-
2
-
-
36749067715
-
Collimation of sound assisted by acoustic surface waves
-
Garcia-Vidal, F.J. Collimation of sound assisted by acoustic surface waves. Nat. Phys. 2007, 3, 851-852.
-
(2007)
Nat. Phys
, vol.3
, pp. 851-852
-
-
Garcia-Vidal, F.J.1
-
3
-
-
0000177573
-
Time-dependent coherent backscattering of acoustic waves
-
Tourin, A.; Derode, A.; Roux, P.; van Tiggelen, B.A.; Fink, M. Time-dependent coherent backscattering of acoustic waves. Phys. Rev. Lett. 1997, 79, doi: http://dx.doi.org/10.1103/PhysRevLett.79.3637.
-
(1997)
Phys. Rev. Lett
, vol.79
-
-
Tourin, A.1
Derode, A.2
Roux, P.3
van Tiggelen, B.A.4
Fink, M.5
-
4
-
-
37049183188
-
Chemical waves
-
Ross, J.; Müller, S. C.; Vidal, C. Chemical waves. Science 1988, 240, 460-465.
-
(1988)
Science
, vol.240
, pp. 460-465
-
-
Ross, J.1
Müller, S.C.2
Vidal, C.3
-
5
-
-
0018479502
-
Chemical waves and the diffusive coupling of limit cycle oscillators
-
Neu, J.C. Chemical waves and the diffusive coupling of limit cycle oscillators. SIAM J. Appl. Math. 1979, 36, 509-515.
-
(1979)
SIAM J. Appl. Math
, vol.36
, pp. 509-515
-
-
Neu, J.C.1
-
6
-
-
84980088843
-
Reflection of electromagnetic waves from slightly rough surfaces
-
Rice, S.O. Reflection of electromagnetic waves from slightly rough surfaces. Comm. Pure Appl. Math. 1951, 4, 351-378.
-
(1951)
Comm. Pure Appl. Math
, vol.4
, pp. 351-378
-
-
Rice, S.O.1
-
7
-
-
79956059833
-
Negative refraction of modulated electromagnetic waves
-
Smith, D.R.; Schurig, D.; Pendry, J.B. Negative refraction of modulated electromagnetic waves. Appl. Phys. Lett. 2002, 81, 2713-2715.
-
(2002)
Appl. Phys. Lett
, vol.81
, pp. 2713-2715
-
-
Smith, D.R.1
Schurig, D.2
Pendry, J.B.3
-
8
-
-
0002250731
-
Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems
-
Bondi, H.; van der Burg, M.G.J.; Metzner, A.W.K. Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems. Proc. R. Soc. A 1962, 269, 21-52.
-
(1962)
Proc. R. Soc. A
, vol.269
, pp. 21-52
-
-
Bondi, H.1
van der Burg, M.G.J.2
Metzner, A.W.K.3
-
9
-
-
23044493046
-
Strings in homogeneous gravitational waves and null holography
-
Kiritsis, E.; Pioline, B. Strings in homogeneous gravitational waves and null holography. J. High Energy Phys. 2002, 2002, doi: 10.1088/1126-6708/2002/08/048.
-
(2002)
J. High Energy Phys
, vol.2002
-
-
Kiritsis, E.1
Pioline, B.2
-
10
-
-
4344680511
-
Weak localization of seismic waves
-
Larose, E.; Margerin, L.; van Tiggelen, B.A.; Campillo, M. Weak localization of seismic waves. Phys. Rev. Lett. 2004, 93, 048501.
-
(2004)
Phys. Rev. Lett
, vol.93
, pp. 048501
-
-
Larose, E.1
Margerin, L.2
van Tiggelen, B.A.3
Campillo, M.4
-
11
-
-
33745601098
-
Seismic waves increase permeability
-
Elkhoury, J.E.; Brodsky, E.E.; Agnew, D.C. Seismic waves increase permeability. Nature 2006, 441, 1135-1138.
