-
1
-
-
0004034650
-
-
New York, NY, USA Springer Applied Mathematical Sciences 10.1007/978-1-4684-9467-9 MR0477368
-
Driver R. D., Ordinary and Delay Differential Equations 1977 20 New York, NY, USA Springer Applied Mathematical Sciences 10.1007/978-1-4684-9467-9 MR0477368
-
(1977)
Ordinary and Delay Differential Equations
, vol.20
-
-
Driver, R.D.1
-
2
-
-
0003797958
-
-
San Diego, Calif, USA Academic Press Mathematics in Science and Engineering MR1658022
-
Podlubny I., Fractional differential equations 1999 198 San Diego, Calif, USA Academic Press Mathematics in Science and Engineering MR1658022
-
(1999)
Fractional Differential Equations
, vol.198
-
-
Podlubny, I.1
-
5
-
-
84871448093
-
Fractal derivative model for air permeability in hierarchic porous media
-
354701 10.1155/2012/354701
-
Fan J., He J. H., Fractal derivative model for air permeability in hierarchic porous media. Abstract and Applied Analysis 2012 2012 7 354701 10.1155/2012/354701
-
(2012)
Abstract and Applied Analysis
, vol.2012
, pp. 7
-
-
Fan, J.1
He, J.H.2
-
6
-
-
33745869026
-
Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives
-
DOI 10.1007/s00397-005-0043-5
-
Heymans N., Podlubny I., Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 2006 45 5 765 771 2-s2.0-33745869026 10.1007/s00397-005-0043-5 (Pubitemid 44027219)
-
(2006)
Rheologica Acta
, vol.45
, Issue.5
, pp. 765-771
-
-
Heymans, N.1
Podlubny, I.2
-
7
-
-
84885447798
-
Existence results for a class of fractional differential equations with periodic boundary value conditions and with delay
-
176180 10.1155/2013/176180
-
Karami H., Babakhani A., Baleanu D., Existence results for a class of fractional differential equations with periodic boundary value conditions and with delay. Abstract and Applied Analysis 2013 2013 8 176180 10.1155/2013/176180
-
(2013)
Abstract and Applied Analysis
, vol.2013
, pp. 8
-
-
Karami, H.1
Babakhani, A.2
Baleanu, D.3
-
8
-
-
65049084831
-
-
Hackensack, NJ, USA World Scientific Series on Complexity, Nonlinearity and Chaos 10.1142/9789814355216 MR2894576
-
Baleanu D., Diethelm K., Scalas E., Trujillo J. J., Fractional Calculus Models and Numerical Methods 2012 Hackensack, NJ, USA World Scientific Series on Complexity, Nonlinearity and Chaos 10.1142/9789814355216 MR2894576
-
(2012)
Fractional Calculus Models and Numerical Methods
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
9
-
-
77955895114
-
Heat-balance integral to fractional (half-time) heat diffusion sub-model
-
2-s2.0-77955895114 10.2298/TSCI1002291H
-
Hristov J., Heat-balance integral to fractional (half-time) heat diffusion sub-model. Thermal Science 2010 14 2 291 316 2-s2.0-77955895114 10.2298/TSCI1002291H
-
(2010)
Thermal Science
, vol.14
, Issue.2
, pp. 291-316
-
-
Hristov, J.1
-
10
-
-
84855205702
-
A short-distance integral-balance solution to a strong subdiffusion equation: A weak power-law profile
-
Hristov J., A short-distance integral-balance solution to a strong subdiffusion equation: a weak power-law profile. International Review of Chemical Engineering 2010 2 5 555 563
-
(2010)
International Review of Chemical Engineering
, vol.2
, Issue.5
, pp. 555-563
-
-
Hristov, J.1
-
11
-
-
56049100715
-
Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation
-
2-s2.0-56049100715 10.1016/j.cnsns.2008.05.008 MR2474460 ZBL1221.65278
-
Jafari H., Seifi S., Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Communications in Nonlinear Science and Numerical Simulation 2009 14 5 2006 2012 2-s2.0-56049100715 10.1016/j.cnsns.2008.05.008 MR2474460 ZBL1221.65278
-
(2009)
Communications in Nonlinear Science and Numerical Simulation
, vol.14
, Issue.5
, pp. 2006-2012
-
-
Jafari, H.1
Seifi, S.2
-
12
-
-
84871731748
-
He's variational iteration method for solving fractional Riccati differential equation
-
764738 10.1155/2010/764738 MR2607724 ZBL1207.34020
-
Jafari H., Tajadodi H., He's variational iteration method for solving fractional Riccati differential equation. International Journal of Differential Equations 2010 2010 8 764738 10.1155/2010/764738 MR2607724 ZBL1207.34020
-
(2010)
International Journal of Differential Equations
, vol.2010
, pp. 8
-
-
Jafari, H.1
Tajadodi, H.2
-
13
-
-
84876534192
-
The time-fractional coupled-Korteweg-de-Vries equations
