메뉴 건너뛰기




Volumn 16, Issue 12, 2014, Pages 6254-6262

On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics

Author keywords

Entropy; Fractals; Hydrodynamics; Local fractional vector calculus; Wave equations

Indexed keywords


EID: 84920885354     PISSN: None     EISSN: 10994300     Source Type: Journal    
DOI: 10.3390/e16126254     Document Type: Article
Times cited : (22)

References (46)
  • 2
    • 36749067715 scopus 로고    scopus 로고
    • Collimation of sound assisted by acoustic surface waves
    • Garcia-Vidal, F.J. Collimation of sound assisted by acoustic surface waves. Nat. Phys. 2007, 3, 851-852.
    • (2007) Nat. Phys , vol.3 , pp. 851-852
    • Garcia-Vidal, F.J.1
  • 3
    • 0000177573 scopus 로고    scopus 로고
    • Time-dependent coherent backscattering of acoustic waves
    • Tourin, A.; Derode, A.; Roux, P.; van Tiggelen, B.A.; Fink, M. Time-dependent coherent backscattering of acoustic waves. Phys. Rev. Lett. 1997, 79, doi: http://dx.doi.org/10.1103/PhysRevLett.79.3637.
    • (1997) Phys. Rev. Lett , vol.79
    • Tourin, A.1    Derode, A.2    Roux, P.3    van Tiggelen, B.A.4    Fink, M.5
  • 5
    • 0018479502 scopus 로고
    • Chemical waves and the diffusive coupling of limit cycle oscillators
    • Neu, J.C. Chemical waves and the diffusive coupling of limit cycle oscillators. SIAM J. Appl. Math. 1979, 36, 509-515.
    • (1979) SIAM J. Appl. Math , vol.36 , pp. 509-515
    • Neu, J.C.1
  • 6
    • 84980088843 scopus 로고
    • Reflection of electromagnetic waves from slightly rough surfaces
    • Rice, S.O. Reflection of electromagnetic waves from slightly rough surfaces. Comm. Pure Appl. Math. 1951, 4, 351-378.
    • (1951) Comm. Pure Appl. Math , vol.4 , pp. 351-378
    • Rice, S.O.1
  • 7
    • 79956059833 scopus 로고    scopus 로고
    • Negative refraction of modulated electromagnetic waves
    • Smith, D.R.; Schurig, D.; Pendry, J.B. Negative refraction of modulated electromagnetic waves. Appl. Phys. Lett. 2002, 81, 2713-2715.
    • (2002) Appl. Phys. Lett , vol.81 , pp. 2713-2715
    • Smith, D.R.1    Schurig, D.2    Pendry, J.B.3
  • 8
    • 0002250731 scopus 로고
    • Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems
    • Bondi, H.; van der Burg, M.G.J.; Metzner, A.W.K. Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems. Proc. R. Soc. A 1962, 269, 21-52.
    • (1962) Proc. R. Soc. A , vol.269 , pp. 21-52
    • Bondi, H.1    van der Burg, M.G.J.2    Metzner, A.W.K.3
  • 9
    • 23044493046 scopus 로고    scopus 로고
    • Strings in homogeneous gravitational waves and null holography
    • Kiritsis, E.; Pioline, B. Strings in homogeneous gravitational waves and null holography. J. High Energy Phys. 2002, 2002, doi: 10.1088/1126-6708/2002/08/048.
    • (2002) J. High Energy Phys , vol.2002
    • Kiritsis, E.1    Pioline, B.2
  • 11
    • 33745601098 scopus 로고    scopus 로고
    • Seismic waves increase permeability
    • Elkhoury, J.E.; Brodsky, E.E.; Agnew, D.C. Seismic waves increase permeability. Nature 2006, 441, 1135-1138.
    • (2006) Nature , vol.441 , pp. 1135-1138
    • Elkhoury, J.E.1    Brodsky, E.E.2    Agnew, D.C.3
  • 12
    • 0000090588 scopus 로고
    • On kinematic waves. II. A theory of traffic flow on long crowded roads
    • Lighthill, M.J.; Whitham, G.B. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. A 1955, 229, 317-345.
    • (1955) Proc. R. Soc. A , vol.229 , pp. 317-345
    • Lighthill, M.J.1    Whitham, G.B.2
  • 13
    • 16244411240 scopus 로고
    • A simplified theory of kinematic waves in highway traffic, part I: General theory
    • Newell, G.F. A simplified theory of kinematic waves in highway traffic, part I: General theory. Transp. Res. Part B 1993, 27, 281-287.
    • (1993) Transp. Res. Part B , vol.27 , pp. 281-287
    • Newell, G.F.1
  • 14
    • 0034168929 scopus 로고    scopus 로고
    • Density waves in traffic flow
