-
1
-
-
77956834067
-
A mathematical model illustrating the theory of turbulence
-
Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)
-
(1948)
Adv. Appl. Mech.
, vol.1
, pp. 171-199
-
-
Burgers, J.M.1
-
4
-
-
0000332692
-
On a quasi-linear parabolic equation occurring in aerodynamics
-
Cole, J.D.: On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9(3), 225–236 (1951)
-
(1951)
Quart. Appl. Math.
, vol.9
, Issue.3
, pp. 225-236
-
-
Cole, J.D.1
-
5
-
-
84980078224
-
The partial differential equation u t + uu x = u xx
-
Hopf, E.: The partial differential equation u t + uu x = u xx. Commun. Pure Appl. Math. 3, 201–230 (1950)
-
(1950)
Commun. Pure Appl. Math.
, vol.3
, pp. 201-230
-
-
Hopf, E.1
-
6
-
-
84980077727
-
Hyperbolic systems of conservation laws II
-
Lax, P.D.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10, 537–566 (1957)
-
(1957)
Commun. Pure Appl. Math.
, vol.10
, pp. 537-566
-
-
Lax, P.D.1
-
7
-
-
84968515953
-
The generalized Burgers’ equation and the Navier-Stokes equation in Rn with singular initial data
-
Avrin, J.D.: The generalized Burgers’ equation and the Navier-Stokes equation in Rn with singular initial data. Proc. Am. Math. Soc. 101(1), 29–40 (1987)
-
(1987)
Proc. Am. Math. Soc.
, vol.101
, Issue.1
, pp. 29-40
-
-
Avrin, J.D.1
-
8
-
-
0346895558
-
Noncommutative Burgers equation
-
Hamanaka, M., Toda, K.: Noncommutative Burgers equation. J. Phys. A 36(48), 11981 (2003)
-
(2003)
J. Phys. A
, vol.36
, Issue.48
, pp. 11981
-
-
Hamanaka, M.1
Toda, K.2
-
9
-
-
0037131136
-
Fluctuations in the lattice gas for Burgers’ equation
-
Haselwandter, C., Vvedensky, D.D.: Fluctuations in the lattice gas for Burgers’ equation. J. Phys. A 35(41), L579 (2002)
-
(2002)
J. Phys. A
, vol.35
, Issue.41
, pp. 579
-
-
Haselwandter, C.1
Vvedensky, D.D.2
-
10
-
-
0000049884
-
Stochastic Burgers’ equation
-
Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers’ equation. NoDEA 1(4), 389–402 (1994)
-
(1994)
NoDEA
, vol.1
, Issue.4
, pp. 389-402
-
-
Da Prato, G.1
Debussche, A.2
Temam, R.3
-
11
-
-
0031205673
-
On the decay of Burgers turbulence
-
Gurbatov, S.N., Simdyankin, S.I., Aurell, E., Frisch, U., Toth, G.: On the decay of Burgers turbulence. J. Fluid Mech. 344, 339–374 (1997)
-
(1997)
J. Fluid Mech.
, vol.344
, pp. 339-374
-
-
Gurbatov, S.N.1
Simdyankin, S.I.2
Aurell, E.3
Frisch, U.4
Toth, G.5
-
12
-
-
0017970942
-
Traffic current fluctuation and the Burgers equation
-
Musha, T., Higuchi, H.: Traffic current fluctuation and the Burgers equation. Jpn. J. Appl. Phys. 17(5), 811–816 (1978)
-
(1978)
Jpn. J. Appl. Phys.
, vol.17
, Issue.5
, pp. 811-816
-
-
Musha, T.1
Higuchi, H.2
-
13
-
-
0000480754
-
Generalized Burgers equation for plane waves
-
Blackstock, D.T.: Generalized Burgers equation for plane waves. J. Acoustical. Soc. Am. 77(6), 2050–2053 (1985)
-
(1985)
J. Acoustical. Soc. Am.
, vol.77
, Issue.6
, pp. 2050-2053
-
-
Blackstock, D.T.1
-
14
-
-
0019578929
-
A finite element approach to Burgers’ equation
-
Caldwell, J., Wanless, P., Cook, A.E.: A finite element approach to Burgers’ equation. Appl. Math. Mod. 5(3), 189–193 (1981)
-
(1981)
Appl. Math. Mod.
, vol.5
, Issue.3
, pp. 189-193
-
-
Caldwell, J.1
Wanless, P.2
Cook, A.E.3
-
15
-
-
0025384952
-
The generalized boundary element approach to Burgers’ equation
-
Kakuda, K., Tosaka, N.: The generalized boundary element approach to Burgers’ equation. Int. J. Numer. Meth. Eng. 29(2), 245–261 (1990)
-
(1990)
Int. J. Numer. Meth. Eng.
, vol.29
, Issue.2
, pp. 245-261
-
-
Kakuda, K.1
Tosaka, N.2
-
16
-
-
34250643151
-
Multiple-front solutions for the Burgers equation and the coupled Burgers equations
-
Wazwaz, A.M.: Multiple-front solutions for the Burgers equation and the coupled Burgers equations. Appl. Math. Comput. 190(2), 1198–1206 (2007)
-
(2007)
Appl. Math. Comput.
