-
1
-
-
0027677707
-
Fractal porous media
-
P. M. Adler, J. F. Thovert, Fractal porous media, Transp. Porous Media, 13, 1, pp. 41-78, 1993.
-
(1993)
Transp. Porous Media
, vol.13
, Issue.1
, pp. 41-78
-
-
Adler, P.M.1
Thovert, J.F.2
-
2
-
-
47049103034
-
Hierarchy of wool fibers and fractal dimensions
-
J. Fan, J. F. Liu, J.H. He, Hierarchy of wool fibers and fractal dimensions, Inter. J. Nonlin. Sci. Numer. Simul, 9, 3, pp. 293-296, 2008.
-
(2008)
Inter. J. Nonlin. Sci. Numer. Simul
, vol.9
, Issue.3
, pp. 293-296
-
-
Fan, J.1
Liu, J.F.2
He, J.H.3
-
3
-
-
84856100248
-
From spider spinning to bubble electrospinning and from the wool structure to carbon super-nanotubes
-
J. H. He, From spider spinning to bubble electrospinning and from the wool structure to carbon super-nanotubes, Mat. Sci. Tech., 26, 11, pp. 1273-1274, 2010.
-
(2010)
Mat. Sci. Tech.
, vol.26
, Issue.11
, pp. 1273-1274
-
-
He, J.H.1
-
4
-
-
84874783648
-
Biomimic design of multi-scale fabric with efficient heat transfer property
-
J. Fan, J. H. He, Biomimic design of multi-scale fabric with efficient heat transfer property, Ther. Sci., 16, 5, pp. 1349-1352, 2012.
-
(2012)
Ther. Sci.
, vol.16
, Issue.5
, pp. 1349-1352
-
-
Fan, J.1
He, J.H.2
-
5
-
-
84863370700
-
Fractional model for heat conduction in polar bear hairs
-
Q. L. Wang, J. H. He, Z. B. Li, Fractional model for heat conduction in polar bear hairs, Ther. Sci., 16, 2, pp. 339-342, 2012.
-
(2012)
Ther. Sci.
, vol.16
, Issue.2
, pp. 339-342
-
-
Wang, Q.L.1
He, J.H.2
Li, Z.B.3
-
6
-
-
84871448093
-
Fractal derivative model for air permeability in hierarchic porous media
-
J. Fan, J. H. He, Fractal derivative model for air permeability in hierarchic porous media, Abstr. Appl. Anal., 2012, 354701, 2012.
-
(2012)
Abstr. Appl. Anal.
, vol.2012
, pp. 354701
-
-
Fan, J.1
He, J.H.2
-
7
-
-
0030300846
-
Transports in fractal porous media
-
P. M. Adler, Transports in fractal porous media, J. Hydrol., 187, pp. 195-213, 1996.
-
(1996)
J. Hydrol
, vol.187
, pp. 195-213
-
-
Adler, P.M.1
-
8
-
-
36849100388
-
Transport equations in turbulence
-
B. J. Daly, F. H. Harlow, Transport equations in turbulence, Phys. Fluids, 13, 11, 2634, 1970.
-
(1970)
Phys. Fluids
, vol.13
, Issue.11
, pp. 2634
-
-
Daly, B.J.1
Harlow, F.H.2
-
9
-
-
0014705867
-
Transport equations for electrons in two-valley semiconductors
-
K. Blotekjaer, Transport equations for electrons in two-valley semiconductors, IEEE Transactions on Electron Devices, 17, 1, pp. 38-47, 1970.
-
(1970)
IEEE Transactions on Electron Devices
, vol.17
, Issue.1
, pp. 38-47
-
-
Blotekjaer, K.1
-
10
-
-
0009123541
-
Transport equations for the QCD gluon Wigner operator
-
H. T. Elze, M. Gyulassy, D. Vasak, Transport equations for the QCD gluon Wigner operator, Phys. Lett. B, 177, pp. 402-408, 1986.
-
(1986)
Phys. Lett. B
, vol.177
, pp. 402-408
-
-
Elze, H.T.1
Gyulassy, M.2
Vasak, D.3
-
11
-
-
2342648426
-
Transport equations in clean superconductors
-
O. Betbeder-Matibet, P. Nozieres, Transport equations in clean superconductors, Ann. Phys., 51, 3, pp. 392-417. 1969.
-
(1969)
Ann. Phys.