-
(2006)
Nature
, vol.441
, pp. 1135-1138
-
-
Elkhoury, J.E.1
Brodsky, E.E.2
Agnew, D.C.3
-
12
-
-
0000090588
-
On kinematic waves. II. A theory of traffic flow on long crowded roads
-
Lighthill, M.J.; Whitham, G.B. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. A 1955, 229, 317-345.
-
(1955)
Proc. R. Soc. A
, vol.229
, pp. 317-345
-
-
Lighthill, M.J.1
Whitham, G.B.2
-
13
-
-
16244411240
-
A simplified theory of kinematic waves in highway traffic, part I: General theory
-
Newell, G.F. A simplified theory of kinematic waves in highway traffic, part I: General theory. Transp. Res. Part B 1993, 27, 281-287.
-
(1993)
Transp. Res. Part B
, vol.27
, pp. 281-287
-
-
Newell, G.F.1
-
14
-
-
0034168929
-
Density waves in traffic flow
-
Nagatani, T. Density waves in traffic flow. Phys. Rev. E 2000, 61, doi: http://dx.doi.org/10.1103/PhysRevE.61.3564.
-
(2000)
Phys. Rev. E
, vol.61
-
-
Nagatani, T.1
-
15
-
-
0016876595
-
A derivation of equations for wave propagation in water of variable depth
-
Green, A.E.; Naghdi, P.M. A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 1976, 78, 237-246.
-
(1976)
J. Fluid Mech
, vol.78
, pp. 237-246
-
-
Green, A.E.1
Naghdi, P.M.2
-
16
-
-
0000174288
-
On a shallow water wave equation
-
Clarkson, P.A.; Mansfield, E.L. On a shallow water wave equation. Nonlinearity 1994, 7, 975-1000.
-
(1994)
Nonlinearity
, vol.7
, pp. 975-1000
-
-
Clarkson, P.A.1
Mansfield, E.L.2
-
17
-
-
35248855142
-
Particle trajectories in solitary water waves
-
Constantin, A.; Escher, J. Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 2007, 44, 423-431.
-
(2007)
Bull. Am. Math. Soc
, vol.44
, pp. 423-431
-
-
Constantin, A.1
Escher, J.2
-
19
-
-
65049084831
-
-
World Scientific: Singapore
-
Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, 2012; Volume 3.
-
(2012)
Fractional Calculus: Models and Numerical Methods
, vol.3
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
20
-
-
0001553919
-
Fractional diffusion and wave equations
-
Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134-144.
-
(1989)
J. Math. Phys
, vol.30
, pp. 134-144
-
-
Schneider, W.R.1
Wyss, W.2
-
21
-
-
78049490565
-
The general time fractional wave equation for a vibrating string
-
Sandev, T.; Tomovski, Z. The general time fractional wave equation for a vibrating string. J. Phys. A 2010, 43, 055204.
-
(2010)
J. Phys. A
, vol.43
, pp. 055204
-
-
Sandev, T.1
Tomovski, Z.2
-
22
-
-
0029250726
-
Boundary fractional derivative control of the wave equation
-
Mbodje, B.; Montseny, G. Boundary fractional derivative control of the wave equation. IEEE Trans. Autom. Control 1995, 40, 378-382.
-
(1995)
IEEE Trans. Autom. Control
, vol.40
, pp. 378-382
-
-
Mbodje, B.1
Montseny, G.2
-
23
-
-
79251601340
-
Numerical solution of two-sided space-fractional wave equation using finite difference method
-
Sweilam, N.H.; Khader, M.M.; Nagy, A. M. Numerical solution of two-sided space-fractional wave equation using finite difference method. J. Comput. Appl. Math. 2011, 235, 2832-2841.
-
(2011)
J. Comput. Appl. Math
, vol.235
, pp. 2832-2841
-
-
Sweilam, N.H.1
Khader, M.M.2
Nagy, A.M.3
-
24
-
-
84865656224
-
Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach
-
Sapora, A.; Cornetti, P.; Carpinteri, A. Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach. Comm. Nonlinear Sci. Numer. Simul. 2013, 18, 63-74.
