.1
-
17
-
-
0041621600
-
Variational principles for some nonlinear partial differential equations with variable coefficients
-
10.1016/S0960-0779(03)00265-0 2009670 ZBL1135.35303
-
He J.-H., Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos, Solitons & Fractals 2004 19 4 847 851 10.1016/S0960-0779(03)00265-0 2009670 ZBL1135.35303
-
(2004)
Chaos, Solitons & Fractals
, vol.19
, Issue.4
, pp. 847-851
-
-
He, J.-H.1
-
19
-
-
0000090588
-
On kinematic waves. II. A theory of traffic flow on long crowded roads
-
0072606 10.1098/rspa.1955.0089 ZBL0064.20906
-
Lighthill M. J., Whitham G. B., On kinematic waves. II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society London Series A 1955 229 317 345 0072606 10.1098/rspa.1955.0089 ZBL0064.20906
-
(1955)
Proceedings of the Royal Society London Series A
, vol.229
, pp. 317-345
-
-
Lighthill, M.J.1
Whitham, G.B.2
-
20
-
-
0004181419
-
-
New York, NY, USA John Wiley & Sons 0483954
-
Whitham G. B., Linear and Nonlinear Waves 1974 New York, NY, USA John Wiley & Sons xvi+636 0483954
-
(1974)
Linear and Nonlinear Waves
-
-
Whitham, G.B.1
-
21
-
-
8644257142
-
A fluid dynamics model for the low speed traffic systems
-
Zheng W., A fluid dynamics model for the low speed traffic systems Acta Mechanica Sinica 1994 26 2 149 157
-
(1994)
Acta Mechanica Sinica
, vol.26
, Issue.2
, pp. 149-157
-
-
Zheng, W.1
-
22
-
-
81955165470
-
Variational approach to foam drainage equation
-
He J.-H., Variational approach to foam drainage equation. Meccanica 2011 46 6 1265 1266
-
(2011)
Meccanica
, vol.46
, Issue.6
, pp. 1265-1266
-
-
He, J.-H.1
-
23
-
-
82155195947
-
Variational approach to impulsive differential equations using the semi-inverse method
-
He J.-H., Variational approach to impulsive differential equations using the semi-inverse method. Zeitschrift für Naturforschung A 2011 66 632 634
-
(2011)
Zeitschrift für Naturforschung A
, vol.66
, pp. 632-634
-
-
He, J.-H.1
-
24
-
-
34250213225
-
Variational approach for nonlinear oscillators
-
DOI 10.1016/j.chaos.2006.10.026, PII S0960077906010009
-
He J.-H., Variational approach for nonlinear oscillators. Chaos, Solitons & Fractals 2007 34 5 1430 1439 2335394 10.1016/j.chaos.2006.10.026 ZBL1152.34327 (Pubitemid 46907588)
-
(2007)
Chaos, Solitons and Fractals
, vol.34
, Issue.5
, pp. 1430-1439
-
-
He, J.-H.1
-
25
-
-
2442537034
-
Variational approach to chemical reaction
-
DOI 10.1016/j.compchemeng.2004.01.006, PII S0098135404000225
-
Liu H. M., He J.-H., Variational approach to chemical reaction. Computers and Chemical Engineering 2004 28 9 1549 2-s2.0-2442537034 10.1016/j. compchemeng.2004.01.006 (Pubitemid 38638279)
-
(2004)
Computers and Chemical Engineering
, vol.28
, Issue.9
, pp. 1549
-
-
Liu, H.-M.1
He, J.-H.2
-
26
-
-
34748888870
-
Application of He's semi-inverse method to the nonlinear Schrödinger equation
-
DOI 10.1016/j.camwa.2006.12.047, PII S0898122107002702, Variational Iteration Method for Nonlinear Problems
-
Öziş T., Yildirim A., Application of He's semi-inverse method to the nonlinear Schrödinger equation. Computers & Mathematics with Applications 2007 54 7-8 1039 1042 10.1016/j.camwa.2006.12.047 2395642 ZBL1157.65465 (Pubitemid 47488818)
-
(2007)
Computers and Mathematics with Applications
, vol.54
, Issue.7-8
, pp. 1039-1042
-
-
Ozis, T.1
Yildirim, A.2
-
27
-
-
34748816175
-
Variational approach to solitary wave solution of the generalized Zakharov equation
-
DOI 10.1016/j.camwa.2006.12.048, PII S0898122107002726, Variational Iteration Method for Nonlinear Problems
-
Zhang J., Variational approach to solitary wave solution of the generalized Zakharov equation. Computers & Mathematics with Applications 2007 54 7-8 1043 1046 2395643 10.1016/j.camwa.2006.12.048 ZBL1141.65391 (Pubitemid 47488819)
-
(2007)
Computers and Mathematics with Applications
, vol.54
, Issue.7-8
, pp. 1043-1046
-
-
Zhang, J.1
-
28
-
-
0003753237
-
-
2nd Berlin, Germany Springer Advanced Texts in Physics 10.1007/978-3-642-56430-7 1883279
-
Dittrich W., Reuter M., Classical and Quantum Dynamics 1994 2nd Berlin, Germany Springer x+385 Advanced Texts in Physics 10.1007/978-3-642-56430-7 1883279
-
(1994)
Classical and Quantum Dynamics
-
-
Dittrich, W.1
Reuter, M.2
-
29
-
-
0032115706
-
Some variational formulations for continuum nonlinear dynamics
-
PII S0022509698000167
-
Carini A., Genna F., Some variational formulations for continuum nonlinear dynamics. Journal of the Mechanics and Physics of Solids 1998 46 7 1253 1277 10.1016/S0022-5096(98)00016-7 1630697 ZBL1030.74006 (Pubitemid 128378430)
-
(1998)
Journal of the Mechanics and Physics of Solids
, vol.46
, Issue.7
, pp. 1253-1277
-
-
Carini, A.1
Genna, F.2
-
31
-
-
77950942090
-
Hamiltonian approach to nonlinear oscillators
-
10.1016/j.physleta.2010.03.064 2629840 ZBL1237.70036
-
He J.-H., Hamiltonian approach to nonlinear oscillators. Physics Letters A 2010 374 23 2312 2314 10.1016/j.physleta.2010.03.064 2629840 ZBL1237.70036
-
(2010)
Physics Letters A
, vol.374
, Issue.23
, pp. 2312-2314
-
-
He, J.-H.1
-
33
-
-
0036526626
-
Preliminary report on the energy balance for nonlinear oscillations
-
DOI 10.1016/S0093-6413(02)00237-9, PII S0093641302002379
-
He J. H., Preliminary report on the energy balance for nonlinear oscillations. Mechanics Research Communications 2002 29 2-3 107 111 2-s2.0-0036526626 10.1016/S0093-6413(02)00237-9 (Pubitemid 34992264)
-
(2002)
Mechanics Research Communications
, vol.29
, Issue.2-3
, pp. 107-111
-
-
He, J.-H.1
-
36
-
-
66349083019
-
He's Energy balance and He's variational methods for nonlinear oscillations in engineering
-