, vol.51
, Issue.3
, pp. 392-417
-
-
Betbeder-Matibet, O.1
Nozieres, P.2
-
12
-
-
0001761745
-
Transport equations for aeronomy
-
R. W. Schunk, Transport equations for aeronomy, Planet. Space Sci., 23, 3, pp. 437-485, 1975.
-
(1975)
Planet. Space Sci.
, vol.23
, Issue.3
, pp. 437-485
-
-
Schunk, R.W.1
-
13
-
-
4243764521
-
Transport equations for superconductors
-
M. J. Stephen, Transport equations for superconductors, Phys. Rev., 139, pp. A197-A205, 1965.
-
(1965)
Phys. Rev.
, vol.139
, pp. 197-205
-
-
Stephen, M.J.1
-
14
-
-
0242710950
-
Transport equations with resting phases
-
T. Hillen, Transport equations with resting phases, Eur. J. Appl. Math., 14, 5, pp. 613-636, 2003.
-
(2003)
Eur. J. Appl. Math.
, vol.14
, Issue.5
, pp. 613-636
-
-
Hillen, T.1
-
15
-
-
0003598080
-
-
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.
-
(1993)
And Derivatives Theory and Applications, Gordon and Breach, New York
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
Integrals, F.4
-
16
-
-
33847309315
-
Theory and applications of fractional differential equations
-
A. A. Kilbas, H. H. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, The Netherlands, 2006.
-
(2006)
Elsevier, the Netherlands
-
-
Kilbas, A.A.1
Srivastava, H.H.2
Trujillo, J.J.3
-
17
-
-
65049084831
-
Fractional calculus models and numerical methods
-
D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, 2012.
-
(2012)
Series on Complexity, Nonlinearity and Chaos, World Scientific
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
Calculus Models, F.5
Methods, N.6
-
18
-
-
84875677289
-
Fractional Caputo heat equation with the double Laplace transform
-
A. M. O. Anwar, F. Jarad, D. Baleanu, F. Ayazi, Fractional Caputo heat equation with the double Laplace transform, Rom. J. Phys., 58, pp. 15-22, 2013;
-
(2013)
Rom. J. Phys.
, vol.58
, pp. 15-22
-
-
Anwar, A.M.O.1
Jarad, F.2
Baleanu, D.3
Ayazi, F.4
-
19
-
-
79959998825
-
On fractional coupled Whitham-Broer-Kaup equations
-
A. Kadem, D. Baleanu, On fractional coupled Whitham-Broer-Kaup equations, Rom. J. Phys., 56, pp. 629-635, 2011;
-
(2011)
Rom. J. Phys.
, vol.56
, pp. 629-635
-
-
Kadem, A.1
Baleanu, D.2
-
20
-
-
79960028808
-
Lyapunov-Krasovskii stability theorem for fractional systems with delay
-
D. Baleanu et al., Lyapunov-Krasovskii stability theorem for fractional systems with delay, Rom. J. Phys., 56, pp. 636-643, 2011;
-
(2011)
Rom. J. Phys.
, vol.56
, pp. 636-643
-
-
Baleanu, D.1
-
21
-
-
84877833378
-
Fractional calculus analysis of the cosmic microwave background
-
J.A. Tenreiro Machado et al., Fractional calculus analysis of the cosmic microwave background, Rom. Rep. Phys., 65, pp. 316-323, 2013.
-
(2013)
Rom. Rep. Phys.
, vol.65
, pp. 316-323
-
-
Machado, J.A.T.1
-
22
-
-
84879528675
-
Fractional Euler-Lagrange equation of Caldirola-Kanai oscillator
-
D. Baleanu, J. H. Asad, I. Petras, S. Elagan, A. Bilgen, Fractional Euler-Lagrange equation of Caldirola-Kanai oscillator, Rom. Rep. Phys., 64, pp.1171-1177, 2012;
-
(2012)
Rom. Rep. Phys.
, vol.64
, pp. 1171-1177
-
-
Baleanu, D.1
Asad, J.H.2
Petras, I.3
Elagan, S.4
Bilgen, A.5
-
23
-
-
84869470751
-
Fractional-order two-electric pendulum
-
D. Baleanu, J. H. Asad, I. Petras, Fractional-order two-electric pendulum, Rom. Rep. Phys., 64, pp. 907-914, 2012;
-
(2012)
Rom. Rep. Phys.
, vol.64
, pp. 907-991
-
-
Baleanu, D.1
Asad, J.H.2
Petras, I.3
-
24
-
-
79953886340
-
On fractional Hamiltonian systems possessing first-class constraints within Caputo derivatives
-
D. Baleanu et al., On fractional Hamiltonian systems possessing first-class constraints within Caputo derivatives, Rom. Rep. Phys., 63, pp. 3-8, 2011;
-
(2011)
Rom. Rep. Phys.
