메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages 2567-2588

Nonparametric guidance of autoencoder representations using label information

Author keywords

Autoencoder; Gaussian process; Gaussian process latent variable model; Representation learning; Unsupervised learning

Indexed keywords

AUTOENCODERS; COVARIATES; DATA SETS; DENSITY MODELING; DISCRIMINATIVE FUNCTIONS; DISCRIMINATIVE MODELS; EXPLORATORY DATA ANALYSIS; GAUSSIAN PROCESSES; LABEL INFORMATION; LATENT VARIABLE MODELS; NON-PARAMETRIC; NON-PARAMETRIC MODEL; NONPARAMETRIC APPROACHES; PRIORI INFORMATION; REAL-WORLD APPLICATION; REPRESENTATION LEARNING; STATISTICAL VARIATIONS;

EID: 84869179179     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (52)

References (40)
  • 6
    • 0001109377 scopus 로고
    • Learning internal representations from grayscale images: An example of extensional programming
    • Garrison W. Cottrell, Paul Munro, and David Zipser. Learning internal representations from grayscale images: An example of extensional programming. In Conference of the Cognitive Science Society, 1987.
    • (1987) Conference of the Cognitive Science Society
    • Cottrell, G.W.1    Munro, P.2    Zipser, D.3
  • 13
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with gaussian process latent variable models
    • Neil D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research, 6:1783-1816, 2005.
    • (2005) Journal Of Machine Learning Research , vol.6 , pp. 1783-1816
    • Lawrence, N.D.1
  • 14
    • 84869197418 scopus 로고    scopus 로고
    • Lawrence and joaquin qui nonero-candela. Local distance preservation in the gp-lvm through back constraints
    • Neil D. Lawrence and Joaquin Qui nonero-Candela. Local distance preservation in the GP-LVM through back constraints. In International Conference on Machine Learning, 2006.
    • (2006) International Conference on Machine Learning
    • Neil, D.1
  • 21
    • 0342813049 scopus 로고
    • The application of bayesian methods for seeking the extremum
    • Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 2:117-129, 1978.
    • (1978) Towards Global Optimization , vol.2 , pp. 117-129
    • Mockus, J.1    Tiesis, V.2    Zilinskas, A.3
  • 24
    • 0003301456 scopus 로고    scopus 로고
    • Bayesian learning for neural networks
    • Radford Neal. Bayesian learning for neural networks. Lecture Notes in Statistics, 118, 1996.
    • (1996) Lecture Notes in Statistics , vol.118
    • Neal, R.1
  • 25
    • 56449123056 scopus 로고    scopus 로고
    • Semi-supervised learning of compact document representations with deep networks
    • Marc'Aurelio Ranzato and Martin Szummer. Semi-supervised learning of compact document representations with deep networks. In International Conference on Machine Learning, 2008.
    • (2008) International Conference on Machine Learning
    • Ranzato, M.1    Szummer, M.2
  • 39
    • 0000704059 scopus 로고    scopus 로고
    • Computation with infinite neural networks
    • Christopher K. I. Williams. Computation with infinite neural networks. Neural Computation, 10 (5):1203-1216, 1998. (Pubitemid 128463669)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1203-1216
    • Williams, C.K.I.1
  • 40
    • 0029044273 scopus 로고
    • Lending direction to neural networks
    • Richard S. Zemel, Christopher K. I. Williams, and Michael C. Mozer. Lending direction to neural networks. Neural Networks, 8:503-512, 1995.
    • (1995) Neural Networks , vol.8 , pp. 503-512
    • Zemel, R.S.1    Williams, C.K.I.2    Mozer, M.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.