-
1
-
-
0005001094
-
The Decomposition Approach to Inverse Heat Conduction
-
Lesnic, D., Elliott, L., The Decomposition Approach to Inverse Heat Conduction, Journal of Mathematical Analysis and Applications, 232 (1999), 1, pp. 82-98
-
(1999)
Journal of Mathematical Analysis and Applications
, vol.232
, Issue.1
, pp. 82-98
-
-
Lesnic, D.1
Elliott, L.2
-
2
-
-
77952823001
-
Theory of Thermoelasticity Based on the Space-Time-Fractional Heat Conduction Equation
-
(6pp)
-
Povstenko, Y. Z., Theory of Thermoelasticity Based on the Space-Time-Fractional Heat Conduction Equation, Physica Scripta, T136 (2009), pp. 014-017 (6pp)
-
(2009)
Physica Scripta
, vol.T136
, pp. 014-017
-
-
Povstenko, Y.Z.1
-
3
-
-
84874182595
-
One-Phase Problems for Discontinuous Heat Transfer in Fractal Media
-
Mathematical Problems in Engineering
-
Hu, M. S., et al., One-Phase Problems for Discontinuous Heat Transfer in Fractal Media, Mathematical Problems in Engineering (2013), 0358473
-
(2013)
, pp. 0358473
-
-
Hu, M.S.1
-
4
-
-
84879324154
-
Fractal Heat Conduction Problem Solved by Local Fractional Variation Iteration Method
-
Yang, X. J., Baleanu, D., Fractal Heat Conduction Problem Solved by Local Fractional Variation Iteration Method, Thermal Science, 17 (2013), 2, pp. 625-628
-
(2013)
Thermal Science
, vol.17
, Issue.2
, pp. 625-628
-
-
Yang, X.J.1
Baleanu, D.2
-
5
-
-
84872148874
-
Local Fractional Fourier Series with Application to Wave Equation in Fractal Vibrating String
-
Abstract and Applied Analysis, ID 567401
-
Hu, M. S., et al., Local Fractional Fourier Series with Application to Wave Equation in Fractal Vibrating String, Abstract and Applied Analysis, 2012, ID 567401, pp. 1-15
-
(2012)
, pp. 1-15
-
-
Hu, M.S.1
-
6
-
-
84871843060
-
Advanced Local Fractional Calculus and its Applications
-
World Science Publisher, New York, USA
-
Yang, X. J., Advanced Local Fractional Calculus and its Applications, World Science Publisher, New York, USA, 2012
-
(2012)
-
-
Yang, X.J.1
-
7
-
-
84857478992
-
Local Fractional Functional Analysis and its Applications
-
Asian Academic Publisher, Hong Kong, China
-
Yang, X. J., Local Fractional Functional Analysis and its Applications, Asian Academic Publisher, Hong Kong, China, 2011
-
(2011)
-
-
Yang, X.J.1
-
8
-
-
0000092673
-
Variational Iteration Method - a Kind of Non-Linear Analytical Technique: Some Examples
-
He, J. H., Variational Iteration Method - a Kind of Non-Linear Analytical Technique: Some Examples, Int. J. Non-L. Mech., 34 (1999), 4, pp. 699-708
-
(1999)
Int. J. Non-L. Mech.
, vol.34
, Issue.4
, pp. 699-708
-
-
He, J.H.1
-
9
-
-
84874713172
-
Applications of the Variational Iteration Method to Fractional Diffusion Equations: Local Versus Nonlocal Ones
-
Wu, G. C., Applications of the Variational Iteration Method to Fractional Diffusion Equations: Local Versus Nonlocal Ones, International Review of Chemical Engineering, 4 (2012), 5, pp. 505-510
-
(2012)
International Review of Chemical Engineering
, vol.4
, Issue.5
, pp. 505-510
-
-
Wu, G.C.1
-
10
-
-
84874082957
-
An Exercise with the He's Variation Iteration Method to a Fractional Bernoulli Equation Arising in a Transient Conduction with a Non-Linear Boundary Heat Flux
-
Hristov, J., An Exercise with the He's Variation Iteration Method to a Fractional Bernoulli Equation Arising in a Transient Conduction with a Non-Linear Boundary Heat Flux, International Review of Chemical Engineering, 4 (2012), 5, pp. 489-497
-
(2012)
International Review of Chemical Engineering
, vol.4
, Issue.5
, pp. 489-497
-
-
Hristov, J.1
-
11
-
-
17844387391
-
Homotopy Perturbation Method for Bifurcation on Nonlinear Problems
-
He, J. H., Homotopy Perturbation Method for Bifurcation on Nonlinear Problems, Int. J. Nonlinear Sci. Numer. Simul., 6 (2005), 2, pp. 207-208
-
(2005)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.6
, Issue.2
, pp. 207-208
-
-
He, J.H.1
-
12
-
-
84869494625
-
Asymptotic Methods for Solitary Solutions and Compactons
-
Abstract and Applied Analysis, ID 916793
-
He, J. H., Asymptotic Methods for Solitary Solutions and Compactons, Abstract and Applied Analysis 2012, ID 916793
-
(2012)
-
-
He, J.H.1
-
13
-
-
79953679592
-
Approximate Solutions to Fractional Sub-Diffusion Equations: The Heat-Balance Integral Method
-
Hristov, J., Approximate Solutions to Fractional Sub-Diffusion Equations: The Heat-Balance Integral Method, Eur. Phys. J. Special Topics, 193 (2011), 4, pp. 229-243
-
(2011)
Eur. Phys. J. Special Topics
, vol.193
, Issue.4
, pp. 229-243
-
-
Hristov, J.1
-
14
-
-
77955895114
-
Heat-Balance Integral to Fractional (Half-Time) Heat Diffusion Sub-Model
-
Hristov, J., Heat-Balance Integral to Fractional (Half-Time) Heat Diffusion Sub-Model, Thermal Science, 14 (2010), 2, pp. 291-316
-
(2010)
Thermal Science
, vol.14
, Issue.2
, pp. 291-316
-
-
Hristov, J.1
|