-
1
-
-
69349090197
-
Learning deep architectures for AI
-
Jan
-
Y. Bengio. Learning Deep Architectures for AI. Found. Trends Mach. Learn., 2(1): 1-127, Jan. 2009. ISSN 1935-8237. doi: 10.1561/2200000006.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
2
-
-
84871391768
-
Unsupervised feature learning and deep learning: A review and new perspectives
-
abs/1206.5538
-
Y. Bengio, A. C. Courville, and P. Vincent. Unsupervised feature learning and deep learning: A review and new perspectives. CoRR, abs/1206.5538, 2012.
-
(2012)
CoRR
-
-
Bengio, Y.1
Courville, A.C.2
Vincent, P.3
-
4
-
-
85162388879
-
Variational Gaussian process dynamical systems
-
J. Shawe- Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors
-
A. C. Damianou, M. Titsias, and N. D. Lawrence. Variational Gaussian process dynamical systems. In J. Shawe- Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 2510-2518. 2011.
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
, pp. 2510-2518
-
-
Damianou, A.C.1
Titsias, M.2
Lawrence, N.D.3
-
5
-
-
84904165466
-
Manifold relevance determination
-
J. Langford and J. Pineau, editors San Francisco, CA, Morgan Kauffman
-
A. C. Damianou, C. H. Ek, M. K. Titsias, and N. D. Lawrence. Manifold relevance determination. In J. Langford and J. Pineau, editors, Proceedings of the International Conference in Machine Learning, volume 29, San Francisco, CA, 2012. Morgan Kauffman.
-
Proceedings of the International Conference in Machine Learning
, vol.29
, pp. 2012
-
-
Damianou, A.C.1
Ek, C.H.2
Titsias, M.K.3
Lawrence, N.D.4
-
7
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Mar
-
D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res., 11: 625-660, Mar. 2010. ISSN 1532-4435.
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
8
-
-
80052213499
-
Multiple kernel learning algorithms
-
Jul
-
M. Gönen and E. Alpaydin. Multiple kernel learning algorithms. J. Mach. Learn. Res., 12: 2211-2268, Jul 2011. ISSN 1532-4435.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2211-2268
-
-
Gönen, M.1
Alpaydin, E.2
-
9
-
-
84954257201
-
Gaussian processes for big data through stochastic variational inference
-
J. Hensman and N. Lawrence. Gaussian processes for big data through stochastic variational inference. NIPS workshop on Big Learning, 2012.
-
(2012)
NIPS workshop on Big Learning
-
-
Hensman, J.1
Lawrence, N.2
-
12
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton and S. Osindero. A fast learning algorithm for deep belief nets. Neural Computation, 18: 2006, 2006.
-
(2006)
Neural Computation
, vol.18
, pp. 2006
-
-
Hinton, G.E.1
Osindero, S.2
-
13
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 303 (5786): 504-507, 2006.
-
(2006)
Science
, vol.303
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
15
-
-
84898980901
-
Gaussian process latent variable models for visualisation of high dimensional data
-
N. D. Lawrence. Gaussian process latent variable models for visualisation of high dimensional data. In In NIPS, page 2004, 2004.
-
(2004)
NIPS
, pp. 2004
-
-
Lawrence, N.D.1
-
16
-
-
27844605876
-
Probabilistic non-linear principal component analysis with Gaussian process latent variable models
-
N. D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research, 6: 1783-1816, 11 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, Issue.11
, pp. 1783-1816
-
-
Lawrence, N.D.1
-
17
-
-
34547977917
-
Hierarchical Gaussian process latent variable models
-
Z. Ghahramani, editor Omnipress
-
N. D. Lawrence and A. J. Moore. Hierarchical Gaussian process latent variable models. In Z. Ghahramani, editor, Proceedings of the International Conference in Machine Learning, volume 24, pages 481-488. Omnipress, 2007. ISBN 1-59593-793-3.
-
(2007)
Proceedings of the International Conference in Machine Learning
, vol.24
, pp. 481-488
-
-
Lawrence, N.D.1
Moore, A.J.2
-
21
-
-
84898943255
-
Warped Gaussian processes
-
S. Thrun, L. Saul, and B. Schölkopf, editors MIT Press, Cambridge, MA
-
E. Snelson, C. E. Rasmussen, and Z. Ghahramani. Warped Gaussian processes. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
-
-
Snelson, E.1
Rasmussen, C.E.2
Ghahramani, Z.3
-
23
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500): 2319-2323, 2000. doi: 10.1126/science.290.5500.2319.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
24
-
-
33746260413
-
Theory-based Bayesian models of inductive learning and reasoning
-
J. B. Tenenbaum, C. Kemp, and P. Shafto. Theory-based bayesian models of inductive learning and reasoning. In Trends in Cognitive Sciences, pages 309-318, 2006.
-
(2006)
Trends in Cognitive Sciences
, pp. 309-318
-
-
Tenenbaum, J.B.1
Kemp, C.2
Shafto, P.3
-
25
-
-
84860609370
-
Variational learning of inducing variables in sparse Gaussian processes
-
M. Titsias. Variational learning of inducing variables in sparse Gaussian processes. JMLR W&CP, 5: 567-574, 2009.
-
(2009)
JMLR W&CP
, vol.5
, pp. 567-574
-
-
Titsias, M.1
-
26
-
-
84862302424
-
Bayesian Gaussian process latent variable model
-
Y. W. Teh and D. M. Titterington, editors Chia Laguna Resort, Sardinia, Italy, 13-16 May 2010. JMLR W&CP 9
-
M. K. Titsias and N. D. Lawrence. Bayesian Gaussian process latent variable model. In Y. W. Teh and D. M. Titterington, editors, Proceedings of the Thirteenth International Workshop on Artificial Intelligence and Statistics, volume 9, pages 844-851, Chia Laguna Resort, Sardinia, Italy, 13-16 May 2010. JMLR W&CP 9.
-
Proceedings of the Thirteenth International Workshop on Artificial Intelligence and Statistics
, vol.9
, pp. 844-851
-
-
Titsias, M.K.1
Lawrence, N.D.2
-
27
-
-
84867133704
-
Gaussian process regression networks
-
J. Langford and J. Pineau, editors Edinburgh, June 2012. Omnipress
-
A. G. Wilson, D. A. Knowles, and Z. Ghahramani. Gaussian process regression networks. In J. Langford and J. Pineau, editors, Proceedings of the 29th International Conference on Machine Learning (ICML), Edinburgh, June 2012. Omnipress.
-
Proceedings of the 29th International Conference on Machine Learning (ICML)
-
-
Wilson, A.G.1
Knowles, D.A.2
Ghahramani, Z.3
|