-
1
-
-
84882266451
-
Better mixing via deep representations
-
Bengio, Yoshua, Mesnil, Grégoire, Dauphin, Yann, and Rifai, Salah. Better Mixing via Deep Representations. In International Conference on Machine Learning, 2013.
-
(2013)
International Conference on Machine Learning
-
-
Bengio, Y.1
Mesnil, G.2
Dauphin, Y.3
Rifai, S.4
-
2
-
-
84919906761
-
Deep generative stochastic networks trainable by backprop
-
Bengio, Yoshua, Laufer, Eric, Alain, Guillaume, and Yosinski, Jason. Deep Generative Stochastic Networks Trainable by Backprop. In International Conference on Machine Learning, 2014.
-
(2014)
International Conference on Machine Learning
-
-
Bengio, Y.1
Laufer, E.2
Alain, G.3
Yosinski, J.4
-
3
-
-
84969752808
-
Weight uncertainty in neural networks
-
Blundell, Charles, Cornebise, Julien, Kavukcuoglu, Koray, and Wierstra, Daan. Weight Uncertainty in Neural Networks. In International Conference on Machine Learning, 2015.
-
(2015)
International Conference on Machine Learning
-
-
Blundell, C.1
Cornebise, J.2
Kavukcuoglu, K.3
Wierstra, D.4
-
4
-
-
85080367588
-
Training Deep Gaussian Processes using Stochastic Expectation Propagation and Probabilistic Backpropagation
-
Bui, Thang D., Hernández-Lobato, José Miguel, Li, Yingzhen, Hernández-Lobato, Daniel, and Turner, Richard E. Training Deep Gaussian Processes using Stochastic Expectation Propagation and Probabilistic Backpropagation. In Workshop on Advances in Approximate Bayesian Inference, NIPS, 2015.
-
(2015)
Workshop on Advances in Approximate Bayesian Inference, NIPS
-
-
Bui, T.D.1
Hernández-Lobato, J.M.2
Li, Y.3
Hernández-Lobato, D.4
Turner, R.E.5
-
5
-
-
84908188761
-
-
Technical report
-
Calandra, Roberto, Peters, Jan, Rasmussen, Carl Edward, and Deisenroth, Marc Peter. Manifold Gaussian processes for regression. Technical report, 2014.
-
(2014)
Manifold Gaussian Processes for Regression
-
-
Calandra, R.1
Peters, J.2
Rasmussen, C.E.3
Deisenroth, M.P.4
-
6
-
-
0034363401
-
Modelling creep rupture strength of ferritic steel welds
-
Cole, D, Martin-Moran, C, Sheard, AG, Bhadeshia, HKDH, and MacKay, DJC. Modelling creep rupture strength of ferritic steel welds. Science and Technology of Welding & Joining, 5(2):81–89, 2000.
-
(2000)
Science and Technology of Welding & Joining
, vol.5
, Issue.2
, pp. 81-89
-
-
Cole, D.1
Martin-Moran, C.2
Sheard, A.G.3
Bhadeshia, H.K.D.H.4
MacKay, D.J.C.5
-
7
-
-
84943564157
-
-
Dai, Zhenwen, Damianou, Andreas, Hensman, James, and Lawrence, Neil. Gaussian process models with parallelization and GPU acceleration, 2014.
-
(2014)
Gaussian Process Models with Parallelization and GPU Acceleration
-
-
Dai, Z.1
Damianou, A.2
Hensman, J.3
Lawrence, N.4
-
10
-
-
84937432577
-
Deep Gaussian processes
-
Carvalho, Carlos and Ravikumar, Pradeep (eds), AZ, USA, 4 JMLR W&CP 31
-
Damianou, Andreas and Lawrence, Neil D. Deep Gaussian processes. In Carvalho, Carlos and Ravikumar, Pradeep (eds.), Proceedings of the Sixteenth International Workshop on Artificial Intelligence and Statistics, volume 31, pp. 207–215, AZ, USA, 4 2013. JMLR W&CP 31.
-
(2013)
Proceedings of the Sixteenth International Workshop on Artificial Intelligence and Statistics
, vol.31
, pp. 207-215
-
-
Damianou, A.1
Lawrence, N.D.2
-
11
-
-
85162388879
-
Variational Gaussian process dynamical systems
-
Bartlett, Peter, Peirrera, Fernando, Williams, Chris, and Lafferty, John (eds), Cambridge, MA, MIT Press
-
Damianou, Andreas, Titsias, Michalis K., and Lawrence, Neil D. Variational Gaussian process dynamical systems. In Bartlett, Peter, Peirrera, Fernando, Williams, Chris, and Lafferty, John (eds.), Advances in Neural Information Processing Systems, volume 24, Cambridge, MA, 2011. MIT Press.