    • Nagatani, T. Density waves in traffic flow. Phys. Rev. E 2000, 61, doi: http://dx.doi.org/10.1103/PhysRevE.61.3564.
    • (2000) Phys. Rev. E , vol.61
    • Nagatani, T.1
  • 15
    • 0016876595 scopus 로고
    • A derivation of equations for wave propagation in water of variable depth
    • Green, A.E.; Naghdi, P.M. A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 1976, 78, 237-246.
    • (1976) J. Fluid Mech , vol.78 , pp. 237-246
    • Green, A.E.1    Naghdi, P.M.2
  • 16
    • 0000174288 scopus 로고
    • On a shallow water wave equation
    • Clarkson, P.A.; Mansfield, E.L. On a shallow water wave equation. Nonlinearity 1994, 7, 975-1000.
    • (1994) Nonlinearity , vol.7 , pp. 975-1000
    • Clarkson, P.A.1    Mansfield, E.L.2
  • 17
    • 35248855142 scopus 로고    scopus 로고
    • Particle trajectories in solitary water waves
    • Constantin, A.; Escher, J. Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 2007, 44, 423-431.
    • (2007) Bull. Am. Math. Soc , vol.44 , pp. 423-431
    • Constantin, A.1    Escher, J.2
  • 20
    • 0001553919 scopus 로고
    • Fractional diffusion and wave equations
    • Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134-144.
    • (1989) J. Math. Phys , vol.30 , pp. 134-144
    • Schneider, W.R.1    Wyss, W.2
  • 21
    • 78049490565 scopus 로고    scopus 로고
    • The general time fractional wave equation for a vibrating string
    • Sandev, T.; Tomovski, Z. The general time fractional wave equation for a vibrating string. J. Phys. A 2010, 43, 055204.
    • (2010) J. Phys. A , vol.43 , pp. 055204
    • Sandev, T.1    Tomovski, Z.2
  • 22
    • 0029250726 scopus 로고
    • Boundary fractional derivative control of the wave equation
    • Mbodje, B.; Montseny, G. Boundary fractional derivative control of the wave equation. IEEE Trans. Autom. Control 1995, 40, 378-382.
    • (1995) IEEE Trans. Autom. Control , vol.40 , pp. 378-382
    • Mbodje, B.1    Montseny, G.2
  • 23
    • 79251601340 scopus 로고    scopus 로고
    • Numerical solution of two-sided space-fractional wave equation using finite difference method
    • Sweilam, N.H.; Khader, M.M.; Nagy, A. M. Numerical solution of two-sided space-fractional wave equation using finite difference method. J. Comput. Appl. Math. 2011, 235, 2832-2841.
    • (2011) J. Comput. Appl. Math , vol.235 , pp. 2832-2841
    • Sweilam, N.H.1    Khader, M.M.2    Nagy, A.M.3
  • 24
    • 84865656224 scopus 로고    scopus 로고
    • Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach
    • Sapora, A.; Cornetti, P.; Carpinteri, A. Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach. Comm. Nonlinear Sci. Numer. Simul. 2013, 18, 63-74.
    • (2013) Comm. Nonlinear Sci. Numer. Simul , vol.18 , pp. 63-74
    • Sapora, A.1    Cornetti, P.2    Carpinteri, A.3
  • 25
    • 20444386984 scopus 로고    scopus 로고
    • Fractional hydrodynamic equations for fractal media
    • Tarasov, V.E. Fractional hydrodynamic equations for fractal media. Ann. Phys. 2005, 318, 286-307.
    • (2005) Ann. Phys , vol.318 , pp. 286-307
    • Tarasov, V.E.1
  • 26
    • 24344459045 scopus 로고    scopus 로고
    • Electromagnetic field of fractal distribution of charged particles
    • Tarasov, V.E. Electromagnetic field of fractal distribution of charged particles. Phys. Plasmas 2005, 12, 082106.
    • (2005) Phys. Plasmas , vol.12 , pp. 082106
    • Tarasov, V.E.1
  • 27
    • 33744819200 scopus 로고    scopus 로고
    • Magnetohydrodynamics of fractal media
    • Tarasov, V.E. Magnetohydrodynamics of fractal media. Phys. Plasmas 2006, 13, 052107.
    • (2006) Phys. Plasmas , vol.13 , pp. 052107
    • Tarasov, V.E.1
  • 28
    • 84904353028 scopus 로고    scopus 로고
    • Flow of fractal fluid in pipes: Non-integer dimensional space approach
    • Tarasov, V.E. Flow of fractal fluid in pipes: Non-integer dimensional space approach. Chaos Solitons Fractals 2014, 67, 26-37.
    • (2014) Chaos Solitons Fractals , vol.67 , pp. 26-37
