-
1
-
-
0027574219
-
Analysis of multiphase flows using dual-energy gamma densitometry and neural networks
-
C. M. Bishop and G. D. James. Analysis of multiphase flows using dual-energy gamma densitometry and neural networks. Nuclear Instruments and Methods in Physics Research, A327:580-593, 1993.
-
(1993)
Nuclear Instruments and Methods in Physics Research
, vol.A327
, pp. 580-593
-
-
Bishop, C.M.1
James, G.D.2
-
2
-
-
34248389557
-
-
MIT Press, Cambridge, MA
-
O. Chapelle, B. Schölkopf, and A. Zien, editors. Semisupervised Learning. MIT Press, Cambridge, MA, 2006.
-
(2006)
Semisupervised Learning
-
-
Chapelle, O.1
Schölkopf, B.2
Zien, A.3
-
8
-
-
84867113123
-
Manifold relevance determination
-
Omnipress
-
A. Damianou, C. Ek, M. Titsias, and N. Lawrence. Manifold relevance determination. In Proceedings of the 29th International Conference on Machine Learning (ICML), pages 145-152. Omnipress, 2012.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning (ICML)
, pp. 145-152
-
-
Damianou, A.1
Ek, C.2
Titsias, M.3
Lawrence, N.4
-
9
-
-
84863002086
-
Robust filtering and smoothing with Gaussian processes
-
M. P. Deisenroth, R. D. Turner, M. F. Huber, U. D. Hanebeck, and C. E. Rasmussen. Robust filtering and smoothing with Gaussian processes. Automatic Control, IEEE Transactions on, 57(7):1865-1871, 2012.
-
(2012)
Automatic Control, IEEE Transactions On
, vol.57
, Issue.7
, pp. 1865-1871
-
-
Deisenroth, M.P.1
Turner, R.D.2
Huber, M.F.3
Hanebeck, U.D.4
Rasmussen, C.E.5
-
11
-
-
57849113257
-
Ambiguity modeling in latent spaces
-
A. Popescu-Belis and R. Stiefelhagen, editors, Springer-Verlag, 28-30 June
-
C. H. Ek, J. Rihan, P. Torr, G. Rogez, and N. D. Lawrence. Ambiguity modeling in latent spaces. In A. Popescu-Belis and R. Stiefelhagen, editors, Machine Learning for Multimodal Interaction (MLMI 2008), LNCS, pages 62-73. Springer-Verlag, 28-30 June 2008.
-
(2008)
Machine Learning for Multimodal Interaction (MLMI 2008), LNCS
, pp. 62-73
-
-
Ek, C.H.1
Rihan, J.2
Torr, P.3
Rogez, G.4
Lawrence, N.D.5
-
14
-
-
84867040604
-
Gaussian process priors with uncertain inputs-application to multiple-step ahead time series forecasting
-
A. Girard, C. E. Rasmussen, J. Quiñonero Candela, and R. Murray-Smith. Gaussian process priors with uncertain inputs-application to multiple-step ahead time series forecasting. In Advances in Neural Information Processing Systems, pages 529-536, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, pp. 529-536
-
-
Girard, A.1
Rasmussen, C.E.2
Quiñonero Candela, J.3
Murray-Smith, R.4
-
16
-
-
84988015067
-
Semi-supervised learning with deep generative models
-
1406.5298
-
D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling. Semi-supervised learning with deep generative models. CoRR, abs/1406.5298, 2014.
-
(2014)
CoRR
-
-
Kingma, D.P.1
Rezende, D.J.2
Mohamed, S.3
Welling, M.4
-
17
-
-
37549022963
-
-
Technical Report, The University of Sheffield, Department of Computer Science
-
N. D. Lawrence. The Gaussian process latent variable model. Technical Report CS-06-03, The University of Sheffield, Department of Computer Science, 2006.