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
-
-
Damianou, A.1
Titsias, M.K.2
Lawrence, N.D.3
-
12
-
-
85080457915
-
-
Atlanta, GA, USA, 16-21 June 2013, of JMLR Proceedings, JMLR.org
-
Dasgupta, Sanjoy and McAllester, David (eds.). Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Proceedings, 2013. JMLR.org.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning, ICML 2013
, vol.28
-
-
Dasgupta, S.1
McAllester, D.2
-
14
-
-
84892588106
-
Structure discovery in nonparametric regression through compositional kernel search
-
Duvenaud, David, Lloyd, James Robert, Grosse, Roger, Tenenbaum, Joshua B., and Ghahramani, Zoubin. Structure discovery in nonparametric regression through compositional kernel search. In Dasgupta & McAllester (2013), pp. 1166–1174.
-
(2013)
Dasgupta & McAllester
, pp. 1166-1174
-
-
Duvenaud, D.1
Lloyd, J.R.2
Grosse, R.3
Tenenbaum, J.B.4
Ghahramani, Z.5
-
15
-
-
84955467869
-
Avoiding pathologies in very deep networks
-
Kaski, Sami and Corander, Jukka (eds), Iceland, JMLR W&CP 33
-
Duvenaud, David, Rippel, Oren, Adams, Ryan, and Ghahramani, Zoubin. Avoiding pathologies in very deep networks. In Kaski, Sami and Corander, Jukka (eds.), Proceedings of the Seventeenth International Workshop on Artificial Intelligence and Statistics, volume 33, Iceland, 2014. JMLR W&CP 33.
-
(2014)
Proceedings of the Seventeenth International Workshop on Artificial Intelligence and Statistics
, vol.33
-
-
Duvenaud, D.1
Rippel, O.2
Adams, R.3
Ghahramani, Z.4
-
16
-
-
57849113257
-
Ambiguity modeling in latent spaces
-
Popescu-Belis, Andrei and Stiefelhagen, Rainer (eds), LNCS,. Springer-Verlag, 28–30 June
-
Ek, Carl Henrik, Rihan, Jon, Torr, Philip, Rogez, Gregory, and Lawrence, Neil D. Ambiguity modeling in latent spaces. In Popescu-Belis, Andrei and Stiefelhagen, Rainer (eds.), Machine Learning for Multimodal Interaction (MLMI 2008), LNCS, pp. 62–73. Springer-Verlag, 28–30 June 2008.
-
(2008)
Machine Learning for Multimodal Interaction (MLMI 2008)
, pp. 62-73
-
-
Ek, C.H.1
Rihan, J.2
Torr, P.3
Rogez, G.4
Lawrence, N.D.5
-
20
-
-
84937849144
-
Generative adversarial networks
-
Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David, Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. Generative Adversarial Networks. In Advances in Neural Information Processing Systems, 2014.
-
(2014)
Advances in Neural Information Processing Systems
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
22
-
-
84883634438
-
Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters
-
Hensman, James, Lawrence, Neil D., and Rattray, Magnus. Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC Bioinformatics, 14(252), 2013. doi: doi:10.1186/1471-2105-14-252.
-
(2013)
BMC Bioinformatics
, vol.14
, Issue.252
-
-
Hensman, J.1
Lawrence, N.D.2
Rattray, M.3
-
23
-
-
84867720412
-
-
Hinton, Geoffrey E., Srivastava, Nitish, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv: 1207.0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
24
-
-
0000561424
-
Efficient global optimization of expensive black-box functions
-
Jones, Donald R., Schonlau, Matthias, and Welch, William J. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.
-
(1998)
Journal of Global Optimization
, vol.13
, Issue.4
, pp. 455-492
-
-
Jones, D.R.1
Schonlau, M.2
Welch, W.J.3
-
25
-
-
84919810317
-
Auto-encoding variational Bayes
-
Kingma, Diederik P and Welling, Max. Auto-Encoding Variational Bayes. In ICLR, 2013.
-
(2013)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
27
-
-
34547977917
-
Hierarchical Gaussian process latent variable models
-
Ghahramani, Zoubin ed, Omnipress
-
Lawrence, Neil D. and Moore, Andrew J. Hierarchical Gaussian process latent variable models. In Ghahramani, Zoubin (ed.), Proceedings of the International Conference in Machine Learning, volume 24, pp. 481–488. Omnipress, 2007. ISBN 1-59593-793-3.