, vol.63
, pp. 3-8
-
-
Baleanu, D.1
-
25
-
-
84878389137
-
Motion of a particle in a resisting medium using fractional calculus approach
-
J.J. Rosales Garcia, M. Guia Calderon, J. Martinez Ortiz, D. Baleanu, Motion of a particle in a resisting medium using fractional calculus approach, Proc. Romanian Acad. A, 14, pp. 42-47, 2013;
-
(2013)
Proc. Romanian Acad. A
, vol.14
, pp. 42-47
-
-
Rosales Garcia, J.J.1
Guia Calderon, M.2
Martinez Ortiz, J.3
Baleanu, D.4
-
26
-
-
84877806817
-
Newtonian mechanics on fractals subset of real-line
-
A.K. Golmankhaneh et al., Newtonian mechanics on fractals subset of real-line, Rom. Rep. Phys., 65, pp. 84-93, 2013.
-
(2013)
Rom. Rep. Phys.
, vol.65
, pp. 84-93
-
-
Golmankhaneh, A.K.1
-
27
-
-
0036887936
-
Chaos, fractional kinetics, and anomalous transport
-
G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371, 6, pp. 461-580, 2002.
-
(2002)
Phys. Rep.
, vol.371
, Issue.6
, pp. 461-580
-
-
Zaslavsky, G.M.1
-
28
-
-
0001536558
-
Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended
-
R. Metzler, J. Klafter, I. M. Sokolov, Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended, Phys. Rev. E, 58, pp. 1621-1633, 1998.
-
(1998)
Phys. Rev. e
, vol.58
, pp. 1621-1633
-
-
Metzler, R.1
Klafter, J.2
Sokolov, I.M.3
-
29
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, pp. 1-77, 2000.
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
30
-
-
41349112464
-
Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: Application to the theory of Neolithic transition
-
M. O. Vlad, J. Ross, Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: Application to the theory of Neolithic transition, Phys. Rev. E, 66, 061908, 2002.
-
(2002)
Phys. Rev. e
, vol.66
, pp. 061908
-
-
Vlad, M.O.1
Ross, J.2
-
31
-
-
33748295799
-
Fractional diffusion models of nonlocal transport
-
D. Del-Castillo-Negrete, Fractional diffusion models of nonlocal transport, Phys. Plasma, 13, 082308, 2006.
-
(2006)
Phys. Plasma
, vol.13
, pp. 082308
-
-
Del-Castillo-Negrete, D.1
-
32
-
-
35548973459
-
Fractional theory for transport in disordered semiconductors
-
V. V. Uchaikin, R. T. Sibatov, Fractional theory for transport in disordered semiconductors, Comm. Nonlin. Sci. Numer. Simul., 13, 4, pp. 715-727, 2008.
-
(2008)
Comm. Nonlin. Sci. Numer. Simul.
, vol.13
, Issue.4
, pp. 715-727
-
-
Uchaikin, V.V.1
Sibatov, R.T.2
-
33
-
-
70349986628
-
Analytical method based on Walsh function combined with orthogonal polynomial for fractional transport equation
-
A. Kadem, D. Baleanu, Analytical method based on Walsh function combined with orthogonal polynomial for fractional transport equation, Comm. Nonlin. Sci. Numer. Simul., 15, 3, pp. 491-501, 2010.
-
(2010)
Comm. Nonlin. Sci. Numer. Simul.
, vol.15
, Issue.3
, pp. 491-501
-
-
Kadem, A.1
Baleanu, D.2
-
34
-
-
79952536080
-
Solution of a fractional transport equation by using the generalized quadratic form
-
A. Kadem, D. Baleanu, Solution of a fractional transport equation by using the generalized quadratic form, Comm. Nonlin. Sci. Numer. Simul., 16, 8, pp. 3011-3014, 2011.
-
(2011)
Comm. Nonlin. Sci. Numer. Simul.
, vol.16
, Issue.8
, pp. 3011-3014
-
-
Kadem, A.1
Baleanu, D.2
-
37
-
-
0040655648
-
Fractional differentiability of nowhere differentiable functions and dimensions
-
K. M. Kolwankar, A. D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos, 6, 4, pp. 505-513, 1996.
-
(1996)
Chaos
, vol.6
, Issue.4
, pp. 505-513
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
38
-
-
78649351641
-
Investigation on fractional and fractal derivative relaxation- oscillation models
-
W. Chen, X. D. Zhang, D. Korosak, Investigation on fractional and fractal derivative relaxation- oscillation models, Inter. J. Nonlin. Sci. Numer. Simul., 11, pp. 3-9, 2010.
