-
1
-
-
27744509855
-
Compactons, solitons and periodic solutions for some forms of nonlinear Klein-Gordon equations
-
DOI 10.1016/j.chaos.2005.08.145, PII S096007790500799X
-
Wazwaz A.-M., Compactons, solitons and periodic solutions for some forms of nonlinear Klein-Gordon equations. Chaos, Solitons & Fractals 2006 28 4 1005 1013 10.1016/j.chaos.2005.08.145 MR2212787 ZBL1099.35125 (Pubitemid 41607601)
-
(2006)
Chaos, Solitons and Fractals
, vol.28
, Issue.4
, pp. 1005-1013
-
-
Wazwaz, A.-M.1
-
2
-
-
43549101930
-
The variational iteration method for studying the Klein-Gordon equation
-
DOI 10.1016/j.aml.2007.07.023, PII S0893965907002303
-
Yusufoǧlu E., The variational iteration method for studying the Klein-Gordon equation. Applied Mathematics Letters 2008 21 7 669 674 10.1016/j.aml.2007.07.023 MR2423043 ZBL1152.65475 (Pubitemid 351680544)
-
(2008)
Applied Mathematics Letters
, vol.21
, Issue.7
, pp. 669-674
-
-
Yusufoglu, E.1
-
3
-
-
25144449613
-
The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation
-
DOI 10.1016/j.amc.2004.08.006, PII S0096300304005600
-
Wazwaz A.-M., The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation. Applied Mathematics and Computation 2005 167 2 1179 1195 10.1016/j.amc.2004.08.006 MR2169760 ZBL1082.65584 (Pubitemid 41344817)
-
(2005)
Applied Mathematics and Computation
, vol.167
, Issue.2
, pp. 1179-1195
-
-
Wazwaz, A.-M.1
-
4
-
-
0038577058
-
The decomposition method for studying the Klein-Gordon equation
-
10.1016/S0960-0779(02)00647-1 MR1988710 ZBL1068.35069
-
El-Sayed S. M., The decomposition method for studying the Klein-Gordon equation. Chaos, Solitons & Fractals 2003 18 5 1025 1030 10.1016/S0960-0779(02)00647-1 MR1988710 ZBL1068.35069
-
(2003)
Chaos, Solitons & Fractals
, vol.18
, Issue.5
, pp. 1025-1030
-
-
El-Sayed, S.M.1
-
5
-
-
61849114184
-
Differential transform method for solving the linear and nonlinear Klein-Gordon equation
-
10.1016/j.cpc.2008.11.012 MR2678291 ZBL1198.81038
-
Ravi Kanth A. S. V., Aruna K., Differential transform method for solving the linear and nonlinear Klein-Gordon equation. Computer Physics Communications 2009 180 5 708 711 10.1016/j.cpc.2008.11.012 MR2678291 ZBL1198.81038
-
(2009)
Computer Physics Communications
, vol.180
, Issue.5
, pp. 708-711
-
-
Ravi Kanth, A.S.V.1
Aruna, K.2
-
6
-
-
63449096068
-
Application of homotopy-perturbation method to Klein-Gordon and sine-Gordon equations
-
10.1016/j.chaos.2007.06.091 MR2514578 ZBL1197.65164
-
Chowdhury M. S. H., Hashim I., Application of homotopy-perturbation method to Klein-Gordon and sine-Gordon equations. Chaos, Solitons & Fractals 2009 39 4 1928 1935 10.1016/j.chaos.2007.06.091 MR2514578 ZBL1197.65164
-
(2009)
Chaos, Solitons & Fractals
, vol.39
, Issue.4
, pp. 1928-1935
-
-
Chowdhury, M.S.H.1
Hashim, I.2
-
7
-
-
78049333706
-
On nonlinear fractional KleinGordon equation
-
2-s2.0-78049333706 10.1016/j.sigpro.2010.04.016
-
Golmankhaneh A. K., Golmankhaneh A. K., Baleanu D., On nonlinear fractional KleinGordon equation. Signal Processing 2011 91 3 446 451 2-s2.0-78049333706 10.1016/j.sigpro.2010.04.016
-
(2011)
Signal Processing
, vol.91
, Issue.3
, pp. 446-451
-
-
Golmankhaneh, A.K.1
Golmankhaneh, A.K.2
Baleanu, D.3
-
8
-
-
84873401814
-
Solving the fractional nonlinear Klein-Gordon equation by means of the homotopy analysis method
-
10.1186/1687-1847-2012-187 MR3016697, ARTICLE 187
-
Kurulay M., Solving the fractional nonlinear Klein-Gordon equation by means of the homotopy analysis method. Advances in Difference Equations 2012 2012 1, article 187 1 8 10.1186/1687-1847-2012-187 MR3016697
-
(2012)
Advances in Difference Equations
, vol.2012
, Issue.1
, pp. 1-8
-
-
Kurulay, M.1
-
9
-
-
84873402475
-
Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation
-
010201
-
Gepreel K. A., Mohamed M. S., Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation. Chinese Physics B 2013 22 1 010201
-
(2013)
Chinese Physics B
, vol.22
, Issue.1
-
-
Gepreel, K.A.1
Mohamed, M.S.2
-
10
-
-
0001707390
-
Local fractional Fokker-Planck equation
-
Kolwankar K. M., Gangal A. D., Local fractional Fokker-Planck equation. Physical Review Letters 1998 80 2 214 217 10.1103/PhysRevLett.80.214 MR1604435 ZBL0945.82005 (Pubitemid 128621921)
-
(1998)
Physical Review Letters
, vol.80
, Issue.2
, pp. 214-217
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
11
-
-
0035834542
-
Static-kinematic duality and the principle of virtual work in the mechanics of fractal media
