메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages

Application of local fractional series expansion method to solve Klein-Gordon equations on cantor sets

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84897554943     PISSN: 10853375     EISSN: 16870409     Source Type: Journal    
DOI: 10.1155/2014/372741     Document Type: Article
Times cited : (82)

References (23)
  • 1
    • 27744509855 scopus 로고    scopus 로고
    • Compactons, solitons and periodic solutions for some forms of nonlinear Klein-Gordon equations
    • DOI 10.1016/j.chaos.2005.08.145, PII S096007790500799X
    • Wazwaz A.-M., Compactons, solitons and periodic solutions for some forms of nonlinear Klein-Gordon equations. Chaos, Solitons & Fractals 2006 28 4 1005 1013 10.1016/j.chaos.2005.08.145 MR2212787 ZBL1099.35125 (Pubitemid 41607601)
    • (2006) Chaos, Solitons and Fractals , vol.28 , Issue.4 , pp. 1005-1013
    • Wazwaz, A.-M.1
  • 2
    • 43549101930 scopus 로고    scopus 로고
    • The variational iteration method for studying the Klein-Gordon equation
    • DOI 10.1016/j.aml.2007.07.023, PII S0893965907002303
    • Yusufoǧlu E., The variational iteration method for studying the Klein-Gordon equation. Applied Mathematics Letters 2008 21 7 669 674 10.1016/j.aml.2007.07.023 MR2423043 ZBL1152.65475 (Pubitemid 351680544)
    • (2008) Applied Mathematics Letters , vol.21 , Issue.7 , pp. 669-674
    • Yusufoglu, E.1
  • 3
    • 25144449613 scopus 로고    scopus 로고
    • The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation
    • DOI 10.1016/j.amc.2004.08.006, PII S0096300304005600
    • Wazwaz A.-M., The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation. Applied Mathematics and Computation 2005 167 2 1179 1195 10.1016/j.amc.2004.08.006 MR2169760 ZBL1082.65584 (Pubitemid 41344817)
    • (2005) Applied Mathematics and Computation , vol.167 , Issue.2 , pp. 1179-1195
    • Wazwaz, A.-M.1
  • 4
    • 0038577058 scopus 로고    scopus 로고
    • The decomposition method for studying the Klein-Gordon equation
    • 10.1016/S0960-0779(02)00647-1 MR1988710 ZBL1068.35069
    • El-Sayed S. M., The decomposition method for studying the Klein-Gordon equation. Chaos, Solitons & Fractals 2003 18 5 1025 1030 10.1016/S0960-0779(02)00647-1 MR1988710 ZBL1068.35069
    • (2003) Chaos, Solitons & Fractals , vol.18 , Issue.5 , pp. 1025-1030
    • El-Sayed, S.M.1
  • 5
    • 61849114184 scopus 로고    scopus 로고
    • Differential transform method for solving the linear and nonlinear Klein-Gordon equation
    • 10.1016/j.cpc.2008.11.012 MR2678291 ZBL1198.81038
    • Ravi Kanth A. S. V., Aruna K., Differential transform method for solving the linear and nonlinear Klein-Gordon equation. Computer Physics Communications 2009 180 5 708 711 10.1016/j.cpc.2008.11.012 MR2678291 ZBL1198.81038
    • (2009) Computer Physics Communications , vol.180 , Issue.5 , pp. 708-711
    • Ravi Kanth, A.S.V.1    Aruna, K.2
  • 6
    • 63449096068 scopus 로고    scopus 로고
    • Application of homotopy-perturbation method to Klein-Gordon and sine-Gordon equations
    • 10.1016/j.chaos.2007.06.091 MR2514578 ZBL1197.65164
    • Chowdhury M. S. H., Hashim I., Application of homotopy-perturbation method to Klein-Gordon and sine-Gordon equations. Chaos, Solitons & Fractals 2009 39 4 1928 1935 10.1016/j.chaos.2007.06.091 MR2514578 ZBL1197.65164
    • (2009) Chaos, Solitons & Fractals , vol.39 , Issue.4 , pp. 1928-1935
    • Chowdhury, M.S.H.1    Hashim, I.2