2-s2.0-66349083019 10.1142/S0217979209049644
-
Ganji S. S., Ganji D. D., Karimpour S., He's Energy balance and He's variational methods for nonlinear oscillations in engineering. International Journal of Modern Physics B 2009 23 3 461 471 2-s2.0-66349083019 10.1142/S0217979209049644
-
(2009)
International Journal of Modern Physics B
, vol.23
, Issue.3
, pp. 461-471
-
-
Ganji, S.S.1
Ganji, D.D.2
Karimpour, S.3
-
37
-
-
79961166798
-
Higher order approximate periodic solutions for nonlinear oscillators with the Hamiltonian approach
-
10.1016/j.aml.2011.05.040 2826123
-
Yildirim A., Saadatnia Z., Askari H., Khan Y., KalamiYazdi M., Higher order approximate periodic solutions for nonlinear oscillators with the Hamiltonian approach. Applied Mathematics Letters 2011 24 12 2042 2051 10.1016/j.aml.2011.05.040 2826123
-
(2011)
Applied Mathematics Letters
, vol.24
, Issue.12
, pp. 2042-2051
-
-
Yildirim, A.1
Saadatnia, Z.2
Askari, H.3
Khan, Y.4
Kalamiyazdi, M.5
-
38
-
-
79953744737
-
A Hamiltonian approach for a plasma physics problem
-
2-s2.0-79953744737 10.1016/j.camwa.2010.06.028
-
Xu L., A Hamiltonian approach for a plasma physics problem. Computers and Mathematics with Applications 2011 61 8 1909 1911 2-s2.0-79953744737 10.1016/j.camwa.2010.06.028
-
(2011)
Computers and Mathematics with Applications
, vol.61
, Issue.8
, pp. 1909-1911
-
-
Xu, L.1
-
39
-
-
79951700937
-
Determination of limit cycle by Hamiltonian approach for strongly nonlinear oscillators
-
2-s2.0-79951700937
-
Xu L., He J. H., Determination of limit cycle by Hamiltonian approach for strongly nonlinear oscillators. International Journal of Nonlinear Sciences and Numerical Simulation 2010 11 12 1097 1101 2-s2.0-79951700937
-
(2010)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.11
, Issue.12
, pp. 1097-1101
-
-
Xu, L.1
He, J.H.2
-
41
-
-
78349305819
-
Statistical characteristics of long waves nearshore
-
2-s2.0-78349305819 10.1016/j.coastaleng.2010.08.005
-
Didenkulova I., Pelinovsky E., Sergeeva A., Statistical characteristics of long waves nearshore. Coastal Engineering 2011 58 1 94 102 2-s2.0-78349305819 10.1016/j.coastaleng.2010.08.005
-
(2011)
Coastal Engineering
, vol.58
, Issue.1
, pp. 94-102
-
-
Didenkulova, I.1
Pelinovsky, E.2
Sergeeva, A.3
-
42
-
-
19744362511
-
A new variational principle for isenergetic flows
-
0044978 ZBL0046.18301
-
Lin C. C., A new variational principle for isenergetic flows. Quarterly of Applied Mathematics 1952 9 421 423 0044978 ZBL0046.18301
-
(1952)
Quarterly of Applied Mathematics
, vol.9
, pp. 421-423
-
-
Lin, C.C.1
-
46
-
-
84971113623
-
The derivation of the equations of motion of an ideal fluid by Hamilton's principle
-
0071194 ZBL0068.18802
-
Herivel J. W., The derivation of the equations of motion of an ideal fluid by Hamilton's principle. Mathematical Proceedings of the Cambridge Philosophical Society 1955 51 344 349 0071194 ZBL0068.18802
-
(1955)
Mathematical Proceedings of the Cambridge Philosophical Society
, vol.51
, pp. 344-349
-
-
Herivel, J.W.1
-
47
-
-
0002407707
-
A note on Hamilton's principle for perfect fluids
-
Bretherton F. P., A note on Hamilton's principle for perfect fluids. The Journal of Fluid Mechanics 1970 44 19 31
-
(1970)
The Journal of Fluid Mechanics
, vol.44
, pp. 19-31
-
-
Bretherton, F.P.1
-
48
-
-
0019612843
-
Investigation of transonic flow in a cascade using the finite element method
-
Ecer A., Akay H. U., Investigation of transonic flow in a cascade using the finite element method. Journal of American Institute of Aeronautics and Astronautics 1981 19 9 1174 1182 10.2514/3.60057 626387 ZBL0479.76070 (Pubitemid 12506472)
-
(1981)
AIAA journal
, vol.19
, Issue.9
, pp. 1174-1182
-
-
Ecer, A.1
Akay, H.U.2
-
49
-
-
0020716916
-
Finite element formulation for steady transonic euler equations
-
Ecer A., Akay H. U., A finite element formulation for steady transonic euler equations. AIAA Journal 1983 21 3 343 350 2-s2.0-0020716916 (Pubitemid 13502828)
-
(1983)
AIAA journal
, vol.21
, Issue.3
, pp. 343-350
-
-
Ecer, A.1
Akay, H.U.2
-
50
-
-
0032322759
-
On the Hamiltonian Approach: Applications to geophysical flows
-
Goncharov V., Pavlov V., On the Hamiltonian approach: applications to geophysical flows. Nonlinear Processes in Geophysics 1998 5 4 219 240 2-s2.0-0032322759 (Pubitemid 29429399)
-
(1998)
Nonlinear Processes in Geophysics
, vol.5
, Issue.4
, pp. 219-240
-
-
Goncharov, V.1
Pavlov, V.2
-
51
-
-
0347093085
-
Hamilton's principle for quasigeostrophic motion
-
Holm D. D., Zeitlin V., Hamilton's principle for quasigeostrophic motion. Physics of Fluids 1998 10 4 800 806 10.1063/1.869623 1613939 ZBL1185.76848 (Pubitemid 128613768)
-
(1998)
Physics of Fluids
, vol.10
, Issue.4
, pp. 800-806
-
-
Holm, D.D.1
Zeitlin, V.2
-
52
-
-
78650657014
-
Clebsch potentials in the variational principle for a perfect fluid
-
2-s2.0-78650657014 10.1143/PTP.124.517
-
Hiroki F., Youhei F., Clebsch potentials in the variational principle for a perfect fluid. Progress of Theoretical Physics 2010 124 3 517 531 2-s2.0-78650657014 10.1143/PTP.124.517
-
(2010)
Progress of Theoretical Physics
, vol.124
, Issue.3
, pp. 517-531
-
-
Hiroki, F.1
Youhei, F.2
-
53
-
-
4243091770
-
A practical form of Lagrange-Hamilton theory for ideal fluids and plasmas
-
2-s2.0-4243091770 10.1017/S0022377803002290
-
Larsson J., A practical form of Lagrange-Hamilton theory for ideal fluids and plasmas. Journal of Plasma Physics 2003 69 3 211 252 2-s2.0-4243091770 10.1017/S0022377803002290
-
(2003)
Journal of Plasma Physics
, vol.69
, Issue.3
, pp. 211-252
-
-
Larsson, J.1
-
54
-
-
0023770258
-