-
(2006)
The Gaussian Process Latent Variable Model
-
-
Lawrence, N.D.1
-
18
-
-
78049527893
-
Semi-supervised learning via Gaussian processes
-
L. Saul, Y. Weiss, and L. Bouttou, editors, Cambridge, MA, MIT Press
-
N. D. Lawrence and M. I. Jordan. Semi-supervised learning via Gaussian processes. In L. Saul, Y. Weiss, and L. Bouttou, editors, Advances in Neural Information Processing Systems, volume 17, pages 753-760, Cambridge, MA, 2005. MIT Press.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 753-760
-
-
Lawrence, N.D.1
Jordan, M.I.2
-
19
-
-
33749268385
-
Local distance preservation in the GP-LVM through back constraints
-
W. Cohen and A. Moore, editors, Omnipress
-
N. D. Lawrence and J. Quiñonero Candela. Local distance preservation in the GP-LVM through back constraints. In W. Cohen and A. Moore, editors, Proceedings of the International Conference in Machine Learning, volume 23, pages 513-520. Omnipress, 2006. ISBN 1-59593-383-2. doi:10.1145/1143844.1143909.
-
(2006)
Proceedings of the International Conference in Machine Learning
, vol.23
, pp. 513-520
-
-
Lawrence, N.D.1
Quiñonero Candela, J.2
-
20
-
-
85162379599
-
Gaussian process training with input noise
-
A. McHutchon and C. E. Rasmussen. Gaussian process training with input noise. In NIPS, 2011.
-
(2011)
NIPS
-
-
McHutchon, A.1
Rasmussen, C.E.2
-
21
-
-
0041399511
-
Bayesian inference for the uncertainty distribution of computer model outputs
-
J. Oakley and A. O'Hagan. Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika, 89(4):769-784, 2002.
-
(2002)
Biometrika
, vol.89
, Issue.4
, pp. 769-784
-
-
Oakley, J.1
O'Hagan, A.2
-
22
-
-
49149117453
-
-
Technical report, Department of Engineering Science, University of Oxford
-
M. Osborne and S. J. Roberts. Gaussian processes for prediction. Technical report, Department of Engineering Science, University of Oxford, 2007.
-
(2007)
Gaussian Processes for Prediction
-
-
Osborne, M.1
Roberts, S.J.2
-
24
-
-
84983151271
-
Data imputation and robust training with Gaussian processes
-
J. Quinonero-Cañdela and S. Roweis. Data imputation and robust training with Gaussian processes. NIPS, 2003.
-
(2003)
NIPS
-
-
Quinonero-Cañdela, J.1
Roweis, S.2
-
25
-
-
17644428305
-
Propagation of uncertainty in Bayesian kernel models-application to multiple-step ahead forecasting
-
IEEE
-
J. Quiñonero-Candela, A. Girard, J. Larsen, and C. E. Rasmussen. Propagation of uncertainty in Bayesian kernel models-application to multiple-step ahead forecasting. In Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03). 2003 IEEE International Conference on, volume 2, pages II-701. IEEE, 2003.
-
(2003)
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03). 2003 IEEE International Conference On
, vol.2
, pp. II-701
-
-
Quiñonero-Candela, J.1
Girard, A.2
Larsen, J.3
Rasmussen, C.E.4
-
26
-
-
35348895580
-
Semisupervised self-training of object detection models
-
Jan.
-
C. Rosenberg, M. Hebert, and H. Schneiderman. Semisupervised self-training of object detection models. In Application of Computer Vision, 2005. WACV/MOTIONS'05 Volume 1., volume 1, pages 29-36, Jan 2005. doi:10.1109/ACVMOT.2005.107.
-
(2005)
Application of Computer Vision, 2005. WACV/MOTIONS'05 Volume 1
, vol.1
, pp. 29-36
-
-
Rosenberg, C.1
Hebert, M.2
Schneiderman, H.3
-
29
-
-
84869186087
-
Medlda: Maximum margin supervised topic models
-
J. Zhu, A. Ahmed, and E. P. Xing. Medlda: maximum margin supervised topic models. The Journal of Machine Learning Research, 13(1):2237-2278, 2012.
-
(2012)
The Journal of Machine Learning Research
, vol.13
, Issue.1
, pp. 2237-2278
-
-
Zhu, J.1
Ahmed, A.2
Xing, E.P.3
|