  • 7
    • 78049333706 scopus 로고    scopus 로고
    • On nonlinear fractional KleinGordon equation
    • 2-s2.0-78049333706 10.1016/j.sigpro.2010.04.016
    • Golmankhaneh A. K., Golmankhaneh A. K., Baleanu D., On nonlinear fractional KleinGordon equation. Signal Processing 2011 91 3 446 451 2-s2.0-78049333706 10.1016/j.sigpro.2010.04.016
    • (2011) Signal Processing , vol.91 , Issue.3 , pp. 446-451
    • Golmankhaneh, A.K.1    Golmankhaneh, A.K.2    Baleanu, D.3
  • 8
    • 84873401814 scopus 로고    scopus 로고
    • Solving the fractional nonlinear Klein-Gordon equation by means of the homotopy analysis method
    • 10.1186/1687-1847-2012-187 MR3016697, ARTICLE 187
    • Kurulay M., Solving the fractional nonlinear Klein-Gordon equation by means of the homotopy analysis method. Advances in Difference Equations 2012 2012 1, article 187 1 8 10.1186/1687-1847-2012-187 MR3016697
    • (2012) Advances in Difference Equations , vol.2012 , Issue.1 , pp. 1-8
    • Kurulay, M.1
  • 9
    • 84873402475 scopus 로고    scopus 로고
    • Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation
    • 010201
    • Gepreel K. A., Mohamed M. S., Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation. Chinese Physics B 2013 22 1 010201
    • (2013) Chinese Physics B , vol.22 , Issue.1
    • Gepreel, K.A.1    Mohamed, M.S.2
  • 10
    • 0001707390 scopus 로고    scopus 로고
    • Local fractional Fokker-Planck equation
    • Kolwankar K. M., Gangal A. D., Local fractional Fokker-Planck equation. Physical Review Letters 1998 80 2 214 217 10.1103/PhysRevLett.80.214 MR1604435 ZBL0945.82005 (Pubitemid 128621921)
    • (1998) Physical Review Letters , vol.80 , Issue.2 , pp. 214-217
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 11
    • 0035834542 scopus 로고    scopus 로고
    • Static-kinematic duality and the principle of virtual work in the mechanics of fractal media
    • DOI 10.1016/S0045-7825(01)00241-9, PII S0045782501002419, Micromechanics of Brittle Materials and Stochastic Analysis of Mechanical Systems
    • Carpinteri A., Chiaia B., Cornetti P., Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Computer Methods in Applied Mechanics and Engineering 2001 191 1-2 3 19 2-s2.0-0035834542 10.1016/S0045-7825(01)00241-9 (Pubitemid 33105419)
    • (2001) Computer Methods in Applied Mechanics and Engineering , vol.191 , Issue.1-2 , pp. 3-19
    • Carpinteri, A.1    Chiaia, B.2    Cornetti, P.3
  • 13
    • 84884851076 scopus 로고    scopus 로고
    • Lagrangian and Hamiltonian mechanics on fractals subset of real-line
    • 10.1007/s10773-013-1733-x MR3108745 ZBL06251914
    • Golmankhaneh A. K., Golmankhaneh A. K., Baleanu D., Lagrangian and Hamiltonian mechanics on fractals subset of real-line. International Journal of Theoretical Physics 2013 52 11 4210 4217 10.1007/s10773-013-1733-x MR3108745 ZBL06251914
    • (2013) International Journal of Theoretical Physics , vol.52 , Issue.11 , pp. 4210-4217
    • Golmankhaneh, A.K.1    Golmankhaneh, A.K.2    Baleanu, D.3
  • 15
    • 84883797083 scopus 로고    scopus 로고
    • Stresses and strains in a deformable fractal medium and in its fractal continuum model
    • 10.1016/j.physleta.2013.07.029 MR3143472
    • Balankin A. S., Stresses and strains in a deformable fractal medium and in its fractal continuum model. Physics Letters A 2013 377 38 2535 2541 10.1016/j.physleta.2013.07.029 MR3143472
    • (2013) Physics Letters A , vol.377 , Issue.38 , pp. 2535-2541