Hamiltonian fluid mechanics
-
2-s2.0-0023770258
-
Salmon R., Hamiltonian fluid mechanics. Annual Review of Fluid Mechanics 1988 20 225 256 2-s2.0-0023770258
-
(1988)
Annual Review of Fluid Mechanics
, vol.20
, pp. 225-256
-
-
Salmon, R.1
-
56
-
-
0037033509
-
On the use of Clebsch potentials in the Lagrangian formulation of classical electrodynamics
-
1889420 10.1016/S0375-9601(01)00795-2 ZBL0995.78002
-
Wagner H. J., On the use of Clebsch potentials in the Lagrangian formulation of classical electrodynamics. Physics Letters A 2002 292 4-5 246 250 1889420 10.1016/S0375-9601(01)00795-2 ZBL0995.78002
-
(2002)
Physics Letters A
, vol.292
, Issue.4-5
, pp. 246-250
-
-
Wagner, H.J.1
-
58
-
-
34748870677
-
Variational iteration method: New development and applications
-
DOI 10.1016/j.camwa.2006.12.083, PII S0898122107005494, Variational Iteration Method for Nonlinear Problems
-
He J.-H., Wu X.-H., Variational iteration method: new development and applications. Computers & Mathematics with Applications 2007 54 7-8 881 894 2395625 10.1016/j.camwa.2006.12.083 ZBL1141.65372 (Pubitemid 47488841)
-
(2007)
Computers and Mathematics with Applications
, vol.54
, Issue.7-8
, pp. 881-894
-
-
He, J.-H.1
Wu, X.-H.2
-
59
-
-
34250668369
-
Variational iteration method-Some recent results and new interpretations
-
DOI 10.1016/j.cam.2006.07.009, PII S0377042706004559, Variational Iteration Method-Reality, Potential, and Challenges
-
He J.-H., Variational iteration method-some recent results and new interpretations. Journal of Computational and Applied Mathematics 2007 207 1 3 17 2332941 10.1016/j.cam.2006.07.009 ZBL1119.65049 (Pubitemid 46935380)
-
(2007)
Journal of Computational and Applied Mathematics
, vol.207
, Issue.1
, pp. 3-17
-
-
He, J.-H.1
-
60
-
-
30344475545
-
Construction of solitary solution and compacton-like solution by variational iteration method
-
DOI 10.1016/j.chaos.2005.10.100, PII S0960077905010799
-
He J.-H., Wu X.-H., Construction of solitary solution and compacton-like solution by variational iteration method. Chaos, Solitons & Fractals 2006 29 1 108 113 10.1016/j.chaos.2005.10.100 2213340 ZBL1147.35338 (Pubitemid 43063201)
-
(2006)
Chaos, Solitons and Fractals
, vol.29
, Issue.1
, pp. 108-113
-
-
He, J.-H.1
Wu, X.-H.2
-
61
-
-
84860388823
-
A short remark on fractional variational iteration method
-
10.1016/j.physleta.2011.07.033 2826245
-
He J.-H., A short remark on fractional variational iteration method. Physics Letters A 2011 375 38 3362 3364 10.1016/j.physleta.2011.07.033 2826245
-
(2011)
Physics Letters A
, vol.375
, Issue.38
, pp. 3362-3364
-
-
He, J.-H.1
-
62
-
-
74449084990
-
The variational iterational method which should be follow
-
He J. H., Wu G. C., Austin F., The variational iterational method which should be follow. Nonlinear Science Letters A 2010 1 1 30
-
(2010)
Nonlinear Science Letters A
, vol.1
, pp. 1-30
-
-
He, J.H.1
Wu, G.C.2
Austin, F.3
-
63
-
-
45849150395
-
Variational iteration method for solving coupled-KdV equations
-
10.1016/j.chaos.2007.02.012 2437911 ZBL1152.35466
-
Assas L. M. B., Variational iteration method for solving coupled-KdV equations. Chaos, Solitons & Fractals 2008 38 4 1225 1228 10.1016/j.chaos.2007.02.012 2437911 ZBL1152.35466
-
(2008)
Chaos, Solitons & Fractals
, vol.38
, Issue.4
, pp. 1225-1228
-
-
Assas, L.M.B.1
-
64
-
-
43049099354
-
Construction of solitary solutions for nonlinear dispersive equations by variational iteration method
-
10.1016/j.physleta.2008.01.089 2418404 ZBL1220.35143
-
Odibat Z. M., Construction of solitary solutions for nonlinear dispersive equations by variational iteration method. Physics Letters A 2008 372 22 4045 4052 10.1016/j.physleta.2008.01.089 2418404 ZBL1220.35143
-
(2008)
Physics Letters A
, vol.372
, Issue.22
, pp. 4045-4052
-
-
Odibat, Z.M.1
-
66
-
-
78650706889
-
On the analytical solution for self-similar grain size distributions in two dimensions
-
2-s2.0-78650706889 10.1016/j.actamat.2010.10.019
-
Pande C. S., Cooper K. P., On the analytical solution for self-similar grain size distributions in two dimensions. Acta Materialia 2011 59 3 955 961 2-s2.0-78650706889 10.1016/j.actamat.2010.10.019
-
(2011)
Acta Materialia
, vol.59
, Issue.3
, pp. 955-961
-
-
Pande, C.S.1
Cooper, K.P.2
-
68
-
-
79955440007
-
The variational approach coupled with an ancient Chinese mathematical method to the relativistic oscillator
-
2777699
-
Zhou L.-H., He J. H., The variational approach coupled with an ancient Chinese mathematical method to the relativistic oscillator. Mathematical & Computational Applications 2010 15 5 930 935 2777699
-
(2010)
Mathematical & Computational Applications
, vol.15
, Issue.5
, pp. 930-935
-
-
Zhou, L.-H.1
He, J.H.2
-
69
-
-
50949124409
-
Recent development of the homotopy perturbation method
-
2432078 ZBL1159.34333
-
He J.-H., Recent development of the homotopy perturbation method. Topological Methods in Nonlinear Analysis 2008 31 2 205 209 2432078 ZBL1159.34333
-
(2008)
Topological Methods in Nonlinear Analysis
, vol.31
, Issue.2
, pp. 205-209
-
-
He, J.-H.1
-
70
-
-
18844426016
-
Application of homotopy perturbation method to nonlinear wave equations
-
DOI 10.1016/j.chaos.2005.03.006, PII S0960077905002687
-
He J. H., Application of homotopy perturbation method to nonlinear wave equations. Chaos, Solitons & Fractals 2005 26 3 695 700 2-s2.0-18844426016 10.1016/j.chaos.2005.03.006 (Pubitemid 40682499)
-
(2005)
Chaos, Solitons and Fractals
, vol.26
, Issue.3
, pp. 695-700
-
-
He, J.-H.1
-
71
-
-
77955858024
-
A note on the homotopy perturbation method
-
2-s2.0-77955858024
-