-
(2013)
Comm. Nonlinear Sci. Numer. Simul
, vol.18
, pp. 63-74
-
-
Sapora, A.1
Cornetti, P.2
Carpinteri, A.3
-
25
-
-
20444386984
-
Fractional hydrodynamic equations for fractal media
-
Tarasov, V.E. Fractional hydrodynamic equations for fractal media. Ann. Phys. 2005, 318, 286-307.
-
(2005)
Ann. Phys
, vol.318
, pp. 286-307
-
-
Tarasov, V.E.1
-
26
-
-
24344459045
-
Electromagnetic field of fractal distribution of charged particles
-
Tarasov, V.E. Electromagnetic field of fractal distribution of charged particles. Phys. Plasmas 2005, 12, 082106.
-
(2005)
Phys. Plasmas
, vol.12
, pp. 082106
-
-
Tarasov, V.E.1
-
27
-
-
33744819200
-
Magnetohydrodynamics of fractal media
-
Tarasov, V.E. Magnetohydrodynamics of fractal media. Phys. Plasmas 2006, 13, 052107.
-
(2006)
Phys. Plasmas
, vol.13
, pp. 052107
-
-
Tarasov, V.E.1
-
28
-
-
84904353028
-
Flow of fractal fluid in pipes: Non-integer dimensional space approach
-
Tarasov, V.E. Flow of fractal fluid in pipes: Non-integer dimensional space approach. Chaos Solitons Fractals 2014, 67, 26-37.
-
(2014)
Chaos Solitons Fractals
, vol.67
, pp. 26-37
-
-
Tarasov, V.E.1
-
29
-
-
84861999142
-
Map of fluid flow in fractal porous medium into fractal continuum flow
-
Balankin, A.S.; Elizarraraz, B.E. Map of fluid flow in fractal porous medium into fractal continuum flow. Phys. Rev. E 2012, 85, 056314.
-
(2012)
Phys. Rev. E
, vol.85
, pp. 056314
-
-
Balankin, A.S.1
Elizarraraz, B.E.2
-
30
-
-
84889254399
-
Comment on "Hydrodynamics of fractal continuum flow" and "Map of fluid flow in fractal porous medium into fractal continuum flow"
-
Li, J.; Ostoja-Starzewski, M. Comment on "Hydrodynamics of fractal continuum flow" and "Map of fluid flow in fractal porous medium into fractal continuum flow". Phys. Rev. E 2013, 88, 057001.
-
(2013)
Phys. Rev. E
, vol.88
, pp. 057001
-
-
Li, J.1
Ostoja-Starzewski, M.2
-
33
-
-
64249151881
-
Static-kinematic fractional operators for fractal and non-local solids
-
Carpinteri, A.; Cornetti, P.; Sapora, A. Static-kinematic fractional operators for fractal and non-local solids. Zeitschrift für Angewandte Mathematik und Mechanik 2009, 89, 207-217.
-
(2009)
Zeitschrift für Angewandte Mathematik und Mechanik
, vol.89
, pp. 207-217
-
-
Carpinteri, A.1
Cornetti, P.2
Sapora, A.3
-
34
-
-
84890036462
-
Maxwell's equations on Cantor sets: A local fractional approach
-
Zhao, Y.; Baleanu, D.; Cattani, C.; Cheng, D.F.; Yang, X.J. Maxwell's equations on Cantor sets: A local fractional approach. Adv. High Energy Phys. 2013, 2013, 686371.
-
(2013)
Adv. High Energy Phys
, vol.2013
, pp. 686371
-
-
Zhao, Y.1
Baleanu, D.2
Cattani, C.3
Cheng, D.F.4
Yang, X.J.5
-
35
-
-
84881521586
-
Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates
-
Hao, Y.J.; Srivastava, H.M.; Jafari, H.; Yang, X.J. Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates. Adv. Math. Phys. 2013, 2013, 754248.