-
947986 10.1155/2013/947986 MR3035318 ZBL06209510
-
Atangana A., Secer A., The time-fractional coupled-Korteweg-de-Vries equations. Abstract and Applied Analysis 2013 2013 8 947986 10.1155/2013/947986 MR3035318 ZBL06209510
-
(2013)
Abstract and Applied Analysis
, vol.2013
, pp. 8
-
-
Atangana, A.1
Secer, A.2
-
14
-
-
84885626980
-
Analytical solutions of boundary values problem of 2D and 3D poisson and biharmonic equations by homotopy decomposition method
-
380484 10.1155/2013/380484
-
Atangana A., Kiliçman A., Analytical solutions of boundary values problem of 2D and 3D poisson and biharmonic equations by homotopy decomposition method. Abstract and Applied Analysis 2013 2013 9 380484 10.1155/2013/380484
-
(2013)
Abstract and Applied Analysis
, vol.2013
, pp. 9
-
-
Atangana, A.1
Kiliçman, A.2
-
15
-
-
65049090377
-
Numerical algorithm based on Adomian decomposition for fractional differential equations
-
2-s2.0-65049090377 10.1016/j.camwa.2009.03.079
-
Li C., Wang Y., Numerical algorithm based on Adomian decomposition for fractional differential equations. Computers and Mathematics with Applications 2009 57 10 1672 1681 2-s2.0-65049090377 10.1016/j.camwa.2009.03.079
-
(2009)
Computers and Mathematics with Applications
, vol.57
, Issue.10
, pp. 1672-1681
-
-
Li, C.1
Wang, Y.2
-
16
-
-
10344238128
-
Adomian decomposition: A tool for solving a system of fractional differential equations
-
DOI 10.1016/j.jmaa.2004.07.039, PII S0022247X04006286
-
Daftardar-Gejji V., Jafari H., Adomian decomposition: a tool for solving a system of fractional differential equations. Journal of Mathematical Analysis and Applications 2005 301 2 508 518 2-s2.0-10344238128 10.1016/j.jmaa.2004.07. 039 (Pubitemid 39630973)
-
(2005)
Journal of Mathematical Analysis and Applications
, vol.301
, Issue.2
, pp. 508-518
-
-
Daftardar-Gejji, V.1
Jafari, H.2
-
17
-
-
79959248552
-
On Riemann-Liouville and Caputo derivatives
-
2-s2.0-79959248552 10.1155/2011/562494 562494
-
Li C., Qian D., Chen Y., On Riemann-Liouville and Caputo derivatives. Discrete Dynamics in Nature and Society 2011 2011 15 2-s2.0-79959248552 10.1155/2011/562494 562494
-
(2011)
Discrete Dynamics in Nature and Society
, vol.2011
, pp. 15
-
-
Li, C.1
Qian, D.2
Chen, Y.3
-
20
-
-
84879324154
-
Fractal heat conduction problem solved by local fractional variation iteration method
-
10.2298/TSCI121124216Y
-
Yang X. J., Baleanu D., Fractal heat conduction problem solved by local fractional variation iteration method. Thermal Science 2013 17 2 625 628 10.2298/TSCI121124216Y
-
(2013)
Thermal Science
, vol.17
, Issue.2
, pp. 625-628
-
-
Yang, X.J.1
Baleanu, D.2
-
21
-
-
84884896550
-
The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar
-
10.2298/TSCI120826074Y
-
Yang A. M., Zhang Y. Z., Long Y., The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar. Thermal Science 2013 17 3 707 713 10.2298/TSCI120826074Y
-
(2013)
Thermal Science
, vol.17
, Issue.3
, pp. 707-713
-
-
Yang, A.M.1
Zhang, Y.Z.2
Long, Y.3
-
22
-
-
84884850577
-
Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem
-
10.2298/TSCI120826075L
-
Liu C. F., Kong S. S., Yuan S. J., Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem. Thermal Science 2013 17 3 715 721 10.2298/TSCI120826075L
-
(2013)
Thermal Science
, vol.17
, Issue.3
, pp. 715-721
-
-
Liu, C.F.1
Kong, S.S.2
Yuan, S.J.3
-
23
-
-
84881521586
-
Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates
-
754248 10.1155/2013/754248 MR3079019
-
Hao Y.-J., Srivastava H. M., Jafari H., Yang X.-J., Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates. Advances in Mathematical Physics 2013 2013 5 754248 10.1155/2013/754248 MR3079019
-
(2013)
Advances in Mathematical Physics
, vol.2013
, pp. 5
-
-
Hao, Y.-J.1
Srivastava, H.M.2
Jafari, H.3
Yang, X.-J.4
-
25
-
-
84872148874
-
Local fractional Fourier series with application to wave equation in fractal vibrating string
-
567401 10.1155/2012/567401 MR3004869 ZBL1257.35193
-
Hu M.-S., Agarwal R. P., Yang X.-J., Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstract and Applied Analysis 2012 2012 15 567401 10.1155/2012/567401 MR3004869 ZBL1257.35193
-
(2012)
Abstract and Applied Analysis
, vol.2012
, pp. 15
-
-
Hu, M.-S.1
Agarwal, R.P.2
Yang, X.-J.3
|