He J. H., A note on the homotopy perturbation method. Thermal Science 2010 14 2 565 568 2-s2.0-77955858024
-
(2010)
Thermal Science
, vol.14
, Issue.2
, pp. 565-568
-
-
He, J.H.1
-
72
-
-
84858226842
-
Homotopy perturbation method with an auxiliary term
-
857612 10.1155/2012/857612
-
He J. H., Homotopy perturbation method with an auxiliary term. Abstract and Applied Analysis 2012 2012 7 857612 10.1155/2012/857612
-
(2012)
Abstract and Applied Analysis
, vol.2012
, pp. 7
-
-
He, J.H.1
-
73
-
-
79951702509
-
Coupling of He's polynomials and Laplace transformation for MHD viscous flow over a stretching sheet
-
2-s2.0-79951702509
-
Khan Y., Mohyud-Din S. T., Coupling of He's polynomials and Laplace transformation for MHD viscous flow over a stretching sheet. International Journal of Nonlinear Sciences and Numerical Simulation 2010 11 12 1103 1107 2-s2.0-79951702509
-
(2010)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.11
, Issue.12
, pp. 1103-1107
-
-
Khan, Y.1
Mohyud-Din, S.T.2
-
74
-
-
81755173879
-
Approximate damped oscillatory solutions for generalized KdV-Burgers equation and their error estimates
-
807860 10.1155/2011/807860 2835261 ZBL1228.35211
-
Zhang W., Li X., Approximate damped oscillatory solutions for generalized KdV-Burgers equation and their error estimates. Abstract and Applied Analysis 2011 2011 26 807860 10.1155/2011/807860 2835261 ZBL1228.35211
-
(2011)
Abstract and Applied Analysis
, vol.2011
, pp. 26
-
-
Zhang, W.1
Li, X.2
-
75
-
-
84858214275
-
Comparison of different analytic solutions to axisymmetric squeezing fluid flow between two infinite parallel plates with slip boundary conditions
-
835268 10.1155/2012/835268 2879935 ZBL1235.76028
-
Khan H., Islam S., Ali J., Ali Shah I., Comparison of different analytic solutions to axisymmetric squeezing fluid flow between two infinite parallel plates with slip boundary conditions. Abstract and Applied Analysis 2012 2012 18 835268 10.1155/2012/835268 2879935 ZBL1235.76028
-
(2012)
Abstract and Applied Analysis
, vol.2012
, pp. 18
-
-
Khan, H.1
Islam, S.2
Ali, J.3
Ali Shah, I.4
-
76
-
-
84871844212
-
Solitary wave solutions for a coupled MKdV system using the homotopy perturbation method
-
2432094 ZBL1153.65101
-
Jiang Y.-Q., Zhu J.-M., Solitary wave solutions for a coupled MKdV system using the homotopy perturbation method. Topological Methods in Nonlinear Analysis 2008 31 2 359 367 2432094 ZBL1153.65101
-
(2008)
Topological Methods in Nonlinear Analysis
, vol.31
, Issue.2
, pp. 359-367
-
-
Jiang, Y.-Q.1
Zhu, J.-M.2
-
77
-
-
43049116900
-
Homotopy perturbation method for modified Camassa-Holm and Degasperis-Procesi equations
-
10.1016/j.physleta.2007.10.072 2398391 ZBL1220.34010
-
Zhang B.-G., Li S.-Y., Liu Z.-R., Homotopy perturbation method for modified Camassa-Holm and Degasperis-Procesi equations. Physics Letters A 2008 372 11 1867 1872 10.1016/j.physleta.2007.10.072 2398391 ZBL1220.34010
-
(2008)
Physics Letters A
, vol.372
, Issue.11
, pp. 1867-1872
-
-
Zhang, B.-G.1
Li, S.-Y.2
Liu, Z.-R.3
-
78
-
-
79952630107
-
A simple analytical solution for slab detachment
-
2-s2.0-79952630107 10.1016/j.epsl.2011.01.011
-
Schmalholz S. M., A simple analytical solution for slab detachment. Earth and Planetary Science Letters 2011 304 1-2 45 54 2-s2.0-79952630107 10.1016/j.epsl.2011.01.011
-
(2011)
Earth and Planetary Science Letters
, vol.304
, Issue.1-2
, pp. 45-54
-
-
Schmalholz, S.M.1
-
79
-
-
0036489498
-
Modified Lindstedt-Poincare methods for some strongly non-linear oscillations - Part I: Expansion of a constant
-
DOI 10.1016/S0020-7462(00)00116-5, PII S0020746200001165
-
He J.-H., Modified Lindstedt-Poincaré methods for some strongly non-linear oscillations. I. Expansion of a constant. International Journal of Non-Linear Mechanics 2002 37 2 309 314 1907214 10.1016/S0020-7462(00)00116-5 (Pubitemid 32943373)
-
(2002)
International Journal of Non-Linear Mechanics
, vol.37
, Issue.2
, pp. 309-314
-
-
He, J.-H.1
-
81
-
-
34249996463
-
Application of parameter-expanding method to strongly nonlinear oscillators
-
2-s2.0-34249996463
-
Shou D. H., He J. H., Application of parameter-expanding method to strongly nonlinear oscillators. International Journal of Nonlinear Sciences and Numerical Simulation 2007 8 1 121 124 2-s2.0-34249996463
-
(2007)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.8
, Issue.1
, pp. 121-124
-
-
Shou, D.H.1
He, J.H.2
-
82
-
-
33846784840
-
Determination of limit cycle by He's parameter-expanding method for strongly nonlinear oscillators
-
DOI 10.1016/j.jsv.2006.11.011, PII S0022460X06008534
-
Xu L., Determination of limit cycle by He's parameter-expanding method for strongly nonlinear oscillators. Journal of Sound and Vibration 2007 302 1-2 178 184 10.1016/j.jsv.2006.11.011 2295336 (Pubitemid 46209206)
-
(2007)
Journal of Sound and Vibration
, vol.302
, Issue.1-2
, pp. 178-184
-
-
Xu, L.1
-
83
-
-
34748917561
-
Nonlinear oscillator with discontinuity by parameter-expansion method
-
DOI 10.1016/j.chaos.2007.07.055, PII S0960077907005693
-
Wang S. Q., He J. H., Nonlinear oscillator with discontinuity by parameter-expansion method. Chaos, Solitons & Fractals 2008 35 4 688 691 2-s2.0-34748917561 10.1016/j.chaos.2007.07.055 (Pubitemid 47484447)
-
(2008)
Chaos, Solitons and Fractals
, vol.35
, Issue.4
, pp. 688-691
-
-
Wang, S.-Q.1
He, J.-H.2
-
84
-
-
34547661887
-
Application of He's parameter-expansion method to an oscillation of a mass attached to a stretched elastic wire
-
2-s2.0-34547661887 10.1016/j.physleta.2007.04.004
-