-
(2010)
Inter. J. Nonlin. Sci. Numer. Simul.
, vol.11
, pp. 3-9
-
-
Chen, W.1
Zhang, X.D.2
Korosak, D.3
-
39
-
-
33745108563
-
Lagrange characteristic method for solving a class of nonlinear partial differential equations of fractional order
-
G. Jumarie, Lagrange characteristic method for solving a class of nonlinear partial differential equations of fractional order, Appl. Math. Lett., 19, pp. 873-880, 2006.
-
(2006)
Appl. Math. Lett.
, vol.19
, pp. 873-880
-
-
Jumarie, G.1
-
40
-
-
79955145165
-
A new fractal derivation
-
J. H. He, A new fractal derivation, Ther. Sci., 15, pp. S145-S147, 2011.
-
(2011)
Ther. Sci.
, vol.15
, pp. 145-147
-
-
He, J.H.1
-
41
-
-
84874182595
-
One-phase problems for discontinuous heat transfer in fractal media
-
M. S. Hu, D. Baleanu, X. J. Yang, One-phase problems for discontinuous heat transfer in fractal media, Math. Probl. Eng., 2013, 358473, 2013.
-
(2013)
Math. Probl. Eng.
, vol.2013
, pp. 358473
-
-
Hu, M.S.1
Baleanu, D.2
Yang, X.J.3
-
42
-
-
84874162681
-
The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems
-
X. J. Yang, The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems, Prespacetime J., 3, 9, pp. 913-923, 2012.
-
(2012)
Prespacetime J.
, vol.3
, Issue.9
, pp. 913-923
-
-
Yang, X.J.1
-
43
-
-
84879324154
-
Fractal heat conduction problem solved by local fractional variation iteration method
-
Doi: 10.2298/TSCI121124216Y
-
X. J. Yang, D. Baleanu, Fractal heat conduction problem solved by local fractional variation iteration method, Ther. Sci., 2012, Doi: 10.2298/TSCI121124216Y.
-
(2012)
Ther. Sci.
-
-
Yang, X.J.1
Baleanu, D.2
-
44
-
-
84878993985
-
Approximation solutions for diffusion equation on cantor time-space
-
Xiao-Jun Yang, D. Baleanu, W. P. , Approximation solutions for diffusion equation on Cantor time-space, Proc. Romanian Acad. A, 14, pp. 127-133, 2013.
-
(2013)
Proc. Romanian Acad. A
, vol.14
, pp. 127-133
-
-
Yang, X.-J.1
Baleanu, D.2
Zhong, W.P.3
-
45
-
-
84872148874
-
Local fractional Fourier series with application to wave equation in fractal vibrating string
-
M. S. Hu, R. P. Agarwal, X. J. Yang, Local fractional Fourier series with application to wave equation in fractal vibrating string, Abstr. Appl. Anal., 2012, 567401, 2012.
-
(2012)
Abstr. Appl. Anal.
, vol.2012
, pp. 567401
-
-
Hu, M.S.1
Agarwal, R.P.2
Yang, X.J.3
-
46
-
-
84888024365
-
-
G. A. Anastassiou, O. Duman, Eds.,Springer, New York, USA
-
M. K. Liao, X. J. Yang, Q. Yan, A new viewpoint to Fourier analysis in fractal space, in Advances in Applied Mathematics and Approximation Theory, G. A. Anastassiou, O. Duman, Eds., Springer, New York, USA, 2013, Chap. 26, pp. 399-411.
-
(2013)
A New Viewpoint to Fourier Analysis in Fractal Space, in advances in applied mathematics and approximation theory
, pp. 399-411
-
-
Liao, M.K.1
Yang, X.J.2
Yan, Q.3
-
47
-
-
84857467321
-
Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral
-
W. P. Zhong, F. Gao, X. M. Shen, Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral, Adv. Mat. Res., 461, pp. 306-310, 2012.
-
(2012)
Adv. Mat. Res.
, vol.461
, pp. 306-310
-
-
Zhong, W.P.1
Gao, F.2
Shen, X.M.3
-
48
-
-
84869494625
-
Asymptotic methods for solitary solutions and compactons
-
J. H. He, Asymptotic methods for solitary solutions and compactons, Abstr. Appl. Anal., 2012, 916793, 2012.
-
(2012)
Abstr. Appl. Anal.