-
(2013)
Adv. Math. Phys
, vol.2013
, pp. 754248
-
-
Hao, Y.J.1
Srivastava, H.M.2
Jafari, H.3
Yang, X.J.4
-
37
-
-
84880084367
-
Systems of Navier-Stokes equations on Cantor sets
-
Yang, X.J.; Baleanu, D.; Tenreiro Machado, J.A. Systems of Navier-Stokes equations on Cantor sets. Math. Probl. Eng. 2013, 2013, 769724.
-
(2013)
Math. Probl. Eng
, vol.2013
, pp. 769724
-
-
Yang, X.J.1
Baleanu, D.2
Tenreiro Machado, J.A.3
-
39
-
-
84903649851
-
A Review of Definitions for Fractional Derivatives and Integrals
-
De Oliveira, E.C.; Tenreiro Machado, J.A. A Review of Definitions for Fractional Derivatives and Integrals. Math. Probl. Eng. 2014, 2014, 238459.
-
(2014)
Math. Probl. Eng
, vol.2014
, pp. 238459
-
-
De Oliveira, E.C.1
Tenreiro Machado, J.A.2
-
40
-
-
84920928257
-
Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method
-
Zhang, Y. Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method. Abstr. Appl. Anal. 2014, 2014, 912464.
-
(2014)
Abstr. Appl. Anal
, vol.2014
, pp. 912464
-
-
Zhang, Y.1
-
41
-
-
84878993985
-
Approximate solutions for diffusion equations on cantor space-time
-
Yang, X.J.; Baleanu, D.; Zhong, W.P. Approximate solutions for diffusion equations on cantor space-time. Proc. Rom. Acad. Ser. A 2013, 14, 127-133.
-
(2013)
Proc. Rom. Acad. Ser. A
, vol.14
, pp. 127-133
-
-
Yang, X.J.1
Baleanu, D.2
Zhong, W.P.3
-
42
-
-
84878016367
-
Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
-
Yang, X.J.; Srivastava, H.M.; He, J.H.; Baleanu, D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377, 1696-1700.
-
(2013)
Phys. Lett. A
, vol.377
, pp. 1696-1700
-
-
Yang, X.J.1
Srivastava, H.M.2
He, J.H.3
Baleanu, D.4
-
43
-
-
84879310679
-
Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method
-
Su, W.H.; Baleanu, D.; Yang, X.J. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theor. Appl. 2013, 2013, doi: 10.1186/1687-1812-2013-89.
-
(2013)
Fixed Point Theor. Appl
, vol.2013
-
-
Su, W.H.1
Baleanu, D.2
Yang, X.J.3
-
44
-
-
84896885697
-
Local fractional variational iteration method for diffusion and wave equations on Cantor sets
-
Yang, X.J.; Baleanu, D.; Khan, Y.; Mohyud-Din, S.T. Local fractional variational iteration method for diffusion and wave equations on Cantor sets. Rom. J. Phys. 2014, 59, 36-48.
-
(2014)
Rom. J. Phys
, vol.59
, pp. 36-48
-
-
Yang, X.J.1
Baleanu, D.2
Khan, Y.3
Mohyud-Din, S.T.4
-
45
-
-
84903541046
-
Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation
-
Yang, X.J.; Hristov, J.; Srivastava, H.M.; Ahmad, B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr. Appl. Anal. 2014, 2014, 278672.
-
(2014)
Abstr. Appl. Anal
, vol.2014
, pp. 278672
-
-
Yang, X.J.1
Hristov, J.2
Srivastava, H.M.3
Ahmad, B.4
-
46
-
-
0004129715
-
-
Springer: New York, NY, USA
-
Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H. Computational Ocean Acoustics; Springer: New York, NY, USA, 2011.
-
(2011)
Computational Ocean Acoustics
-
-
Jensen, F.B.1
Kuperman, W.A.2
Porter, M.B.3
Schmidt, H.4
|