Xu L., Application of He's parameter-expansion method to an oscillation of a mass attached to a stretched elastic wire. Physics Letters, Section A 2007 368 3-4 259 262 2-s2.0-34547661887 10.1016/j.physleta.2007.04.004
-
(2007)
Physics Letters, Section A
, vol.368
, Issue.3-4
, pp. 259-262
-
-
Xu, L.1
-
85
-
-
47349097046
-
Application of He's parameter-expansion method for oscillators with smooth odd nonlinearities
-
10.1016/j.physleta.2008.06.058 2438230 ZBL1223.70065
-
Darvishi M. T., Karami A., Shin B.-C., Application of He's parameter-expansion method for oscillators with smooth odd nonlinearities. Physics Letters A 2008 372 33 5381 5384 10.1016/j.physleta.2008.06.058 2438230 ZBL1223.70065
-
(2008)
Physics Letters A
, vol.372
, Issue.33
, pp. 5381-5384
-
-
Darvishi, M.T.1
Karami, A.2
Shin, B.-C.3
-
87
-
-
33745177020
-
Exp-function method for nonlinear wave equations
-
DOI 10.1016/j.chaos.2006.03.020, PII S0960077906002293
-
He J.-H., Wu X.-H., Exp-function method for nonlinear wave equations. Chaos, Solitons & Fractals 2006 30 3 700 708 2238695 10.1016/j.chaos.2006. 03.020 ZBL1141.35448 (Pubitemid 43903182)
-
(2006)
Chaos, Solitons and Fractals
, vol.30
, Issue.3
, pp. 700-708
-
-
He, J.-H.1
Wu, X.-H.2
-
88
-
-
34748862326
-
Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method
-
DOI 10.1016/j.camwa.2006.12.041, PII S0898122107002581, Variational Iteration Method for Nonlinear Problems
-
Wu X.-H., He J.-H., Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method. Computers & Mathematics with Applications 2007 54 7-8 966 986 2395634 10.1016/j.camwa.2006. 12.041 ZBL1143.35360 (Pubitemid 47488812)
-
(2007)
Computers and Mathematics with Applications
, vol.54
, Issue.7-8
, pp. 966-986
-
-
Wu, X.-H.1
He, J.-H.2
-
89
-
-
43049083734
-
EXP-function method and its application to nonlinear equations
-
DOI 10.1016/j.chaos.2007.01.024, PII S0960077907000513
-
Wu X.-H., He J.-H., EXP-function method and its application to nonlinear equations. Chaos, Solitons & Fractals 2008 38 3 903 910 10.1016/j.chaos. 2007.01.024 2423371 ZBL1153.35384 (Pubitemid 351633038)
-
(2008)
Chaos, Solitons and Fractals
, vol.38
, Issue.3
, pp. 903-910
-
-
Wu, X.-H.1
He, J.-H.2
-
90
-
-
36248983300
-
Exact solutions for a class of nonlinear partial differential equations using exp-function method
-
2-s2.0-36248983300
-
Bekir A., Boz A., Exact solutions for a class of nonlinear partial differential equations using exp-function method. International Journal of Nonlinear Sciences and Numerical Simulation 2007 8 4 505 512 2-s2.0-36248983300
-
(2007)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.8
, Issue.4
, pp. 505-512
-
-
Bekir, A.1
Boz, A.2
-
91
-
-
42449156432
-
Variational iteration method for solving nonlinear differential- difference equations
-
2-s2.0-42449156432
-
Mokhtari R., Variational iteration method for solving nonlinear differential-difference equations. International Journal of Nonlinear Sciences and Numerical Simulation 2008 9 1 19 23 2-s2.0-42449156432
-
(2008)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.9
, Issue.1
, pp. 19-23
-
-
Mokhtari, R.1
-
92
-
-
47049085208
-
Exact solutions of nonlinear differential-difference equations by He's homotopy perturbation method
-
2-s2.0-47049085208
-
Yildirim A., Exact solutions of nonlinear differential-difference equations by He's homotopy perturbation method. International Journal of Nonlinear Sciences and Numerical Simulation 2008 9 2 111 114 2-s2.0-47049085208
-
(2008)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.9
, Issue.2
, pp. 111-114
-
-
Yildirim, A.1
-
93
-
-
41849090442
-
Application of Exp-function method to high-dimensional nonlinear evolution equation
-
DOI 10.1016/j.chaos.2006.11.014, PII S0960077906010502
-
Zhang S., Application of Exp-function method to high-dimensional nonlinear evolution equation. Chaos, Solitons & Fractals 2008 38 1 270 276 2417662 10.1016/j.chaos.2006.11.014 ZBL1142.35593 (Pubitemid 351503992)
-
(2008)
Chaos, Solitons and Fractals
, vol.38
, Issue.1
, pp. 270-276
-
-
Zhang, S.1
-
94
-
-
43949107152
-
Exp-function method for solving huxley equation
-
DOI 10.1155/2008/538489
-
Zhou X.-W., Exp-function method for solving Huxley equation. Mathematical Problems in Engineering 2008 2008 7 538489 10.1155/2008/538489 2402979 ZBL1151.92007 (Pubitemid 351701666)
-
(2008)
Mathematical Problems in Engineering
, vol.2008
, pp. 538489
-
-
Zhou, X.-W.1
-
95
-
-
47049104261
-
Exp-function method to solve the nonlinear dispersive K(m, n) equations
-
Zhou X. W., Wen Y. X., He J. H., Exp-function method to solve the nonlinear dispersive K(m, n) equations. The International Journal of Nonlinear Sciences and Numerical Simulation 2008 9 301 306
-
(2008)
The International Journal of Nonlinear Sciences and Numerical Simulation
, vol.9
, pp. 301-306
-
-
Zhou, X.W.1
Wen, Y.X.2
He, J.H.3
-
96
-
-
46749141650
-
Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota's method, tanh-coth method and Exp-function method
-
10.1016/j.amc.2008.02.013 2437158 ZBL1147.65109
-
Wazwaz A.-M., Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota's method, tanh-coth method and Exp-function method. Applied Mathematics and Computation 2008 202 1 275 286 10.1016/j.amc.2008.02.013 2437158 ZBL1147.65109
-
(2008)
Applied Mathematics and Computation
, vol.202
, Issue.1
, pp. 275-286
-
-
Wazwaz, A.-M.1
-
97
-
-
77954641064
-
A note on the variational approach to the Benjamin-Bona-Mahony equation using He's semi-inverse method
-
Tao Z. L., A note on the variational approach to the Benjamin-Bona-Mahony equation using He's semi-inverse method. Int. J. Comput. Math. 2010 87 1752 1754
-
(2010)
Int. J. Comput. Math.