    • Balankin, A.S.1
  • 17
    • 84884896550 scopus 로고    scopus 로고
    • The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar
    • Yang A. M., Zhang Y. Z., Long Y., The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar. Thermal Science 2013 17 3 707 713
    • (2013) Thermal Science , vol.17 , Issue.3 , pp. 707-713
    • Yang, A.M.1    Zhang, Y.Z.2    Long, Y.3
  • 18
    • 84893184829 scopus 로고    scopus 로고
    • Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative
    • 176395 10.1155/2014/176395
    • Wang S. Q., Yang Y. J., Jassim H. K., Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative. Abstract and Applied Analysis 2014 2014 7 176395 10.1155/2014/176395
    • (2014) Abstract and Applied Analysis , vol.2014 , pp. 7
    • Wang, S.Q.1    Yang, Y.J.2    Jassim, H.K.3
  • 19
    • 84887314286 scopus 로고    scopus 로고
    • Exp-function method for fractional differential equations
    • 10.1515/ijnsns-2011-0132 MR3118435
    • He J.-H., Exp-function method for fractional differential equations. International Journal of Nonlinear Sciences and Numerical Simulation 2013 14 6 363 366 10.1515/ijnsns-2011-0132 MR3118435
    • (2013) International Journal of Nonlinear Sciences and Numerical Simulation , vol.14 , Issue.6 , pp. 363-366
    • He, J.-H.1
  • 20
    • 84890267857 scopus 로고    scopus 로고
    • Transport equations in fractal porous media within fractional complex transform method
    • Yang X.-J., Baleanu D., He J.-H., Transport equations in fractal porous media within fractional complex transform method. Proceedings of the Romanian Academy A 2013 14 4 287 292
    • (2013) Proceedings of the Romanian Academy A , vol.14 , Issue.4 , pp. 287-292
    • Yang, X.-J.1    Baleanu, D.2    He, J.-H.3
  • 21
    • 84879302696 scopus 로고    scopus 로고
    • Local fractional series expansion method for solving wave and diffusion equations on Cantor sets
    • 351057 10.1155/2013/351057 MR3064518
    • Yang A.-M., Yang X.-J., Li Z.-B., Local fractional series expansion method for solving wave and diffusion equations on Cantor sets. Abstract and Applied Analysis 2013 2013 5 351057 10.1155/2013/351057 MR3064518
    • (2013) Abstract and Applied Analysis , vol.2013 , pp. 5
    • Yang, A.-M.1    Yang, X.-J.2    Li, Z.-B.3
  • 22
    • 84884846665 scopus 로고    scopus 로고
    • Approximation solutions for local fractional Schrödinger equation in the one-dimensional Cantorian system
    • 291386 10.1155/2013/291386 MR3102791
    • Zhao Y., Cheng D.-F., Yang X.-J., Approximation solutions for local fractional Schrödinger equation in the one-dimensional Cantorian system. Advances in Mathematical Physics 2013 2013 5 291386 10.1155/2013/291386 MR3102791
    • (2013) Advances in Mathematical Physics , vol.2013 , pp. 5
    • Zhao, Y.1    Cheng, D.-F.2    Yang, X.-J.3
  • 23
    • 84890038237 scopus 로고    scopus 로고
    • Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving local fractional derivative operators
    • 259125 10.1155/2013/259125
    • Yang A. M., Chen Z. S., Srivastava H. M., Yang X. -J., Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving local fractional derivative operators. Abstract and Applied Analysis 2013 2013 6 259125 10.1155/2013/259125
    • (2013) Abstract and Applied Analysis , vol.2013 , pp. 6
    • Yang, A.M.1    Chen, Z.S.2    Srivastava, H.M.3    Yang, X.-J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.