, vol.190
, Issue.2
, pp. 1198-1206
-
-
Wazwaz, A.M.1
-
17
-
-
33847309315
-
-
Elsevier, Amsterdam
-
Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
-
(2006)
Theory and Applications of Fractional Differential Equations
-
-
Kilbas, A.A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
19
-
-
0004315248
-
-
Springer, Berlin
-
West, B., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, Berlin (2003)
-
(2003)
Physics of Fractal Operators
-
-
West, B.1
Bologna, M.2
Grigolini, P.3
-
20
-
-
65049084831
-
-
World Scientific, Singapore
-
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)
-
(2012)
Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
21
-
-
84907689290
-
Convergence and stability analysis of a novel iteration method for fractional biological population equation
-
Atangana, A.: Convergence and stability analysis of a novel iteration method for fractional biological population equation. Neural Comput. Appl. 25(5), 1021–1030 (2014)
-
(2014)
Neural Comput. Appl.
, vol.25
, Issue.5
, pp. 1021-1030
-
-
Atangana, A.1
-
22
-
-
0002015456
-
Fractal Burgers equations
-
Biler, P., Funaki, T., Woyczynski, W.A.: Fractal Burgers equations. J. Differ. Equ. 148(1), 9–46 (1998)
-
(1998)
J. Differ. Equ.
, vol.148
, Issue.1
, pp. 9-46
-
-
Biler, P.1
Funaki, T.2
Woyczynski, W.A.3
-
23
-
-
77955797100
-
Asymptotic properties of entropy solutions to fractal Burgers equation
-
Alibaud, N., Imbert, C., Karch, G.: Asymptotic properties of entropy solutions to fractal Burgers equation. SIAM J. Math. Anal. 42(1), 354–376 (2010)
-
(2010)
SIAM J. Math. Anal.
, vol.42
, Issue.1
, pp. 354-376
-
-
Alibaud, N.1
Imbert, C.2
Karch, G.3
-
24
-
-
52649129211
-
On convergence of solutions of fractal Burgers equation toward rarefaction waves
-
Karch, G., Miao, C., Xu, X.: On convergence of solutions of fractal Burgers equation toward rarefaction waves. SIAM J. Math. Anal. 39(5), 1536–1549 (2008)
-
(2008)
SIAM J. Math. Anal.
, vol.39
, Issue.5
, pp. 1536-1549
-
-
Karch, G.1
Miao, C.2
Xu, X.3
-
25
-
-
0026135818
-
Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves
-
Sugimoto, N.: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631–653 (1991)
-
(1991)
J. Fluid Mech.
, vol.225
, pp. 631-653
-
-
Sugimoto, N.1
-
26
-
-
77953301495
-
Eventual regularization of the slightly supercritical fractional Burgers equation
-
Chan, C.H., Czubak, M., Silvestre, L.: Eventual regularization of the slightly supercritical fractional Burgers equation. Discrete Contin. Dyn. Syst. 27(2), 847–861 (2010)
-
(2010)
Discrete Contin. Dyn. Syst.
, vol.27
, Issue.2
, pp. 847-861
-
-
Chan, C.H.1
Czubak, M.2
Silvestre, L.3
-
27
-
-
78649385608
-
Analytical approach to space-and time-fractional burgers equations
-
Yıldırım, A., Mohyud-Din, S.T.: Analytical approach to space-and time-fractional burgers equations. Chin. Phys. Letts. 27(9), 090501 (2010)
-
(2010)
Chin. Phys. Letts.
, vol.27
, Issue.9
, pp. 090501
-
-
Yıldırım, A.1
Mohyud-Din, S.T.2
-
28
-
-
27744514614
-
Non-perturbative analytical solutions of the space-and time-fractional Burgers equations
-
Momani, S.: Non-perturbative analytical solutions of the space-and time-fractional Burgers equations. Chaos Solitons Fractals 28(4), 930–937 (2006)
-
(2006)
Chaos Solitons Fractals
, vol.28
, Issue.4
, pp. 930-937
-
-
Momani, S.1
-
29
-
-
84879776756
-
Numerical solutions and analysis of diffusion for new generalized fractional Burgers equation
-
Xu, Y., Agrawal, O.P.: Numerical solutions and analysis of diffusion for new generalized fractional Burgers equation. Fract. Calc. Appl. Anal. 16(3), 709–736 (2013)
-
(2013)
Fract. Calc. Appl. Anal.
, vol.16
, Issue.3
, pp. 709-736
-
-
Xu, Y.1
Agrawal, O.P.2
-
30
-
-
84875378030
-
Variational iteration method for the Burgers’ flow with fractional derivatives–new Lagrange multipliers
-
Wu, G.C., Baleanu, D.: Variational iteration method for the Burgers’ flow with fractional derivatives–new Lagrange multipliers. Appl. Math. Mod. 37(9), 6183– 6190 (2013)
-
(2013)
Appl. Math. Mod.