, vol.87
, pp. 1752-1754
-
-
Tao, Z.L.1
-
98
-
-
34249786250
-
Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method
-
DOI 10.1016/j.amc.2007.01.056, PII S0096300307000975
-
Wazwaz A.-M., Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method. Applied Mathematics and Computation 2007 190 1 633 640 10.1016/j.amc.2007.01.056 2338741 (Pubitemid 46856693)
-
(2007)
Applied Mathematics and Computation
, vol.190
, Issue.1
, pp. 633-640
-
-
Wazwaz, A.-M.1
-
99
-
-
37549033511
-
The (G ′ / G) -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics
-
10.1016/j.physleta.2007.07.051 2381823
-
Wang M., Li X., Zhang J., The (G ′ / G) -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A 2008 372 4 417 423 10.1016/j.physleta.2007.07.051 2381823
-
(2008)
Physics Letters A
, vol.372
, Issue.4
, pp. 417-423
-
-
Wang, M.1
Li, X.2
Zhang, J.3
-
100
-
-
34748888282
-
A generalized auxiliary equation method and its application to (2+1) -dimensional Korteweg-de Vries equations
-
DOI 10.1016/j.camwa.2006.12.046, PII S0898122107002684, Variational Iteration Method for Nonlinear Problems
-
Zhang S., A generalized auxiliary equation method and its application to (2 + 1) -dimensional Korteweg-de Vries equations. Computers & Mathematics with Applications 2007 54 7-8 1028 1038 10.1016/j.camwa.2006.12.046 2395641 (Pubitemid 47488817)
-
(2007)
Computers and Mathematics with Applications
, vol.54
, Issue.7-8
, pp. 1028-1038
-
-
Zhang, S.1
-
101
-
-
36048969106
-
He's frequency formulation for nonlinear oscillators
-
DOI 10.1088/0143-0807/28/5/016, PII S0143080707474669
-
Geng L., Cai X. C., He's frequency formulation for nonlinear oscillators. European Journal of Physics 2007 28 5 923 931 2-s2.0-36048969106 10.1088/0143-0807/28/5/016 (Pubitemid 350092681)
-
(2007)
European Journal of Physics
, vol.28
, Issue.5
, pp. 923-931
-
-
Geng, L.1
Cai, X.-C.2
-
102
-
-
47049091120
-
Application of He's frequency-amplitude formulation to an x 1 / 3 force nonlinear oscillator
-
2-s2.0-47049091120
-
Zhang H. L., Application of He's frequency-amplitude formulation to an x 1 / 3 force nonlinear oscillator. International Journal of Nonlinear Sciences and Numerical Simulation 2008 9 3 297 300 2-s2.0-47049091120
-
(2008)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.9
, Issue.3
, pp. 297-300
-
-
Zhang, H.L.1
-
103
-
-
67651237364
-
Chinese mathematics for nonlinear oscillators
-
2432097 ZBL1146.01303
-
Zhao L., Chinese mathematics for nonlinear oscillators. Topological Methods in Nonlinear Analysis 2008 31 2 383 387 2432097 ZBL1146.01303
-
(2008)
Topological Methods in Nonlinear Analysis
, vol.31
, Issue.2
, pp. 383-387
-
-
Zhao, L.1
-
104
-
-
50949121589
-
Application of He's frequency-amplitude formulation to the Duffing-harmonic oscillator
-
2432098 ZBL1146.01302
-
Fan J., Application of He's frequency-amplitude formulation to the Duffing-harmonic oscillator. Topological Methods in Nonlinear Analysis 2008 31 2 389 394 2432098 ZBL1146.01302
-
(2008)
Topological Methods in Nonlinear Analysis
, vol.31
, Issue.2
, pp. 389-394
-
-
Fan, J.1
-
106
-
-
46749142553
-
Comment on 'He's frequency formulation for nonlinear oscillators'
-
2-s2.0-46749142553 10.1088/0143-0807/29/4/L02
-
He J. H., Comment on 'He's frequency formulation for nonlinear oscillators'. European Journal of Physics 2008 29 4 L19 L22 2-s2.0-46749142553 10.1088/0143-0807/29/4/L02
-
(2008)
European Journal of Physics
, vol.29
, Issue.4
-
-
He, J.H.1
-
107
-
-
84859737396
-
Application of ancient chinese mathematics to optimal problems
-
He J. H., Application of ancient chinese mathematics to optimal problems. Nonlinear Science Letters A 2011 2 2 81 84
-
(2011)
Nonlinear Science Letters A
, vol.2
, Issue.2
, pp. 81-84
-
-
He, J.H.1
-
110
-
-
78651258693
-
Solitary wavenumber-frequency formulation using an ancient Chinese arithmetic
-
10.1142/S0217979210054245 2756285 ZBL1218.34041
-
He J.-H., Yang Q., Solitary wavenumber-frequency formulation using an ancient Chinese arithmetic. International Journal of Modern Physics B 2010 24 24 4747 4751 10.1142/S0217979210054245 2756285 ZBL1218.34041
-
(2010)
International Journal of Modern Physics B
, vol.24
, Issue.24
, pp. 4747-4751
-
-
He, J.-H.1
Yang, Q.2
-
111
-
-
1842557458
-
He Chengtian's inequality and its applications
-
10.1016/S0096-3003(03)00531-9 2052467 ZBL1043.01004
-
He J.-H., He Chengtian's inequality and its applications. Applied Mathematics and Computation 2004 151 3 887 891 10.1016/S0096-3003(03)00531-9 2052467 ZBL1043.01004
-
(2004)
Applied Mathematics and Computation
, vol.151
, Issue.3
, pp. 887-891
-
-
He, J.-H.1
-
113
-
-
79958829572
-
Solitons in nonlinear lattices
-
Kartashov Y. V., Vysloukh V. A., Malomed Boris A., Torner L., Solitons in nonlinear lattices. Reviews of Modern Physics 2011 83 1 247 305
-
(2011)
Reviews of Modern Physics
, vol.83
, Issue.1
, pp. 247-305
-
-
Kartashov, Y.V.1
Vysloukh, V.A.2
Malomed Boris, A.3
Torner, L.4
-
114
-
-
67649613021
-
Differential-difference model for textile engineering
-
2-s2.0-67649613021 10.1016/j.chaos.2008.12.011
-
Wu G. C., Zhao L., He J. H., Differential-difference model for textile engineering. Chaos, Solitons & Fractals 2009 42 1 352 354 2-s2.0-67649613021 10.1016/j.chaos.2008.12.011
-
(2009)
Chaos, Solitons & Fractals
, vol.42
, Issue.1
, pp. 352-354
-
-
Wu, G.C.1
Zhao, L.2
He, J.H.3
-
117
-
-
47749109857
-
Exact travelling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method
-
10.1088/0031-8949/78/01/015013 2447535 ZBL1144.81450 article 015013
-