-
DOI 10.1016/S0045-7825(01)00241-9, PII S0045782501002419, Micromechanics of Brittle Materials and Stochastic Analysis of Mechanical Systems
-
Carpinteri A., Chiaia B., Cornetti P., Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Computer Methods in Applied Mechanics and Engineering 2001 191 1-2 3 19 2-s2.0-0035834542 10.1016/S0045-7825(01)00241-9 (Pubitemid 33105419)
-
(2001)
Computer Methods in Applied Mechanics and Engineering
, vol.191
, Issue.1-2
, pp. 3-19
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
13
-
-
84884851076
-
Lagrangian and Hamiltonian mechanics on fractals subset of real-line
-
10.1007/s10773-013-1733-x MR3108745 ZBL06251914
-
Golmankhaneh A. K., Golmankhaneh A. K., Baleanu D., Lagrangian and Hamiltonian mechanics on fractals subset of real-line. International Journal of Theoretical Physics 2013 52 11 4210 4217 10.1007/s10773-013-1733-x MR3108745 ZBL06251914
-
(2013)
International Journal of Theoretical Physics
, vol.52
, Issue.11
, pp. 4210-4217
-
-
Golmankhaneh, A.K.1
Golmankhaneh, A.K.2
Baleanu, D.3
-
15
-
-
84883797083
-
Stresses and strains in a deformable fractal medium and in its fractal continuum model
-
10.1016/j.physleta.2013.07.029 MR3143472
-
Balankin A. S., Stresses and strains in a deformable fractal medium and in its fractal continuum model. Physics Letters A 2013 377 38 2535 2541 10.1016/j.physleta.2013.07.029 MR3143472
-
(2013)
Physics Letters A
, vol.377
, Issue.38
, pp. 2535-2541
-
-
Balankin, A.S.1
-
17
-
-
84884896550
-
The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar
-
Yang A. M., Zhang Y. Z., Long Y., The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar. Thermal Science 2013 17 3 707 713
-
(2013)
Thermal Science
, vol.17
, Issue.3
, pp. 707-713
-
-
Yang, A.M.1
Zhang, Y.Z.2
Long, Y.3
-
18
-
-
84893184829
-
Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative
-
176395 10.1155/2014/176395
-
Wang S. Q., Yang Y. J., Jassim H. K., Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative. Abstract and Applied Analysis 2014 2014 7 176395 10.1155/2014/176395
-
(2014)
Abstract and Applied Analysis
, vol.2014
, pp. 7
-
-
Wang, S.Q.1
Yang, Y.J.2
Jassim, H.K.3
-
19
-
-
84887314286
-
Exp-function method for fractional differential equations
-
10.1515/ijnsns-2011-0132 MR3118435
-
He J.-H., Exp-function method for fractional differential equations. International Journal of Nonlinear Sciences and Numerical Simulation 2013 14 6 363 366 10.1515/ijnsns-2011-0132 MR3118435
-
(2013)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.14
, Issue.6
, pp. 363-366
-
-
He, J.-H.1
-
20
-
-
84890267857
-
Transport equations in fractal porous media within fractional complex transform method
-
Yang X.-J., Baleanu D., He J.-H., Transport equations in fractal porous media within fractional complex transform method. Proceedings of the Romanian Academy A 2013 14 4 287 292
-
(2013)
Proceedings of the Romanian Academy A
, vol.14
, Issue.4
, pp. 287-292
-
-
Yang, X.-J.1
Baleanu, D.2
He, J.-H.3
-
21
-
-
84879302696
-
Local fractional series expansion method for solving wave and diffusion equations on Cantor sets
-
351057 10.1155/2013/351057 MR3064518
-
Yang A.-M., Yang X.-J., Li Z.-B., Local fractional series expansion method for solving wave and diffusion equations on Cantor sets. Abstract and Applied Analysis 2013 2013 5 351057 10.1155/2013/351057 MR3064518
-
(2013)
Abstract and Applied Analysis
, vol.2013
, pp. 5
-
-
Yang, A.-M.1
Yang, X.-J.2
Li, Z.-B.3
-
22
-
-
84884846665
-
Approximation solutions for local fractional Schrödinger equation in the one-dimensional Cantorian system
-
291386 10.1155/2013/291386 MR3102791
-
Zhao Y., Cheng D.-F., Yang X.-J., Approximation solutions for local fractional Schrödinger equation in the one-dimensional Cantorian system. Advances in Mathematical Physics 2013 2013 5 291386 10.1155/2013/291386 MR3102791
-
(2013)
Advances in Mathematical Physics
, vol.2013
, pp. 5
-
-
Zhao, Y.1
Cheng, D.-F.2
Yang, X.-J.3
-
23
-
-
84890038237
-
Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving local fractional derivative operators
-
259125 10.1155/2013/259125
-
Yang A. M., Chen Z. S., Srivastava H. M., Yang X. -J., Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving local fractional derivative operators. Abstract and Applied Analysis 2013 2013 6 259125 10.1155/2013/259125
-
(2013)
Abstract and Applied Analysis
, vol.2013
, pp. 6
-
-
Yang, A.M.1
Chen, Z.S.2
Srivastava, H.M.3
Yang, X.-J.4
|