, vol.37
, Issue.9
, pp. 6183-6190
-
-
Wu, G.C.1
Baleanu, D.2
-
31
-
-
43049157795
-
Numerical solutions of coupled Burgers equations with time-and space-fractional derivatives
-
Chen, Y., An, H.L.: Numerical solutions of coupled Burgers equations with time-and space-fractional derivatives. Appl. Math. Comput. 200(1), 87–95 (2008)
-
(2008)
Appl. Math. Comput.
, vol.200
, Issue.1
, pp. 87-95
-
-
Chen, Y.1
An, H.L.2
-
32
-
-
84858975800
-
Numerical solutions of time-fractional Burgers equations: a comparison between generalized differential transformation technique and homotopy perturbation method
-
Khan, N.A., Ara, A., Mahmood, A.: Numerical solutions of time-fractional Burgers equations: a comparison between generalized differential transformation technique and homotopy perturbation method. Inter. J. Numer. Meth. Heat Fluid Flow 22(2), 175–193 (2012)
-
(2012)
Inter. J. Numer. Meth. Heat Fluid Flow
, vol.22
, Issue.2
, pp. 175-193
-
-
Khan, N.A.1
Ara, A.2
Mahmood, A.3
-
34
-
-
84878016367
-
Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
-
Yang, X.J., Srivastava, H.M., He, J.H., Baleanu, D.: Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Letts. A 377(28), 1696–1700 (2013)
-
(2013)
Phys. Letts. A
, vol.377
, Issue.28
, pp. 1696-1700
-
-
Yang, X.J.1
Srivastava, H.M.2
He, J.H.3
Baleanu, D.4
-
35
-
-
84878993985
-
Approximate solutions for diffusion equations on cantor space-time
-
Yang, X.J., Baleanu, D., Zhong, W.P.: Approximate solutions for diffusion equations on cantor space-time. Proc. Rom. Acad. Ser. A 14(2), 127–133 (2013)
-
(2013)
Proc. Rom. Acad. Ser. A
, vol.14
, Issue.2
, pp. 127-133
-
-
Yang, X.J.1
Baleanu, D.2
Zhong, W.P.3
-
36
-
-
84920885354
-
On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics
-
Zhang, Y., Baleanu, D., Yang, X.J.: On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics. Entropy 16(12), 6254–6262 (2014)
-
(2014)
Entropy
, vol.16
, Issue.12
, pp. 6254-6262
-
-
Zhang, Y.1
Baleanu, D.2
Yang, X.J.3
-
37
-
-
84899434153
-
Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws
-
Wang, L. F., Yang, X. J., Baleanu, D., Cattani, C., Zhao, Y.: Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws. Abstr. Appl. Anal. 2014(635760), 5 (2014)
-
(2014)
Abstr. Appl. Anal
, vol.2014
, pp. 5
-
-
Wang, L.F.1
Yang, X.J.2
Baleanu, D.3
Cattani, C.4
Zhao, Y.5
-
38
-
-
84880091185
-
Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis
-
Yang, X.J., Baleanu, D., Machado, J.A.T.: Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. Bound Value Probl. 2013(1), 1–16 (2013)
-
(2013)
Bound Value Probl.
, vol.2013
, Issue.1
, pp. 1-16
-
-
Yang, X.J.1
Baleanu, D.2
Machado, J.A.T.3
-
39
-
-
84925482071
-
Fractional calculus for nanoscale flow and heat transfer
-
Liu, H.Y., He, J.H., Li, Z.B.: Fractional calculus for nanoscale flow and heat transfer. Inter. J. Numer. Meth. Heat Fluid Flow 24(6), 1227–1250 (2014)
-
(2014)
Inter. J. Numer. Meth. Heat Fluid Flow
, vol.24
, Issue.6
, pp. 1227-1250
-
-
Liu, H.Y.1
He, J.H.2
Li, Z.B.3
-
40
-
-
0030671988
-
Hölder exponents of irregular signals and local fractional derivatives
-
Kolwankar, K.M., Gangal, A.D.: Hölder exponents of irregular signals and local fractional derivatives. Pramana 48(1), 49–68 (1997)
-
(1997)
Pramana
, vol.48
, Issue.1
, pp. 49-68
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
41
-
-
0036600978
-
On calculus of local fractional derivatives
-
Babakhani, A., Daftardar-Gejji, V.: On calculus of local fractional derivatives. J. Math. Anal. Appl. 270(1), 66–79 (2002)
-
(2002)
J. Math. Anal. Appl.
, vol.270
, Issue.1
, pp. 66-79
-
-
Babakhani, A.1
Daftardar-Gejji, V.2
-
42
-
-
0742324870
-
The elastic problem for fractal media: basic theory and finite element formulation
-
Carpinteri, A., Chiaia, B., Cornetti, P.: The elastic problem for fractal media: basic theory and finite element formulation. Comput. Struct. 82(6), 499–508 (2004)
-
(2004)
Comput. Struct.
, vol.82
, Issue.6
, pp. 499-508
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
|