    • Tarasov, V.E.1
  • 29
    • 84861999142 scopus 로고    scopus 로고
    • Map of fluid flow in fractal porous medium into fractal continuum flow
    • Balankin, A.S.; Elizarraraz, B.E. Map of fluid flow in fractal porous medium into fractal continuum flow. Phys. Rev. E 2012, 85, 056314.
    • (2012) Phys. Rev. E , vol.85 , pp. 056314
    • Balankin, A.S.1    Elizarraraz, B.E.2
  • 30
    • 84889254399 scopus 로고    scopus 로고
    • Comment on "Hydrodynamics of fractal continuum flow" and "Map of fluid flow in fractal porous medium into fractal continuum flow"
    • Li, J.; Ostoja-Starzewski, M. Comment on "Hydrodynamics of fractal continuum flow" and "Map of fluid flow in fractal porous medium into fractal continuum flow". Phys. Rev. E 2013, 88, 057001.
    • (2013) Phys. Rev. E , vol.88 , pp. 057001
    • Li, J.1    Ostoja-Starzewski, M.2
  • 35
    • 84881521586 scopus 로고    scopus 로고
    • Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates
    • Hao, Y.J.; Srivastava, H.M.; Jafari, H.; Yang, X.J. Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates. Adv. Math. Phys. 2013, 2013, 754248.
    • (2013) Adv. Math. Phys , vol.2013 , pp. 754248
    • Hao, Y.J.1    Srivastava, H.M.2    Jafari, H.3    Yang, X.J.4
  • 39
    • 84903649851 scopus 로고    scopus 로고
    • A Review of Definitions for Fractional Derivatives and Integrals
    • De Oliveira, E.C.; Tenreiro Machado, J.A. A Review of Definitions for Fractional Derivatives and Integrals. Math. Probl. Eng. 2014, 2014, 238459.
    • (2014) Math. Probl. Eng , vol.2014 , pp. 238459
    • De Oliveira, E.C.1    Tenreiro Machado, J.A.2
  • 40
    • 84920928257 scopus 로고    scopus 로고
    • Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method
    • Zhang, Y. Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method. Abstr. Appl. Anal. 2014, 2014, 912464.
    • (2014) Abstr. Appl. Anal , vol.2014 , pp. 912464
    • Zhang, Y.1
  • 41
    • 84878993985 scopus 로고    scopus 로고
    • Approximate solutions for diffusion equations on cantor space-time
    • Yang, X.J.; Baleanu, D.; Zhong, W.P. Approximate solutions for diffusion equations on cantor space-time. Proc. Rom. Acad. Ser. A 2013, 14, 127-133.
    • (2013) Proc. Rom. Acad. Ser. A , vol.14 , pp. 127-133
    • Yang, X.J.1    Baleanu, D.2    Zhong, W.P.3
  • 42
    • 84878016367 scopus 로고    scopus 로고
    • Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
    • Yang, X.J.; Srivastava, H.M.; He, J.H.; Baleanu, D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377, 1696-1700.
    • (2013) Phys. Lett. A , vol.377 , pp. 1696-1700
    • Yang, X.J.1    Srivastava, H.M.2    He, J.H.3    Baleanu, D.4
  • 43
    • 84879310679 scopus 로고    scopus 로고
    • Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method
    • Su, W.H.; Baleanu, D.; Yang, X.J. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theor. Appl. 2013, 2013, doi: 10.1186/1687-1812-2013-89.
    • (2013) Fixed Point Theor. Appl , vol.2013
    • Su, W.H.1    Baleanu, D.2    Yang, X.J.3
  • 44
    • 84896885697 scopus 로고    scopus 로고
    • Local fractional variational iteration method for diffusion and wave equations on Cantor sets
    • Yang, X.J.; Baleanu, D.; Khan, Y.; Mohyud-Din, S.T. Local fractional variational iteration method for diffusion and wave equations on Cantor sets. Rom. J. Phys. 2014, 59, 36-48.
    • (2014) Rom. J. Phys , vol.59 , pp. 36-48
    • Yang, X.J.1    Baleanu, D.2    Khan, Y.3    Mohyud-Din, S.T.4
  • 45
    • 84903541046 scopus 로고    scopus 로고
    • Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation
    • Yang, X.J.; Hristov, J.; Srivastava, H.M.; Ahmad, B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr. Appl. Anal. 2014, 2014, 278672.
    • (2014) Abstr. Appl. Anal , vol.2014 , pp. 278672
    • Yang, X.J.1    Hristov, J.2    Srivastava, H.M.3    Ahmad, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.