Dai C.-Q., Wang Y.-Y., Exact travelling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method. Physica Scripta 2008 78 1, article 015013 6 10.1088/0031-8949/78/01/015013 2447535 ZBL1144.81450
-
(2008)
Physica Scripta
, vol.78
, Issue.1
, pp. 6
-
-
Dai, C.-Q.1
Wang, Y.-Y.2
-
118
-
-
42449156432
-
Variational iteration method for solving nonlinear differential- difference equations
-
2-s2.0-42449156432
-
Mokhtari R., Variational iteration method for solving nonlinear differential-difference equations. International Journal of Nonlinear Sciences and Numerical Simulation 2008 9 1 19 23 2-s2.0-42449156432
-
(2008)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.9
, Issue.1
, pp. 19-23
-
-
Mokhtari, R.1
-
119
-
-
47049085208
-
Exact solutions of nonlinear differential-difference equations by He's homotopy perturbation method
-
2-s2.0-47049085208
-
Yildirim A., Exact solutions of nonlinear differential-difference equations by He's homotopy perturbation method. International Journal of Nonlinear Sciences and Numerical Simulation 2008 9 2 111 114 2-s2.0-47049085208
-
(2008)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.9
, Issue.2
, pp. 111-114
-
-
Yildirim, A.1
-
120
-
-
0003053851
-
Some new approaches to Duffing equation with strongly and high order nonlinearity. II. Parametrized perturbation technique
-
10.1016/S1007-5704(99)90065-5 1703402 ZBL0932.34058
-
He J., Some new approaches to Duffing equation with strongly and high order nonlinearity. II. Parametrized perturbation technique. Communications in Nonlinear Science & Numerical Simulation 1999 4 1 81 83 10.1016/S1007- 5704(99)90065-5 1703402 ZBL0932.34058
-
(1999)
Communications in Nonlinear Science & Numerical Simulation
, vol.4
, Issue.1
, pp. 81-83
-
-
He, J.1
-
121
-
-
0002734020
-
A review on some new recently developed nonlinear analytical techniques
-
10.1515/IJNSNS.2000.1.1.51 1743120 ZBL0966.65056
-
He J.-H., A review on some new recently developed nonlinear analytical techniques. International Journal of Nonlinear Sciences and Numerical Simulation 2000 1 1 51 70 10.1515/IJNSNS.2000.1.1.51 1743120 ZBL0966.65056
-
(2000)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.1
, Issue.1
, pp. 51-70
-
-
He, J.-H.1
-
122
-
-
72449145355
-
Applying He's parameterized perturbation method for solving differential-difference equation
-
2-s2.0-72449145355
-
Ding X. H., Zhang L., Applying He's parameterized perturbation method for solving differential-difference equation. International Journal of Nonlinear Sciences and Numerical Simulation 2009 10 9 1249 1252 2-s2.0-72449145355
-
(2009)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.10
, Issue.9
, pp. 1249-1252
-
-
Ding, X.H.1
Zhang, L.2
-
123
-
-
84859768501
-
Solitary-solution formulation for differential-difference equations using an ancient chinese algorithm
-
861438 2-s2.0-84859768501 10.1155/2012/861438
-
He J.-H., Elagan S. K., Wu G.-C., Solitary-solution formulation for differential-difference equations using an ancient chinese algorithm. Abstract and Applied Analysis 2012 2012 6 861438 2-s2.0-84859768501 10.1155/2012/861438
-
(2012)
Abstract and Applied Analysis
, vol.2012
, pp. 6
-
-
He, J.-H.1
Elagan, S.K.2
Wu, G.-C.3
-
124
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
10.1016/S0045-7825(98)00108-X 1665221 ZBL0942.76077
-
He J.-H., Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics and Engineering 1998 167 1-2 57 68 10.1016/S0045-7825(98)00108-X 1665221 ZBL0942.76077
-
(1998)
Computer Methods in Applied Mechanics and Engineering
, vol.167
, Issue.1-2
, pp. 57-68
-
-
He, J.-H.1
-
125
-
-
33748293091
-
Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives
-
DOI 10.1063/1.2234273
-
Drǎgǎnescu G. E., Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives. Journal of Mathematical Physics 2006 47 8, article 082902 9 10.1063/1.2234273 2258596 ZBL1112.74009 (Pubitemid 44327387)
-
(2006)
Journal of Mathematical Physics
, vol.47
, Issue.8
, pp. 082902
-
-
Draganescu, G.E.1
-
126
-
-
30344464250
-
Application of variational iteration method to nonlinear differential equations of fractional order
-
Odibat Z. M., Momani S., Application of variational iteration method to nonlinear differential equations of fractional order. International Journal of Nonlinear Sciences and Numerical Simulation 2006 7 1 27 34 2-s2.0-30344464250 (Pubitemid 43246579)
-
(2006)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.7
, Issue.1
, pp. 27-34
-
-
Odibat, Z.M.1
Momani, S.2
-
127
-
-
0037174280
-
Analytical approximate solutions for nonlinear fractional differential equations
-
DOI 10.1016/S0096-3003(01)00167-9, PII S0096300301001679
-
Shawagfeh N. T., Analytical approximate solutions for nonlinear fractional differential equations. Applied Mathematics and Computation 2002 131 2-3 517 529 10.1016/S0096-3003(01)00167-9 1920243 ZBL1029.34003 (Pubitemid 34813503)
-
(2002)
Applied Mathematics and Computation
, vol.131
, Issue.2-3
, pp. 517-529
-
-
Shawagfeh, N.T.1
-
128
-
-
32644457439
-
The use of variational iteration method, differential transform method and adomian decomposition method for solving different types of nonlinear partial differential equations
-
Bildik N., Konuralp A., The use of variational iteration method, differential transform method and adomian decomposition method for solving different types of nonlinear partial differential equations. International Journal of Nonlinear Sciences and Numerical Simulation 2006 7 1 65 70 2-s2.0-32644457439 (Pubitemid 43246582)
-