-
(2007)
Proceedings of the International Conference in Machine Learning
, vol.24
, pp. 481-488
-
-
Lawrence, N.D.1
Moore, A.J.2
-
28
-
-
34250702177
-
Local distance preservation in the GP-LVM through back constraints
-
Cohen, William and Moore, Andrew (eds), Omnipress
-
Lawrence, Neil D. and Quiñonero Candela, Joaquin. Local distance preservation in the GP-LVM through back constraints. In Cohen, William and Moore, Andrew (eds.), Proceedings of the International Conference in Machine Learning, volume 23, pp. 513–520. Omnipress, 2006. ISBN 1-59593-383-2. doi: 10.1145/1143844.1143909.
-
(2006)
Proceedings of the International Conference in Machine Learning
, vol.23
, pp. 513-520
-
-
Lawrence, N.D.1
Quiñonero Candela, J.2
-
29
-
-
84877780054
-
Bayesian warped Gaussian processes
-
Bartlett, Peter L., Pereira, Fernando C. N., Burges, Christopher J. C., Bottou, Léon, and Weinberger, Kilian Q. (eds), Cambridge, MA
-
Lázaro-Gredilla, Miguel. Bayesian warped Gaussian processes. In Bartlett, Peter L., Pereira, Fernando C. N., Burges, Christopher J. C., Bottou, Léon, and Weinberger, Kilian Q. (eds.), Advances in Neural Information Processing Systems, volume 25, Cambridge, MA, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
-
-
Lázaro-Gredilla, M.1
-
30
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
November
-
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
33
-
-
84865114495
-
Reading digits in natural images with unsupervised feature learning
-
Netzer, Yuval, Wang, Tao, Coates, Adam, Bissacco, Alessandro, Wu, Bo, and Ng, Andrew Y. Reading Digits in Natural Images with Unsupervised Feature Learning. NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.
-
(2011)
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
37
-
-
84898943255
-
Warped Gaussian processes
-
Thrun, Sebastian, Saul, Lawrence, and Schölkopf, Bernhard (eds), Cambridge, MA, MIT Press
-
Snelson, Edward, Rasmussen, Carl Edward, and Ghahramani, Zoubin. Warped Gaussian processes. In Thrun, Sebastian, Saul, Lawrence, and Schölkopf, Bernhard (eds.), Advances in Neural Information Processing Systems, volume 16, Cambridge, MA, 2004. MIT Press.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
-
-
Snelson, E.1
Rasmussen, C.E.2
Ghahramani, Z.3
-
38
-
-
84869179179
-
Nonparametric Guidance of Autoencoder Representations using Label Information
-
Snoek, Jasper, Adams, Ryan P., and Larochelle, Hugo. Nonparametric Guidance of Autoencoder Representations using Label Information. Journal of Machine Learning Research, 13:2567–2588, 2012a.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 2567-2588
-
-
Snoek, J.1
Adams, R.P.2
Larochelle, H.3
-
39
-
-
84885579558
-
-
Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P. Practical Bayesian optimization of machine learning algorithms, pp. 29512959. 2012b.
-
(2012)
Practical Bayesian Optimization of Machine Learning Algorithms
, pp. 29512959
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
40
-
-
84862302424
-
Bayesian Gaussian process latent variable model
-
Teh, Yee Whye and Titterington, D. Michael (eds), Chia Laguna Resort, Sardinia, Italy, 13-16 May JMLR W&CP 9
-
Titsias, Michalis K. and Lawrence, Neil D. Bayesian Gaussian process latent variable model. In Teh, Yee Whye and Titterington, D. Michael (eds.), Proceedings of the Thirteenth International Workshop on Artificial Intelligence and Statistics, volume 9, pp. 844–851, Chia Laguna Resort, Sardinia, Italy, 13-16 May 2010. JMLR W&CP 9.
-
(2010)
Proceedings of the Thirteenth International Workshop on Artificial Intelligence and Statistics
, vol.9
, pp. 844-851
-
-
Titsias, M.K.1
Lawrence, N.D.2
-
42
-
-
84990883515
-
Gaussian process kernels for pattern discovery and extrapolation
-
Wilson, Andrew Gordon and Adams, Ryan Prescott. Gaussian process kernels for pattern discovery and extrapolation. In Dasgupta & McAllester (2013), pp. 1067–1075.
-
(2013)
Dasgupta & McAllester
, pp. 1067-1075
-
-
Wilson, A.G.1
Adams, R.P.2
|