, vol.2012
, pp. 916793
-
-
He, J.H.1
-
49
-
-
79955470495
-
Fractional complex transform for fractional differential equations
-
Z. B. Li, J. H. He, Fractional complex transform for fractional differential equations, Math. Comput. Appl., 15, 5, pp. 970-973, 2010.
-
(2010)
Math. Comput. Appl.
, vol.15
, Issue.5
, pp. 970-973
-
-
Li, Z.B.1
He, J.H.2
-
50
-
-
84868613849
-
Converting fractional differential equations into partial differential equations
-
J. H. He, Z. B. Li, Converting fractional differential equations into partial differential equations, Ther. Sci., 16, 2, pp. 331-334, 2012.
-
(2012)
Ther. Sci.
, vol.16
, Issue.2
, pp. 331-334
-
-
He, J.H.1
Li, Z.B.2
-
51
-
-
80051855070
-
An extended fractional complex transform
-
Z. B. Li, An extended fractional complex transform, J. Non. Sci. Num. Simul., 11, pp. 335-337, 2010.
-
(2010)
J. Non. Sci. Num. Simul
, vol.11
, pp. 335-337
-
-
Li, Z.B.1
-
52
-
-
84860388823
-
A short remark on fractional variational iteration method
-
J. H. He, A short remark on fractional variational iteration method, Phys. Lett. A, 375, 38, pp. 3362-3364, 2011.
-
(2011)
Phys. Lett. A
, vol.375
, Issue.38
, pp. 3362-3364
-
-
He, J.H.1
-
53
-
-
80051828842
-
Application of the fractional complex transform to fractional differential equations
-
Z. B. Li, J.H. He, Application of the fractional complex transform to fractional differential equations, Nonlin. Sci. Letters A, 2, 3, pp. 121-126, 2011.
-
(2011)
Nonlin. Sci. Letters A
, vol.2
, Issue.3
, pp. 121-126
-
-
Li, Z.B.1
He, J.H.2
-
54
-
-
84868609962
-
Exact solutions of time-fractional heat conduction equation by the fractional complex transform
-
Z. B. Li, W. H. Zhu, J. H. He, Exact solutions of time-fractional heat conduction equation by the fractional complex transform, Ther. Sci., 16, 2, pp. 335-338, 2012.
-
(2012)
Ther. Sci.
, vol.16
, Issue.2
, pp. 335-338
-
-
Li, Z.B.1
Zhu, W.H.2
He, J.H.3
-
55
-
-
84855203771
-
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
-
J. H. He, S. K. Elagan, Z. B. Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys. Lett. A, 376, 4, pp. 257-259, 2012.
-
(2012)
Phys. Lett. A
, vol.376
, Issue.4
, pp. 257-259
-
-
He, J.H.1
Elagan, S.K.2
Li, Z.B.3
-
56
-
-
84871847812
-
Complex transforms for systems of fractional differential equations
-
R. W. Ibrahim, Complex transforms for systems of fractional differential equations, Abstr. Appl. Anal., 2012, 814759, 2012.
-
(2012)
Abstr. Appl. Anal.
, vol.2012
, pp. 814759
-
-
Ibrahim, R.W.1
-
57
-
-
84861498408
-
Solving system of fractional differential equations by fractional complex transform method
-
DOI: 10.3923/ajaps.2012
-
B. Ghazanfari, A. G. Ghazanfari, Solving system of fractional differential equations by fractional complex transform method, Asian J. Appl. Sci., DOI: 10.3923/ajaps.2012.
-
Asian J. Appl. Sci.
-
-
Ghazanfari, B.1
Ghazanfari, A.G.2
-
58
-
-
0010996358
-
On two-dimensional Hamiltonian transport equations with continuous coefficients
-
F. Bouchut, L. Desvillettes, On two-dimensional Hamiltonian transport equations with continuous coefficients, Diff. Integral Eqs., 14, 8, pp.1015-1024, 2001.
-
(2001)
Diff. Integral Eqs.
, vol.14
, Issue.8
, pp. 1015-1024
-
-
Bouchut, F.1
Desvillettes, L.2
-
59
-
-
77949722263
-
Reduced basis method for quadratically nonlinear transport equations
-
N. Jung, B. Haasdonk, D. Kroner, Reduced basis method for quadratically nonlinear transport equations, Inter. J. Comput. Sci. Math., 2, 4, pp. 334-353, 2009.
-
(2009)
Inter. J. Comput. Sci. Math.
, vol.2
, Issue.4
, pp. 334-353
-
-
Jung, N.1
Haasdonk, B.2
Kroner, D.3
|