(2006)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.7
, Issue.1
, pp. 65-70
-
-
Bildik, N.1
Konuralp, A.2
-
130
-
-
62949242120
-
Beyond Adomian polynomials: He polynomials
-
10.1016/j.chaos.2007.06.034 2512946 ZBL1197.65061
-
Ghorbani A., Beyond Adomian polynomials: He polynomials. Chaos, Solitons & Fractals 2009 39 3 1486 1492 10.1016/j.chaos.2007.06.034 2512946 ZBL1197.65061
-
(2009)
Chaos, Solitons & Fractals
, vol.39
, Issue.3
, pp. 1486-1492
-
-
Ghorbani, A.1
-
131
-
-
34247395044
-
Homotopy perturbation method for nonlinear partial differential equations of fractional order
-
10.1016/j.physleta.2007.01.046 2308776 ZBL1203.65212
-
Momani S., Odibat Z., Homotopy perturbation method for nonlinear partial differential equations of fractional order. Physics Letters A 2007 365 5-6 345 350 10.1016/j.physleta.2007.01.046 2308776 ZBL1203.65212
-
(2007)
Physics Letters A
, vol.365
, Issue.5-6
, pp. 345-350
-
-
Momani, S.1
Odibat, Z.2
-
132
-
-
63449085451
-
A generalized poincaré-invariant action with possible application in strings and E-infinity theory
-
2-s2.0-63449085451 10.1016/j.chaos.2007.06.047
-
He J. H., A generalized poincaré-invariant action with possible application in strings and E-infinity theory. Chaos, Solitons & Fractals 2009 39 4 1667 1670 2-s2.0-63449085451 10.1016/j.chaos.2007.06.047
-
(2009)
Chaos, Solitons & Fractals
, vol.39
, Issue.4
, pp. 1667-1670
-
-
He, J.H.1
-
133
-
-
51749111612
-
Solution of fractional vibration equation by the variational iteration method and modified decomposition method
-
2-s2.0-51749111612
-
Das S., Solution of fractional vibration equation by the variational iteration method and modified decomposition method. International Journal of Nonlinear Sciences and Numerical Simulation 2008 9 4 361 366 2-s2.0-51749111612
-
(2008)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.9
, Issue.4
, pp. 361-366
-
-
Das, S.1
-
134
-
-
50949095668
-
Applications of variational iteration and homotopy perturbation methods to fractional evolution equations
-
2432080 ZBL1172.26303
-
Odibat Z., Momani S., Applications of variational iteration and homotopy perturbation methods to fractional evolution equations. Topological Methods in Nonlinear Analysis 2008 31 2 227 234 2432080 ZBL1172.26303
-
(2008)
Topological Methods in Nonlinear Analysis
, vol.31
, Issue.2
, pp. 227-234
-
-
Odibat, Z.1
Momani, S.2
-
135
-
-
50949099510
-
Algorithms for nonlinear fractional partial differential equations: A selection of numerical methods
-
2432079
-
Momani S., Odibat Z., Hashim I., Algorithms for nonlinear fractional partial differential equations: a selection of numerical methods. Topological Methods in Nonlinear Analysis 2008 31 2 211 226 2432079
-
(2008)
Topological Methods in Nonlinear Analysis
, vol.31
, Issue.2
, pp. 211-226
-
-
Momani, S.1
Odibat, Z.2
Hashim, I.3
-
136
-
-
50949095668
-
Applications of variational iteration and homotopy perturbation methods to fractional evolution equations
-
2432080 ZBL1172.26303
-
Odibat Z., Momani S., Applications of variational iteration and homotopy perturbation methods to fractional evolution equations. Topological Methods in Nonlinear Analysis 2008 31 2 227 234 2432080 ZBL1172.26303
-
(2008)
Topological Methods in Nonlinear Analysis
, vol.31
, Issue.2
, pp. 227-234
-
-
Odibat, Z.1
Momani, S.2
-
137
-
-
61449220353
-
Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives
-
2432092
-
Ganji Z. Z., Ganji D. D., Jafari H., Rostamian M., Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives. Topological Methods in Nonlinear Analysis 2008 31 2 341 348 2432092
-
(2008)
Topological Methods in Nonlinear Analysis
, vol.31
, Issue.2
, pp. 341-348
-
-
Ganji, Z.Z.1
Ganji, D.D.2
Jafari, H.3
Rostamian, M.4
-
138
-
-
79955470495
-
Fractional complex transform for fractional differential equations
-
2777702 ZBL1215.35164
-
Li Z.-B., He J.-H., Fractional complex transform for fractional differential equations. Mathematical & Computational Applications 2010 15 5 970 973 2777702 ZBL1215.35164
-
(2010)
Mathematical & Computational Applications
, vol.15
, Issue.5
, pp. 970-973
-
-
Li, Z.-B.1
He, J.-H.2
-
139
-
-
84855203771
-
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
-
He J. H., Elagan S. K., Li Z. B., Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Physics Letters A 2012 376 4 257 259
-
(2012)
Physics Letters A
, vol.376
, Issue.4
, pp. 257-259
-
-
He, J.H.1
Elagan, S.K.2
Li, Z.B.3
-
140
-
-
34249788181
-
Fractional partial differential equations and modified riemann-liouville derivative new methods for solution
-
DOI 10.1007/BF02832299
-
Jumarie G., Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution. Journal of Applied Mathematics & Computing 2007 24 1-2 31 48 10.1007/BF02832299 2311947 ZBL1145.26302 (Pubitemid 46850236)
-
(2007)
Journal of Applied Mathematics and Computing
, vol.24
, Issue.1-2
, pp. 31-48
-
-
Jumarie, G.1
-
141
-
-
84555221318
-
Local fractional integral transforms
-
Yang X., Local fractional integral transforms. Progress in Nonlinear Science 2011 4 1 225
-
(2011)
Progress in Nonlinear Science
, vol.4
, pp. 1-225
-
-
Yang, X.1
-
143
-
-
84864939742
-
Variational iteration method for q -difference equations of second order
-
102850 10.1155/2012/102850
-
Wu G. C., Variational iteration method for q -difference equations of second order. Journal of Applied Mathematics 2012 2012. http://www.hindawi.com/ journals/jam/2012/102850/ 102850 10.1155/2012/102850
-
(2012)
Journal of Applied Mathematics
, vol.2012
-
-
Wu, G.C.1
|